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Abstract. Object detection has over the past few years converged on
using linear SVMs over HOG features. Training linear SVMs however is
quite expensive, and can become intractable as the number of categories
increase. In this work we revisit a much older technique, viz. Linear Dis-
criminant Analysis, and show that LDA models can be trained almost
trivially, and with little or no loss in performance. The covariance matri-
ces we estimate capture properties of natural images. Whitening HOG
features with these covariances thus removes naturally occuring correla-
tions between the HOG features. We show that these whitened features
(which we call WHO) are considerably better than the original HOG fea-
tures for computing similarities, and prove their usefulness in clustering.
Finally, we use our findings to produce an object detection system that
is competitive on PASCAL VOC 2007 while being considerably easier to
train and test.

1 Introduction

Over the last decade, object detection approaches have converged on a single
dominant paradigm: that of using HOG features and linear SVMs. HOG fea-
tures were first introduced by Dalal and Triggs [1] for the task of pedestrian
detection. More contemporary approaches build on top of these HOG features
by allowing for parts and small deformations [2], training separate HOG detec-
tors for separate poses and parts [3] or even training separate HOG detectors
for each training exemplar [4].

Figure 1(a) shows an example image patch of a bicycle, and a visualization of
the corresponding HOG feature vector. Note that while the HOG feature vector
does capture the gradients of the bicycle, it is dominated by the strong contours
of the fence in the background. Figure 1(b) shows an SVM trained using just
this image patch as a positive, and large numbers of background patches as
negative [4]. As is clear from the figure, the SVM learns that the gradients of
the fence are unimportant, while the gradients of the bicycle are important.

* This work was funded by ONR-MURI Grant N00014-10-1-0933 and NSF Grant
0954083.
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Fig. 1. Object detection systems typically use HOG features, as in (a). HOG features
however are often swamped out by background gradients. A linear SVM learns to stress
the object contours and suppress background gradients, as in (b), but requires extensive
training. An LDA model, shown in (d), has a similar effect but with negligible training.
PCA on the other hand completely kills discriminative gradients, (c). The PCA, LDA
and SVM visualizations show the positive and negative components separately, with
the positive components on the left and negative on the right.

However, training linear SVMs is expensive. Training involves expensive
bootstrapping rounds where the detector is run in a scanning window over mul-
tiple negative images to collect “hard negative” examples. While this is feasible
for training detectors for a few tens of categories, it will be challenging when
the number of object categories is of the order of tens of thousands, which is the
scale in which humans operate.

However, linear SVMs aren’t the only linear classifiers around. Indeed, Fisher
proposed his linear discriminant as far back as 1936 [5]. Fisher discriminant
analysis tries to find the direction that maximizes the ratio of the between-class
variance to the within-class variance. Linear discriminant analysis (LDA) is a
generative model for classification that is equivalent to Fisher’s discriminant
analysis if the class covariances are assumed to be equal. Textbook accounts of
LDA can be found, for example, in [6,7]. Given a training dataset of positive
and negative features (z,y) with y € {0, 1}, LDA models the data x as generated
from class-conditional Gaussians:

P(z,y) = P(z|y)P(y) where P(y=1)=m and P(z|ly) = N(z;p,,X)

where means (i, are class-dependent but the covariance matrix X is class-independent.
A novel feature x is classified as a positive if P(y = 1|z) > P(y = 0|z), which
is equivalent to a linear classifier with weights given by w = X~ (u; — po). Fig-
ure 1(d) shows the LDA model trained with the bicycle image patch as positive
and generic image patches as background. Clearly, like the SVM, the LDA model
suppresses the contours of the background, while enhancing the gradients of the
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bicycle. LDA has been used before in computer vision, one of the earliest and
most popular appications being face recognition [8].

Training an LDA model requires figuring out the means p,, and Y. However,
unlike an SVM which has to be trained from scratch for every object category, we
show that pg (corresponding to the background class) and X' can be estimated
just once, and reused for all object categories, making training almost trivial.
Intuitively, LDA computes the average positive feature uq, centers it with pyg,
and “whitens” it with X! to remove correlations. The matrix X acts as a
model of HOG patches of natural images. For instance, as we show in section 2,
this matrix captures the fact that adjacent HOG cells are highly correlated
owing to curvilinear continuity. Thus, not all of the strong vertical gradients in
the HOG cells of Figure 1(a) are important: many of them merely reflect the
continuity of contours. Removing these correlations therefore leaves behind just
the discriminative gradients.

The LDA model is just the difference of means in a space that has been
whitened using the covariance matrix 2. This suggests that this whitened space
might be significant outside of just training HOG classifiers. In fact, we find that
dot products in this whitened space are more indicative of visual similarity than
dot products in HOG space. Consequently, clustering whitened HOG feature
vectors (which we call WHO for Whitened Histogram of Orientations) gives
more coherent and often semantically meaningful clusters.

Principal components analysis (PCA) is a related method that has been ex-
plored for tasks such as face recognition [9] and tools for dimensionality reduction
in object recognition [10]. In particular, Ke and Sukthankar [11] and Schwartz
et al [12] examine (linear) low-dimensional projections of oriented gradient fea-
tures. In PCA, the data is projected onto the directions of the most variation,
and the directions of least variation are ignored. However, for our purposes, the
directions that are ignored are often those that are the most discriminative. Fig-
ure 1(c) shows the result of projecting the data down to the top 30 principal
components. Clearly, this is even worse than the original HOG space: contours
of the bicycle are more or less completely discarded. Our observations mirror
those of Belhumeur et al [8] who showed that in the context of face recognition,
the directions retained by PCA often correspond to variations in illumination
and viewing direction, rather than variations that would be discriminative of the
identity of the face. [8] conclude that Fisher’s discriminant analysis outperforms
PCA on face recognition tasks. In section 4 we show concretely that the low
dimensional subspace chosen by PCA is significantly worse than whitened HOG
as far as computing similarity is concerned.

Our aim in this paper is therefore to explore the advantages provided by
whitened HOG features for clustering and classification. In section 2 we go into
the details of our LDA models, describing how we obtain our covariance matrix,
and the properties of the matrix. Section 3 describes our first set of experi-
ments on the INRIA pedestrian detection task, showing that LDA models can
be competitive with linear SVMs. Section 4 outlines how WHO features can be
used for clustering exemplars. We then use these clusters to train detectors, and
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evaluate the performance of the LDA model vis-a-vis SVMs and other choices
in section 5. In section 6 we tie it all together to produce a final object detec-
tion system that performs competitively on the PASCAL VOC 2007 dataset,
while being orders-of-magnitude faster to train (due to our LDA classifiers) and
orders-of-magnitude faster to test (due to our clustered representations).

2 Linear Discriminant Analysis

In this section, we describe our model of image gradients based on LDA. For
our HOG implementation, we use the augmented HOG features of [2]. Briefly,
given an image window of fixed size, the window is divided into a grid of 8 x 8
cells. From each cell we extract a feature vector z;; of gradient orientations
of dimensionality d = 31. We write # = [z;;] for the final window descriptor
obtained by concatenating features across all locations within the window. If
there are N cells in the window, the feature vector has dimensionality Nd.

The LDA model is a linear classifier over z with weights given by w =
XYy — po). Here X is an Nd x Nd matrix, and a naive approach would
require us to estimate this matrix again for every value of N and also for every
object category. In what follows we describe a simple procedure that allows us
to learn a X and a ug (corresponding to the background) once, and then reuse
it for every window size N and for every object category. Given a new object
category, we need only a set of positive features which are averaged, centered,
and whitened to compute the final linear classifier.

2.1 Estimating po and ¥

Object-independent backgrounds: Consider the task of learning K 1-vs-all
LDA models from a multi-class training set spanning K objects and background
windows. One can show that the maximum likelihood estimate of X' is the sample
covariance estimated across the entire training set, ignoring class labels. If we
assume that the number of instances of any one object is small compared to the
total number of windows, we can similarly define a generic pg that is independent
of object type. This means that we can learn a generic g and X from unlabeled
windows, and this need not be done anew for every object category.

Marginalization: We are now left with the task of estimating a pg and X for
every value of the window size N. However, note that the statistics of smaller-size
windows can be obtained by marginalizing out statistics of larger-size windows.
Gaussian distributions can be marginalized by simply dropping the marginalized
variables from po and Y. This means that we can learn a single uo and X for
the largest possible window of Ny cells, and generate means and covariances for
smaller window sizes “on-the-fly” by selecting subpartitions of oy and Y. This
reduces the number of parameters to be estimated to an Nyd dimensional g
and an Nod X Nypd matrix Y.

Scale and translation invariance: Image statistics are largely scale and
translation invariant [13]. We achieve such invariance by including training win-
dows extracted from different scales and translations. We can further exploit
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translation invariance, or stationarity in statistical terms, to reduce the number
of model parameters. To encode a stationary pg, we compute the mean HOG
feature p = El[x;;|, averaged over all features = and cell locations (i,7). uo is
just p replicated over all Ny cells.

Write X as a block matrix with blocks X qx) = Elz;;x}]. We then in-
corporate assumptions of translation invariance by modeling X' with a spatial
autocorrelation function [14]:

T
Ziij,awy = Li-1),Gi-k) = BlTuw®(upizi) (vrj—i)) (1)

where the expectation is over cell locations (u,v) and gradient features z. In
other words, we assume that X;;) (x;) depends only on the relative offsets (i — k)
and (j — ). Thus instead of estimating an Nod x Nod matrix X', we only have
to estimate the d x d matrices I'y; for every offset (s,t). For a spatial window
with Ny cells, there exist only Ny distinct relative offsets. Thus we only need to
estimate O(Nod?) parameters.

We now estimate p and the matrices I's; from all subwindows extracted
from a large set of unlabeled, 10,000 natural images (the PASCAL VOC 2010
dataset). This computation can be done once and for all, and the resulting p
and I stored. Then, given a new object category, uo can be reconstructed by
replicating p over all the cells in the window and X can be reconstructed from
I' using (1).

Regularization: Even given this large training set and our O(N) parametriza-
tion, we found X' to be low-rank and non-invertible. This implies that it would
be even more difficult to learn a separate covariance matrix for each positive
class because we have much fewer positive examples, further motivating a single-
covariance assumption. In general, it is difficult to learn high-dimensional covari-
ance matrices [14]. For typical-size N values, X can grow to a 10,000 x 10,000
matrix. One solution is to enforce conditional independence assumptions with a
Gaussian Markov random field; we discuss this further below. In practice, we reg-
ularized the sample covariance by adding a small value (A = .01) to its diagonal,
corresponding to an isotropic prior on .

2.2 Properties of the covariance matrix

WHO: We define a whitened histograms of orientations (WHO) descriptor as
& = X71Y2(x — pg). The transformed feature vector # then has an isotropic
covariance matrix. An alternative interpretation of the linear discriminant is that
w computes the difference between the average positive and negative features
in WHO space. Such descriptors maybe useful for clustering because euclidean
distances are more meaningful in this space. We explore this further in section 4.
We use a cholesky decomposition RRT = X and Gaussian elimination (Matlab’s
blackslash) to efficiently compute this whitening transformation.

Analysis: We examine the structure of X in Fig.2. Intuitively, 2 encodes
generic spatial statistics about oriented gradients. For example, due to curvilin-
ear continuity, we expect a strong horizontal gradient response to be correlated
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with a strong response at a horizontally-adjacent location. Multiplying gradi-
ent features by X1 subtracts off such correlated measurements. Because X!
is sparse, features need only be de-correlated with adjacent or nearby spatial
locations. This in turn suggests that image gradients can be fit will with a 3rd
or 4th-order spatial Markov model, which may make for easier estimation and
faster computations. A spatial Markov assumption makes intuitive sense; given
we see a strong horizontal gradient at a particular location, we expect to see
a strong gradient to its right regardless of the statistics to its left. We experi-
mented with such sparse models [15], but found an unrestricted X' to work well
and simpler to implement.

Implications: Our statistical model, though quite simple, has several impli-
cations for scanning-window templates. (1) One should learn templates of larger
spatial extent than the object. For example, a 2"%-order spatial Markov model
implies that one should score gradient features two cells away from the object
border in order to de-correlate features. Intuitively, this makes sense; a pedes-
trian template wants to find vertical edges at the side of the face, but if it also
finds vertical edges above the face, then this evidence maybe better explained
by the vertical contour of a tree or doorway. Dalal and Triggs actually made the
empirical observation that larger templates perform better, but attributed this
to local context [1]; our analysis suggests that decorrelation may be a better ex-
planation. (2) Current strategies for modeling occlusion/truncation by “zero”ing
regions of a template may not suffice [16,17]. Rather, our model allows us to
properly marginalize out such regions from g and X. The resulting template
w will not be equivalent to a zero-ed out version of the original template, be-
cause the de-correlation operation must change for gradient features near the
occluded /truncated regions.

X0

Fig. 2. We visualize correlations between 9 orientation features in horizontally-adjacent
HOG cells as concatenated set of 9 x 9 matrices. Light pixels are positive while dark
pixels are negative. We plot the covariance and precision matrix on the left, and the
positive and negative values of the precision matrix on the right. Multiplying a HOG
vector with X! decorrelates it, subtracting off gradient measurements from adjacent
orientations and locations. The sparsity pattern of X! suggests that one needs to
decorrelate features only a few cells away, indicating that gradients maybe well-modeled
by a low-order spatial Markov model.
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(a) AP (b) Centered (c) LDA
Fig. 3. The performance (AP) of the LDA model and the centered model (LDA with-

out whitening) vis-a-vis a standard linear SVM on HOG features. We also show the
detectors for the centered model and the LDA model.

3 Pedestrian detection

HOG feature vectors were first described in detail in [1], where they were shown
to significantly outperform other competing features in the task of pedestrian de-
tection. This is a relatively easy detection task, since pedestrians don’t vary sig-
nificantly in pose. Our local implementation of the Dalal-Triggs detector achieves
an average precision (AP) of 79.66% on the INRIA dataset, outperforming the
original AP of 76.2% reported in Dalal’s thesis [18]. We think this difference is
due to our SVM solver, which implements multiple passes of data-mining for
hard negatives. We choose this task as our first test bed for WHO features.

We use our LDA model to train a detector and evaluate its performance.
Figure 3 shows our performance compared to that of a standard linear SVM on
HOG features. We achieve an AP of 75.10%. This is slightly lower than the SVM
performance, but nearly equivalent to the original performance of [18]. However,
note that compared to the SVM model, the LDA model is estimated only from a
few positive image patches and neither requires access to large pools of negative
images nor involves any costly bootstrapping steps. Given this overwhelmingly
reduced computation, this performance is impressive.

Constructing our LDA model from HOG feature vectors involves two steps,
i.e, subtracting jo (centering) and multiplying by X~! (whitening). To tease
out the contribution of whitening, we also evaluate the performance when the
whitening step is removed. In other words, we consider the detector formed by
simply taking the mean of the centered positive feature vectors. We call this
the “centered model”, and its performance is indicated by the black curve in
Figure 3. It achieves an AP of less than 10%, indicating that whitening is crucial
to performance. We also show the detectors in Figure 3, and it can be clearly
seen that the LDA model does a better job of identifying the discriminative
contours (the characteristic shape of the head and shoulders) compared to simple
centering.
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4 Clustering in WHO space

Owing to large intra-class variations in pose and appearance, a single linear
classifier over HOG feature vectors can hardly be expected to do well for generic
object detection. Hence many state of the art methods train multiple “mixture
components”, multiple “parts” or both [3,2]. These mixture components and
parts are either determined based on extra annotations [3], or inferred as latent
variables during training [2]. [4] consider an extreme approach and consider
each positive example as its own mixture component, training a separate HOG
detector for each example.

In this section we consider a cheaper and simpler strategy of producing com-
ponents by simply clustering the feature vectors. As a test bed we use the PAS-
CAL VOC 2007 object detection dataset (train+val) [19]. We first cluster the
exemplars of a category using kmeans on aspect ratio. Then for each cluster, we
resize the exemplars in that cluster to a common aspect ratio, compute feature
vectors on the resulting image patches and finally subdivide the clusters using
recursive normalized cuts [20]. The affinity we use for N-cuts is the exponential
of the cosine of the angle between the two feature vectors.

We can either cluster using HOG feature vectors or using WHO feature vec-
tors (& = X V2(z—py), see section 2). Alternatively, we can use PCA to project
HOG features down to a low dimensional space (we use 30 dimensions), and clus-
ter in that space. Figure 4 shows an example cluster obtained in each case for the
'bus’ category. The cluster based on WHO features is in fact semantically mean-
ingful, capturing buses in a particular pose. HOG based clustering produces less
coherent results, and the cluster becomes significantly worse when performed
in the dimensionality-reduced space. This is because as Figure 1 shows, HOG
overstresses background, whereas whitening removes the correlations common in
natural images, leaving behind only discriminative gradients. PCA goes the op-
posite way and in fact removes discriminative directions, making matters worse.
Figure 5 shows some more examples of HOG-based clusters and WHO-based
clusters. Clearly, the WHO-based clusters are significantly more coherent.

5 Training each cluster

We now turn to the task of training detectors for each cluster. Following our
experiments in section 3, we have several choices:

1. Train a linear SVM for each cluster, using the images of the cluster as pos-
itives, and image patches from other categories/background as negatives
(SVM on cluster).

2. Train an LDA model on the cluster, i.e, use w = X~ (Zymean — o) (LDA on
cluster).

3. Take the mean of the centered HOG features of the patches in the cluster,
i.e use W = Tpean — po (“centered model” on cluster).
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(a) HOG o (b PCA

Fig. 4. Clusters obtained using N-cuts using HOG feature vectors, HOG vectors pro-
jected to a PCA basis and WHO feature vectors. Observe that while all clusters make
mistakes, the HOG-based cluster is much less coherent than the WHO-based cluster.
The PCA cluster is even less coherent than the HOG-based cluster.

[4] treat each exemplar separately, and get their boost from training to discrim-
inate each exemplar from the background. On the other hand we believe that
we can get bigger potential gains by averaging over multiple positive examples.
In order to evaluate this, we also consider the following choices:

4. Train an LDA model on just the medoid, i.e w = X~ (@ medoia — po) (LDA
on the medoid).

5. Take the medoid of the cluster and train a linear SVM, using the medoid as
positive and image patches from other categories/background as negative.

We take the clusters obtained as described in the previous section for three
categories : horse, motorbike and bus. For each cluster we train detectors ac-
cording to the five schemes above. We then run each detector on the test set
of PASCAL VOC 2007, and compute its AP. The ground truth for each cluster
consists of all objects of that category.

Table 1 shows a summary comparison of the five schemes, and Figure 6
compares the performance of the LDA model with the other four schemes in
more detail. First note that both single-example schemes perform worse than
the LDA model. Indeed, for all but 6 of the 77 clusters tested, the LDA model
achieves a higher AP than a single SVM trained using the medoid. This clearly
shows that simple averaging over similar positive examples helps more than
explicitly training to discriminate single exemplars from the background. This
also provides an indirect validation of our clustering step, since it indicates that
each cluster is coherent enough to be better than any single individual example.
In our experimental results, we further quantitatively evaluate our clusters by
demonstrating that they perform similarly to “brute-force” methods that train a
separate exemplar template for every member of every cluster [4]. Our clustered
representation performs similarly while being faster to evaluate.
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(b) aeroplane

Fig. 5. Examples of clusters obtained for aeroplane and horse using HOG feature vec-
tors (left) and WHO feature vectors (right). Note how the clusters based on WHO are
significantly more coherent than the clusters based on HOG.

Secondly, observe that on average the performance of the LDA model is
very similar to the performance of a linear SVM, and is also highly correlated
with it. This reiterates our observations on the pedestrian detection task in
section 3. This also indicates that our LDA model can be used in place of SVMs
for HOG based detectors with little or no loss in performance, at a fraction of
the computational cost and with very little training data.

Finally, the performance of the centered model without whitening is much
lower than the LDA model, and is in fact significantly worse than even the single-
example models. This again shows that decorrelation, and not just centering, is
crucial for performance.

6 Combining across clusters

In this section we attempt to tie the previous two sections together to produce
a full object detection system. We compare here to the approach of [4], who
show competitive performance on PASCAL VOC 2007 by simply training one
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LDA on cluster|SVM on cluster|LDA on medoid|SVM on medoid| Centered
Mean AP 7.59 £+ 4.86 6.75 £ 4.80 4.84 £4.13 4.05+4.12 ]0.74 +2.02
Median AP| 9.25 + 3.86 9.16 £+ 4.04 4.65 + 3.71 2+3.6 0.06 £0.7

Table 1. Mean and median AP (in %) of the different models.
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Fig. 6. Performance (AP) of the LDA model compared to (from left to right) an SVM
trained on the cluster, the centered model trained on the cluster, an SVM trained on
the medoid and an LDA model trained on the medoid. The blue line is the y = z line.
The LDA performs significantly better than both the single-example approaches and
is comparable to an SVM trained on the cluster.

linear SVM per exemplar. This performance is impressive given that they use
only HOG features and do not have any parts [2, 3].

We agree with them on the fact that using multiple components instead of
single monolithic detectors is necessary for handling the large intra-class varia-
tion. However, training a separate SVM for each positive example entails a huge
computational complexity. Because the negative class for each model is essen-
tially the background, one would ideally learn background statistics just once,
and simply plug it in for each model.

LDA allows us to do precisely that. Background statistics in the form of X
and p are computed just once, and training only involves computing the mean
of the positive examples. This reduces the computational complexity drastically:
using LDA we can train all exemplar models of a particular category on a single
machine in a few minutes. Table 2 shows how exemplar-LDA models compare
to exemplar-SVMs [4]. As can be seen, there is little or no drop in performance.

Replacing SVMs by LDA significantly reduces the complexity at train time.
However at test time, the computational complexity is still high because one
has to run a very large number of detectors over the image. We can reduce this
computational complexity considerably by first clustering the positive examples
as described in Section 4. We then train one detector for each cluster, resulting
in far fewer detectors. For instance, the ’horse’ category has 403 exemplars but
only 29 clusters.

To build a full object detection system, we need to combine these cluster
detector outputs in a sensible way. Following [4], we train a set of rescoring
functions that rescore the detections of each detector. Note that only detections
that score above a threshold are rescored, while the rest are discarded.
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We train a separate rescoring function for each cluster. For each detection,
we construct two kinds of features. The first set of features considers the dot
product of the WHO feature vector of the detection window with the WHO
feature vector of every exemplar in the cluster. This gives us as many features
as there are examples in the cluster. These features encode the similarity of the
detection window with the purported “siblings” of the detection window, namely
the exemplars in the cluster.

The second set of features is similar to context features as described in [4,
3]. We consider every other cluster and record its highest scoring detection that
overlaps by more than 50% with this detection window. These features record
the similarity of the detection window to other clusters and allow us to boost
scores of similar clusters and suppress scores of dissimilar clusters.

These features together with the original score given by the detector form
the feature vector for the detection window. We then train a linear SVM to
predict which detection windows are indeed true positives, and fit a logistic to
the SVM scores. At test time the detections of each cluster detector are rescored
using these second-level classifiers, and then standard non-max suppression is
performed to produce the final, sparse set of detections. Note that this second
level rescoring is relatively cheap since only detection windows that score above
a threshold are rescored. Indeed, our cluster detectors can be thought of as the
first step of a cascade, and significantly more sophisticated methods can be used
to rescore these detection windows.

As shown in Table 2, our performance is very close to the performance of
the Exemplar SVMs. This is in spite of the fact that our first-stage detectors
require no training at all, and our second stage rescoring functions have an order
of magnitude fewer parameters than ESVM+Co-occ [4] (for instance, for the
horse category, in the second stage we have fewer than 2000 parameters, while
ESVM-+Co-occ has more than 100000). Although our performance is lower than
part-based models [2], one could combine such approaches and possibly train
parts with LDA.

Finally, each detection of ours is associated with a cluster of training exem-
plars. We can go further and associate each detection to the closest exemplar
in the cluster, where distance is defined as cosine distance in WHO space. This
allows us to match each detection to an exemplar, as in [4]. Figure 7 shows ex-
amples of detections and the training exemplars they are associated with. As
can be seen, the detections are matched to very similar and semantically related
exemplars.

7 Conclusion

Correlations are naturally present in features used in object detection, and we
have shown that significant advantages can be derived by accounting for these
correlations. In particular, LDA models trained using these correlations can be
used as a highly efficient alternative to SVMSs, without sacrificing performance.
Decorrelated features can also be used for clustering examples, and we have
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ESVM | ESVM || ELDA |[Ours-only 1|Ours-only 2|Ours-full
+Calibr|4Co-occ||+Calibr

aeroplane 20.4 20.8 18.4 17.4 22.1 23.3
bicycle 40.7 48.0 39.9 35.5 374 41.0
bird 9.3 7.7 9.6 9.7 9.8 9.9
boat 10.0 14.3 10.0 10.9 11.1 11.0
bottle 10.3 13.1 11.3 15.4 14.0 17.0
bus 31.0 39.7 39.6 17.2 18.0 37.8
car 40.1 41.1 42.1 40.3 36.8 38.4
cat 9.6 5.2 10.7 10.6 6.5 11.5
chair 10.4 11.6 6.1 10.3 11.2 11.8
cow 14.7 18.6 12.1 14.3 13.5 14.5
diningtable 2.3 11.1 3 4.1 12.1 12.2
dog 9.7 3.1 10.6 1.8 10.5 10.2
horse 38.4 44.7 38.1 39.7 43.1 44.8
motorbike 32.0 39.4 30.7 26.0 25.8 27.9
person 19.2 16.9 18.2 23.1 21.3 22.4
pottedplant 9.6 11.2 1.4 4.9 5.1 3.1
sheep 16.7 22.6 12.2 14.1 13.8 16.3
sofa 11.0 17.0 11.1 8.7 12.2 8.9
train 29.1 36.9 27.6 22.1 30.6 30.3
tvmonitor 31.5 30.0 30.2 15.2 12.8 28.8
Mean 19.8 22.6 19.1 17.0 18.3 21.0

Table 2. Our performance on VOC 2007, reported as AP in %. We compare with
ESVM+Calibr and ESVM+Co-occ [4]. “ELDA+Calibr” constructs exemplar models
using LDA, followed by a simple calibration step [4]. The last three columns show the
performance using our clusters instead of individual exemplars. “Ours-only 1”7 is our
performance using only the “sibling” features, while “Ours- only 2” is our performance
using only the context features. Clearly both sets of features give us a boost. Our full
model performs similarly to [4], but is much faster to train and test.

shown that the combination of these two ideas allows us to build a competitive
object detection system that is significantly faster not just at train time but
also at run time. Our work can be built upon to produce state-of-the-art object
detection systems, mirroring the developments in SVM-based approaches [2, 3.
Our statistical models also suggest that natural image statistics, largely ignored
in the field of object detection, are worth (re)visiting. For example, gradient
statistics may be better modeled with heavy-tailed distributions instead of our
Gaussian models [13]. However, the ideas expressed here are quite general, and
as we have shown, can also be applied to tasks other than object detection, such
as clustering.
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