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Abstract

Given a community-contributed set of photos of a

crowded public event, this paper addresses the problem of

finding all images of each person in the scene. This problem

is very challenging due to large changes in camera view-

points, severe occlusions, low resolution and photos from

tens or hundreds of different photographers. Despite these

challenges, the problem is made tractable by exploiting a

variety of visual and contextual cues – appearance, time-

stamps, camera pose and co-occurrence of people. This pa-

per demonstrates an approach that integrates these cues to

enable high quality person matching in community photo

collections downloaded from Flickr.com.

1. Introduction

This work addresses the problem of matching instances

of people in images of crowded events. Examples of such

events include a football game, a graduation ceremony,

weddings, parties, or even popular tourist sites that are pho-

tographed many times on the same day. For example, Fig-

ure 1 shows several photos from a special event at Trafal-

gar Square when it was briefly covered with grass. Upon

looking very closely, some of the same people can be found

to appear in two or more of these images, even though they

were taken by four different photographers. Suppose I spec-

ify a person in one photo (yellow box, upper left). Can you

find her in all of the others? Now suppose that instead of

just a few images, there were hundreds or thousands of such

photos? This task is akin to the popular Where’s Waldo

children’s book, where the goal is to find Waldo in each im-

age. Applications such as photo browsing and surveillance

would immediately benefit from the ability to mine event

photo collections for all instances of a person.

This version of Where’s Waldo is extremely challeng-

ing due to large changes in camera viewpoint, severe occlu-

sions, low resolution and photos from many different pho-

tographers – it is truly akin to finding a needle in a haystack.

To make the problem tractable, we make the assumption

that the rate of photo acquisition is fast compared to the rate

of movement of people. Given the exponential growth in

the number of photos that people take, the assumption is

not unreasonable and will become more and more plausible

over time. Further, there are a number of scenarios where

people are relatively stationary over large intervals of time

(e.g., a football game, a graduation ceremony, etc.). We can

then restrict our search for a particular person in a small 3D

neighborhood and to photos taken close in time. Thus, this

problem becomes a correspondence problem of the form of-

ten encountered in vision problems.

Wide baseline matching for rigid, architectural scenes

is relatively mature, even at large scale [1, 12]. However,

the people correspondence problem presents different chal-

lenges – people are nonrigid objects, who articulate and

move over time. Occlusion is severe in crowded scenes.

Further, a particular “Waldo” appears in a small fraction of

the pictures, as people are dynamic entities occupying the

scene for a limited time interval. On the other hand, we

exploit the available contextual information (not available

in the Where’s Waldo books!) to make the problem more

tractable. Contemporary image formats contain additional

tags such as GPS tags, time stamps. Other forms of con-

text include viewpoint estimation through geometric regis-

tration, social context manifested through the co-occurence

of friends in each other’s photographs, etc. We demonstrate

that the task of matching people in crowded events is solv-

able when one exploits these contextual cues.

Our contributions are three-fold. First, we present a

novel formulation of people-matching in crowds as a gen-

eralization of multi-view stereo, where a part-based appear-

ance classifier is used to score correspondences rather than

a simpler pixel or window-based score such as normalized

correlation. Second, we show that this matching problem

can be significantly aided by the use of contextual cues
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Figure 1: We seek to find all instances of a specific person in a large photo collection. Trained from a single image at the top

left, our approach correctly finds 4 of the 5 matches shown above from a collection of 282 images.

(such as co-occurrence and time-stamps) enforced through

a novel, global Markov Random Field (MRF) model. Fi-

nally, we provide an extensive manually labeled dataset of

people matches for benchmarking purposes.

Related work on tagging people in photo collections has

focused primarily on cases where face detection and recog-

nition techniques are applicable (i.e., posed, frontal pho-

tos) [11, 15, 16] and there are typically only a few people

present. In contrast, we seek to find matches in a sea of

hundreds of people, and where face detection and recogni-

tion methods fail for the vast majority of cases. For exam-

ple in Figure 1, our final system finds 4 of the 5 matches

among which no face is visible at all. We also note that

prior authors have explored color models for matching peo-

ple [7, 11, 13], co-occurrence cues [6], and other contextual

cues [8, 13] in other settings.

2. Overview

The input to our system is a collection of photos corre-

sponding to a single event and we aim to find all matches of

people marked by the user. We only require a person to be

marked in a single image. The user specifies the person by

marking different parts (up to 3) in addition to specifying

the location of the head and the bottom most point (Section

3.1). A 2D rigid part based color appearance model is learnt

from this input (Section 3.2). We register the photo col-

lection using the structure-from-motion system of Snavely

et al.[12]. We then use the learned appearance model to lo-

calize the person in 3D (Section 3.3). Given the location of

each person in 3D, we project the location into each image

and restrict the search to a small neighborhood (assuming

small person movement). Finally, in Section 3.4 we inte-

grate contextual cues (time stamp information, groups of

people, etc.) using an MRF framework.

In the paper, we denote a person by p, an image by I and

the time stamp of the jth image by tj . Each person pi is

manually marked in exactly one training image Itr(i).

3. Matching People

3.1. User Input

We require the user to mark a single instance of each

person to be searched. The location of a person pi in an

image is specified by clicking on two points in the image:

piground
, the point of contact of the person with the ground

and pihead
, the top of the head of the person. In addition, the

user specifies different parts (up to 3) of the person by draw-
ing different masks (Figure 2b) which helps build a better
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(a) (b) (c) (d) (e) (f)

Figure 2: User Input and Appearance Model.

color model as we describe in the next section.

3.2. Learning the Appearance Model

Conventional multi-view stereo methods use a pixel or

window-based feature for finding correspondence. Instead,

given a training image marked with part masks (Figure 2b),

we wish to learn an appearance model for that person which

we will use to find correspondences. Building an accu-

rate appearance model is difficult because people can vary

greatly in appearance due to changes in viewpoint, scale,

occlusions, and exposure/radiometric differences in cam-

eras. We use a part-based appearance model inspired by

pictorial structures [4], where parts are restricted to lie in a

2D rigid location with respect to a global coordinate frame

defined by piground
and pihead

.

Color model: For each part, we learn a pixel-level RGB

classifier. We tried other features like image patches, SIFT

points, etc., but they do not perform well due to limited

training data, low resolution and clothes with low texture.

Specifically, we create a 9D feature xj for each pixel,

consisting of R, G, B values and their quadratic combina-

tions (RG, R2, . . .). Labeling pixels inside a part-specific

mask as positives (yj = 1) and those outside as negatives

(yj = −1) (with a 10-pixel band separating them), we learn

a logistic regression classifier similar to [9] by computing

wpart = argminw

∑

j log(1 + exp(−yjw
T xj)). Such a

quadratic discriminant can also be obtained by directly es-

timating a Gaussian model for part pixels and for the back-

ground, but we found better results with a discriminative

classifier.

Scoring a match: We wish to use the discriminative color

models to score a putative match defined by a given can-

didate p′iground
and p′ihead

in a new image (Figure 2d). We

compute the isotropic scaling, rotation and translation that

aligns p′iground
and p′ihead

with piground
and pihead

respec-

tively and warp the new image according to this transforma-

tion (Figure 2e). We then run the part-specific classifiers on

the new image to obtain binary classification masks for each

of the parts (Figure 2f). Finally, we score the putative match

by summing up the number of positively classified pixels

inside and immediately surrounding each aligned part. In

practice, we use a Gaussian-weighted sum (with Gaussians

centered on centroids of the part masks) where pixels in-

side each aligned part are weighted more heavily (Figure

2c). This also makes the approach less sensitive to the part

boundaries input by the user. Also, we surround the Gaus-

sian weights by a ring of negative weights so that blobs of

positively classified pixels are scored higher than homoge-

neous regions.

Occlusions: Parts are often occluded (e.g., the right leg of

the person in Figure 2). A simple way to account for occlu-

sions is to define the overall score as the sum of the scores

of the individual parts. However, we expect some parts to

be more discriminating and reliable for matching. For e.g.,

a classifier for black hair is not very discriminating. This

would suggest a non-uniform weighting of the parts. We

experimented with weighing based on the training score but

observed that the following approach works well in prac-

tice. We simply assume that the first part marked by the

user is the most reliable (usually the torso) and constrain it

to be visible while we allow for occlusions of other parts.

We define the overall score of a putative location as zero if

the score corresponding to the first part is zero, otherwise as

the sum of the scores of the three parts.

Effectiveness: We found that a globally-aligned, 2D rigid

part arrangement sufficed to capture much of the pose varia-

tion in our datasets. While such a model is not strictly pose

invariant, the parts usually correspond to body parts (e.g.,

head, shirt, pants) which appear in roughly the same top-

to-bottom order in all photos. However, extensions to more

flexible deformable models [4] should be straightforward in

our framework. We experimented with mixture models as

well to model multi-modal color distributions but logisitic

regression gave the best results probably due to its discrim-

inative training. We also found the interactive definition of

parts to be useful, as oftentimes a user could label multi-

colored shirts as multiple parts, which in turn allowed for

more accurate appearance models and matches.

3.3. Estimating the 3D Location of a Person

We try to localize the person in 3D in a fashion similar

to multi view stereo. However, our problem is considerably

harder as people are not completely static and appear under

different poses (though we still restrict the search to a small

3D neighborhood). Unlike window based or point features,

our appearance model is robust to small changes in location.

Further, we allow a small amount of wiggle when searching

for the 3D position, as described below.

The problem amounts to estimating the 3D points Pihead

and Piground
which project to pihead

and piground
respec-

tively in the training image. For now, assume that the ori-

entation of person in 3D is along the vertical. The vertical

direction in the scene can be estimated from a collection of

registered photos [14]. Hence, given a candidate 3D loca-

tion Piground
along the backprojected ray through piground

,

Pihead
is estimated to be the point along the backprojected

ray through pihead
that lies vertically above Piground

(Fig-
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Figure 3: Estimating the 3D location of a person. Given

the location of person in an image and assuming that the

orientation of the person is vertical, the problem reduces to

a 1-D search along the back projected rays.

ure 3). The problem reduces to a 1-D search for Piground

along the back projected ray. We solve it in a fashion simi-

lar to multi-view stereo [10], i.e., we exhaustively consider

all candidate locations and score each candidate by project-

ing it into all other images and scoring the projection using

the appearance model.

Denote the set of all images by A. Also, denote the

projection of a candidate pair (Pihead
, Piground

) into im-

age Ik by (pk
ihead

,pk
iground

), which is scored using the ap-

pearance model as explained in Sec. 3.2. Denoting the

score of this candidate match by Si(p
k
ihead

, pk
iground

), we de-

fine the score of the candidate location (Pihead
, Piground

)

by
∑

Ik∈A max(Si(p
k
ihead

, pk
iground

) − thresh, 0) where

thresh prevents very low scores from contributing. Also,

since people tend not to remain perfectly stationary, we al-

low some slack, i.e., we consider all candidate 3D locations

within a small neighborhood of the actual candidate loca-

tion, and return the maximum score among them. In par-

ticular, we consider a window of size 2h × 2h around the

projected location where h is the projected height of the

candidate location in pixels. Also, for very large collec-

tions, we obtained better performance by restricting A to

the set of images which have a time stamp close to that of

the training image Itr(i).

Height Prior: For each 3D candidate location, we can cal-

culate the 3D height of the person (in scene scale). We

therefore impose a prior on the candidate locations based

on expected height by multiplying the score obtained in the

previous step by exp(
−(||Pihead

−Piground
||2−µh)2

2σ2

h

) where

µh is the average person height (in scene scale). A crude

estimate of µh is found by matching a single person manu-

ally in two images while a more reliable estimate could be

obtained from statistics on the average human height and

calibrating the scene. We set σh = 5
3µh.

Ground Prior: For scenes where most of the people are

sitting on a common ground plane, we constrain Piground
to

be close to the ground plane. This is enforced by multiply-

ing the score by exp(
−(d(Piground

))2

2σ2
g

) where d(Piground
) is

the distance of point Piground
from the ground plane. We

used σg = 0.95µh. The ground plane is estimated by spec-

ifying at least three corresponding points on the ground in

two images, though it can be automated.

Sensitivity to user input: The algorithm is not very sen-

sitive to user input, particularly the locations of pihead
and

piground
. Locations of these points determine the similar-

ity transform (scale, rotation and translation) to align the

template with the candidate. This transform can be com-

puted correctly if pihead
and piground

are any two points in

the vicinity of masks as long as they are vertically aligned

(which is easy to ensure given the scene vertical). Af-

ter alignment, actual score is computed via the appearance

model which is robust to small localization errors (due to

Gaussian weighting). Hence, the actual locations of pihead

and piground
only affects the height and ground priors which

are soft priors.

This observation allows us to handle cases when the per-

son is not standing/sitting vertically (e.g., lying on ground).

In such a case, we just require the user to enter a point on the

ground near the person and point vertically above it roughly

at height of the person. While it’s possible to use a height

prior that allows for both sitting/standing people, we simply

use a sitting prior by requiring the user to input pihead
near

sitting height. Again, any errors in this estimation will only

affect the height prior.

3.4. Joint Refinement via MRF Optimization

After previous step, we know the location of each per-

son in 3D. Denote by S(i, j) the appearance model score of

person pi projected into Ij . One can do detection by thresh-

olding S(i, j). However, we also wish to take into account

contextual cues, namely

• People tend to appear in same groups, i.e., if a group of

people appear together in a few images, they are also

likely to appear together in other images as well.

• Images which are nearby in time are likely to contain

the same set of people.

Towards this end, we define the affinity between pairs

of people, αp(pi, pk), and affinity between pairs of images,

αI(Ij , Il). A higher value of αp(pi, pk) implies that pi and

pk are likely to appear together. Similarly, a higher value

of αI(Ij , Il) implies that Ij and Il are likely to contain the

same set of people.

Before we describe how we calculate these affinities, let

us see how they are applied. We seek to label each person-

image pair (pi, Ij) as either a positive or a negative detec-

tion while taking into account both the appearance model

score S(i, j) and the affinity cues.
We model this problem as a Markov Random Field with

a node nij corresponding to every pair (pi, Ij) over which
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Figure 4: Given the 3D location of each person, the prob-

lem reduces to deciding whether a person pi occurs in im-

age Ij which can be visualized as a binary labeling problem

over a 2D grid. We incorporate grouping priors by adding

edges to the graph for pairs of people who are likely to ap-

pear together and for pairs of images are likely to contain

the same set of people. These edges are shown for a single

node in the above figure with weights being proportional to

the strength of the priors. We model these correlations via

an MRF and solve for the MAP labeling.

we want to compute a binary labeling £. If lij denotes the

label of node nij , lij ∈ {0, 1} where lij = 0 represents a

negative detection and lij = 1 represents a positive detec-

tion. Each node is connected to all the other nodes in the

same row and column (Figure 4 shows these connections

for a single node). The penalty for labeling two nodes dif-

ferently is defined as

P (nij , ni′j′) =







αp(pi, pi′) if j = j′

αI(Ij , Ij′) if i = i′

0 otherwise

(1)

The pairwise potentials in MRF are defined as

φ(lij , li′j′) =

{

0 if lij = li′j′

P (nij , ni′j′) otherwise
(2)

In addition to S(i, j), we also compute R(i, j) which is

the ratio of S(i, j) to the second highest score in the window
which is at least h pixels away from the location with the

highest score (h is the projected height of the person). We

use the appearance model score S(i, j) and ratios R(i, j) to
define the unary potential as follows

U(lij) =

{

R(i, j)(C − S(i, j)) if lij = 1
0 otherwise

(3)

where C is a constant that we choose. Intuitively, if R(i, j)
is high, we want to weigh the corresponding unary potential

more. R(i, j) is clamped above to 20. Similarly, a higher

value of C means that a higher S(i, j) is required for a node
to be labeled a positive detection.

The nodes corresponding to (pi, Itr(i)) pairs are hard-

wired to one. Similarly, the nodes where the appearance

model score is zero are hard-wired to zero. Further, if the

3D location of a person falls outside the viewing frustum

of an image, or if the projected height of the person is too

small, we remove corresponding nodes from the MRF.

The desired labeling is obtained by minimizing the fol-

lowing objective function with respect to the labeling £ us-

ing Graph Cuts [2]:

E(£) =
∑

ij

U(lij) +
∑

ij

∑

i′j′

φ(lij , li′j′) (4)

We use the MATLAB implementation of Graph Cuts

made available by Fulkerson et al. [5]. We also compute the

confidence Conf(nij) of each detection using the following
equation which can be computed by running a graph cut for

each node [3]:

Conf(nij) = minlij=0E(£) − minlij=1E(£) (5)

Computing Affinities: Computing image affinities is

straightforward. Images closer in time have higher affinity:

αI(Ij , Ij′) = λ1e

−|tj−t
j′

|2

2σ2
t (6)

where we used σt = 2 and λ1 = 0.03, with time being mea-

sured in minutes. Further, we multiply the affinity above by

a constant factor if they are taken by the same user (a factor

of 4 was found to work well).

We compute αp(pi, p
′
i) as follows. If Di denotes the set

of images that are known to contain pi, we define αp(pi, p
′
i)

as

αp(pi, pi′) = λ2
|Di ∩ Di′ |

|Di| + |Di′ |
(7)

However, we do not know Di other than the fact that

Itr(i) ∈ Di. Hence we use an iterative approach inspired by

EM methods. We initialize αp(pi, pi′) using the above defi-
nition where Di = {Itr(i)}. We run the MRF optimization,

compute the new detections and then update the affinities

according to the new detection and re-run the optimization

to get the final detection results. We found that running the

MRF optimization 2-3 times while updating affinities is suf-

ficient. Moreover, we keep the constant C used in Eq. (3)

high for the first iteration to get a conservative set of detec-

tions to estimate αp(pi, pi′). λ2 = 0.1 was found to work

well in our experiments.

4. Results

We consider three datasets for evaluation, all down-

loaded from Flickr.

Dataset 1 contains 34 registered photos taken by a single

photographer at Trafalgar Square on May 24th, 2007.
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Figure 5: An example set of matches. There are cases with

high occlusion and very low resolution.

Dataset 2 contains 282 registered photos of Trafalgar

Square taken on May 25th, 2007. These images come from

89 different users and span a larger time window (from

morning to evening), making true matches rarer. Figure 1

shows a few typical images from this collection.

Dataset 3 contains 45 images taken during an indoor

event – HackDay London 2007. The photos are taken over

two days and come from 19 different photographers.

We also used the time-stamps associated with the pho-

tos, corrected for timezone offsets by adding the difference

between the timezone of the venue (London) with the time-

zone of the user.

4.1. Preparing Ground Truth Data

To evaluate our results, we manually created a “ground

truth” for each dataset. However, finding matches in these

photo collections which contains images like those shown

in Figure 1 is hard even for humans. Since the photos are

registered, we can assist the user in finding matches for the

purpose of creating the ground truth dataset. The user starts

by marking a person in an image. Then the user is shown

all the images one by one with the epipolar lines drawn and

he/she only needs to look for a match near the epipolar lines.

Once a match is found, the 3D position of the person can be

triangulated and the user is then shown the location of the

projected points instead of the epipolar lines and he/she can

then scan for matches in the neighborhood.

There is a high degree of occlusion in these datasets, but

a case is labeled as a positive whenever the human is sure ir-

respective of the extent of occlusion (Figure 5). Also, while

our approach assumes that the people do not move about

much, our ground truth includes all matches that the hu-

man operator was able to find using our assisted method, in-

cluding cases where the subject moved outside algorithm’s

search radius. Such cases are never detected by our algo-

rithm and always count as false negatives. However, we

only came across a few such cases implying that they are

either rare in these datasets or are extremely hard to spot. In

fact, even the assisted matching is quite hard to do manually

and our approach sometimes uncovers matches which were

missed while preparing the ground truth.

(a) (b)

Figure 6: Dataset 1 (a) Results for individual people (b)

Precision-recall curves. In addition to the performance of

the appearance model score and the MRF optimized so-

lution, we also show the precision of random guess. The

lower horizontal line corresponds to the case when we ran-

domly guess an image to contain a person with a probabil-

ity equal to the probability of occurrence of true matches.

The upper horizontal line shows the performance of ran-

dom guess with 3D information, i.e., it checks whether the

3D location of the person falls outside the view frustum of

the image or if the projection is too small.

Figure 7: An example where system finds 7 matches for the

person on the left all of which are correct. Note that while

the training image here was a back pose, all the matches are

side poses. The four crops on the right also come for images

similar to the three shown. However, there are two missed

matches as well (bottom right) which can be attributed to

high degree of occlusion and severe pose change.

4.2. Evaluation

The full set of results are provided in the supplementary

material. For verification, we consider a detection correct

if the distance between the center of the detected location

and the center of the true location is less than 0.85 times the

height of the person in that image.

Dataset 1 (34 photos): The ground truth had 16 differ-

ent people and a total of 130 matches. The estimated 3D lo-

cation is verified by triangulating the ground truth matches

(whenever there exists sufficient baseline) and was found to

be correct for all people.

Figure 6a shows the results for individual people while

6b shows the precision-recall curves (True positive, wrong

location in Figure 6a refers to cases where the image was

correctly identified to contain a specific person but the lo-

1798



(a) (b)

Figure 8: Dataset 2 (a) Results for individual people. (b)

Precision-recall curves. While the number of false positives

may seem high, they only form a very small fraction of the

total number of images. The difficulty of this dataset is il-

lustrated by near-zero precision of random guess in contrast

with the other datasets.

Figure 9: The system retrieves 7 matches for the person

marked in the image on the left, 6 of which are correct.

One can again see that these are very hard to retrieve due

to occlusion, pose changes, illumination changes and low

resolution (the sizes of the crops are roughly proportional

to the scales at which they were found). One of the missed

matches has extreme occlusion. The false positive is due to

presence of a similar color.

calization was not correct). The green dot corresponds to

the MAP solution while the complete curve for the MRF

solution is drawn by using the confidence values from Eq. 5

as scores. To show the improvement, obtained by the con-

textual cues, we also show the curve corresponding to us-

ing the appearance model alone. Precision of random guess

is also shown (see Fig. 6 caption for details). Recall re-

mains less than one in the plot as detections with incorrect

localization are considered as false negatives irrespective of

the threshold. Figure 7 shows an example result from this

dataset. The detections include dramatic pose changes and

occlusions.

Dataset 2 (282 photos): The ground truth for this par-

ticular dataset has 57 people with 244 matches. We pur-

posefully include a few duplicates, i.e., we marked the same

person in two different images to evaluate how the choice

of training image affects the results. In total, there are 51
unique people.

(a) (b)

Figure 10: Dataset 3: (a) Results for individual people. The

last two bars correspond to the cases where the 3D localiza-

tion failed. (b) Precision-recall curves.

The estimated 3D location was found to be correct for all

but 2 queries (which belonged to the same person). How-

ever, 6 people in the dataset were located in an elevated part

of the scene and hence the ground plane prior had to be

turned off for them.

Figure 8a shows results for individual people while Fig-

ure 8b shows the precision-recall curves. The number of

false positives may seem large but this is a much more chal-

lenging dataset as shown by the near-zero performance of

the random guess. Contextual cues are especially helpful in

a large dataset like this as illustrated by Figure 8b. Figure 9

shows an example result.

Contextual cues encourage people with high affinities to

share detections among them. A side effect is that false

positives and false negatives are also shared. More user in-

teraction may be helpful here, i.e., correcting a match for a

single person may correct it for a number of other people

as well. Another side effect of these cues is that they try to

hallucinate the person in cases of 100% occlusion, i.e., if a

certain set of people are believed to be in a group (have high

affinities between them), then the system may try to hallu-

cinate a detection for a certain person if the other people in

the group have been detected even if there is little evidence

from the appearance model.

For people with duplicate training images, their detec-

tions are highly correlated. However, the performance is

better when the training image is of higher resolution.

Dataset 3 (45 photos): This dataset is quite different

from the other two and is captured indoors. While the

matches here are of higher resolution, the problem is made

difficult by a lot of people wearing similar clothes. While

one is likely to benefit by integrating in face recognition

cues in such cases, we demonstrate that our approach still

recovers good matches.

The ground truth had 16 people with a total of 56
matches. The 3D location estimation failed for 2 of the 16
people. Both were wearing black clothes, and Figure 12 il-

lustrates why our algorithm fails. However, in spite of the

incorrect 3D localization, the contextual cues were able to
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Figure 11: The system finds all 5 matches in this case which

include photos from two different photographers. Note that

the laptop is not visible in the training image.

Figure 12: The approach often fails when the person is

wearing colors which are common in the scene. The above

figure shows the response of the pixel level part detectors

on the training image itself. The classification is poor for

the red part as the color is not distinct from the background.

Also, if there are too many different colors on a single part,

the classifier may not be able to find a good discriminating

boundary, as is the case for the blue part.

identify the images containing the match. (Figure 10a).

The performance is good on other cases with Figure 11a

showing an example. Figures 10a and 10b also reflect this.

5. Conclusion and Future Work

This paper presented an approach for matching people in

photos containing hundreds of people, a task difficult even

for humans. As future work, we would like to relax the

assumptions we make. An important extension would be

to allow for large motion, and perhaps the ability to track

people’s movement through the scene. However, at this

point the temporal density of photos is not high enough to

do this reliably. More powerful appearance models learned

from multiple training images which model humans more

accurately would allow one to use larger search neighbor-

hoods. In spite of these assumptions, we have seen that

our approach gives good results in a number of challenging

and common scenarios and its potential use will continue to

grow as the quantity of photo uploads increases.
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