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Abstract

We introduce a new large-scale video dataset designed
to assess the performance of diverse visual event recog-
nition algorithms with a focus on continuous visual event
recognition (CVER) in outdoor areas with wide coverage.
Previous datasets for action recognition are unrealistic for
real-world surveillance because they consist of short clips
showing one action by one individual [ 15, 8]. Datasets have
been developed for movies [11] and sports [12], but, these
actions and scene conditions do not apply effectively to
surveillance videos. Our dataset consists of many outdoor
scenes with actions occurring naturally by non-actors in
continuously captured videos of the real world. The dataset
includes large numbers of instances for 23 event types dis-
tributed throughout 29 hours of video. This data is accom-
panied by detailed annotations which include both moving
object tracks and event examples, which will provide solid
basis for large-scale evaluation. Additionally, we propose
different types of evaluation modes for visual recognition
tasks and evaluation metrics along with our preliminary ex-
perimental results. We believe that this dataset will stimu-
late diverse aspects of computer vision research and help us
to advance the CVER tasks in the years ahead.

1. Introduction

Visual event recognition—the recognition of semantic
spatio-temporal visual patterns such as “walking”, “getting
into vehicle”, and “entering facility”—is a core computer
vision problem, as evidenced by the plethora of publications
in the academic literature [8, 11, 12, 14, 13, 15, 19, 20].
Much of the progress has been enabled by the availability
of public datasets, such as the KTH [15] and Weizmann [8]
datasets. However, the current state of the art has surpassed
these existing datasets, i.e., performance on these datasets
have been saturated, and there is a need to for a new, larger,
and more complex dataset to stimulate progress.

In this paper, we introduce VIRAT Video Dataset which
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is a new large-scale surveillance video dataset designed to
assess the performance of event recognition algorithms in
realistic scenes'. The dataset includes videos collected from
both stationary ground cameras and moving aerial vehicles.
We expect the dataset to further research in “continuous vi-
sual event recognition (CVER)”, where the goal is to both
recognize an event and to localize the corresponding space-
time volume from large continuous video . This is far more
closely aligned with real-world video surveillance analytics
needs than the current research which aims to classify a pre-
clipped video segment of a single event. Accurate CVER
would have immediate and far reaching impact in domains
including surveillance, video-guided human behavior re-
search, assistive technology, and video archive analysis.
Existing datasets [15, 8] for action recognition are un-
realistic for real-world surveillance because they consist of
short clips showing one action by one individual. Datasets
have been developed for movies [11] and sports [12], but,
these actions and scene conditions do not apply effectively
to surveillance videos. Our dataset consists of 16 outdoor
scenes with actions occurring naturally by non-actors in
continuously captured videos of the real world. The dataset
includes large numbers of instances for 23 event types dis-
tributed throughout 29 hours of video, which is two to
three orders of magnitude larger than existing datasets such
CAVIAR [7]. TRECVID 2008 airport dataset [16] contains
100 hours of video, but, it provides only frame-level an-
notations, which makes it a difficult benchmark for most
learning-based computer vision approaches. More specifi-
cally, existing datasets [7, 11, 14, 15, 19, 13, 12, 8, 16] are
often limited for CVER on surveillance videos for one of
the following ways: (1) unnatural appearance because the
events are acted in constrained scenes; (2) lack of support
for CVER because examples are cropped in space and time;
(3) limited spatial and temporal coverage, which limits the
use of advanced methods to exploit spatio-temporal context;
(4) lack of event type diversity (particularly for multi-object

! Available from: www.viratdata.org



Figure 1. An example end-to-end sequence: a person walks into a scene, loads the bag he was carrying into a vehicle, gets into the vehicle,
and then leaves while driving. The corresponding person and the car are marked in red and light-green boxes respectively.

events); (5) lack of concurrent events; (6) lack of variability
in viewpoints, subjects, and/or scenes; (7) lack of detailed
annotations; and (8) lack of aerial datasets (with the excep-
tion of [1]) which hinders us from delving into the new ap-
plication areas for intelligent aerial vehicles. All these is-
sues make it difficult to assess real world performance of
CVER algorithms for surveillance. For example, the results
from recent competition [13] noted that none of the partic-
ipating teams could produce any results for CVER (in time
for the competition), although a few teams produced fairly
accurate N-way classification results on cropped examples.
Such results indicate that CVER is one of the next chal-
lenges that computer vision research will address.

Our major contributions are as follows: (1) we intro-
duce a new public ground and aerial camera surveillance
video dataset, which are two or three orders of magnitude
larger than existing datasets in many dimensions. This
dataset provides realistic and diverse event examples, with
no visibly evident acting. Collective effort has been made
by nine research groups to obtain natural examples from
wide variety of sites under different weather conditions and
for annotation (Sec.2); (2) this data is accompanied by de-
tailed annotations which include both object tracks and lo-
calized events, which will provide solid basis for large-
scale quantitative evaluation for computer vision research,
e.g., CVER and tracking. In addition, we share our two-
stage annotation methodologies used for our large-scale
annotation efforts where both Mechanical Turks and do-
main experts are involved. (Sec.2.3); (3) we propose dif-
ferent evaluation settings which include independent and
learning-enabled CVERSs, our considerations for objective
evaluation which include definitions of hits, and separate
training/test/sequestered sets for each evaluation mode, and
showcase exemplary experimental results (Sec.3).

2. VIRAT Video Dataset

Challenging datasets and support for objective evalua-
tion inspire the innovations in computer vision. For ex-
ample, The PASCAL VOC Challenge [6] provides large-
scale multi-class object image datasets annually and pro-
vide venues to measure performance of diverse approaches
from different aspects, leading to scientific advances in vi-
sual object recognition. In much the same way, our goal in
introducing this dataset is to provide a better benchmark and
to help identify the limitations of current CVER capabilities
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in real-world surveillance settings, and thus focus research
effort on innovations to overcome these difficulties. In the
following sections, we present both stationary ground (Sec.
2.1) and aerial (Sec. 2.2) video datasets, along with the de-
veloped annotation standard.

Compared to existing datasets, our new dataset has richer
event diversity, and includes events that involve interactions
between multiple actors, vehicles, and facilities. The fol-
lowing lists enlist some of the 23 event types in our dataset:

e Single Person Events (8): walking, running, standing,
throwing, gesturing, carrying, loitering, picking up

e Person and Vehicle Events (7): getting into or getting out of
vehicle, opening or closing trunk, loading, unloading, drop-
ping off, bicycling

e Person and Facility Events (2): entering or exiting facility

It can be seen that our new dataset captures events be-
yond the usual single person actions provided in existing
datasets such as KTH, Weizmann, and HOHA where the
number of single person activities are below 10 classes.
Our dataset contains a richer set of multiple-object actions,
and may be the first large public dataset to include diverse
type of vehicle-person interactions, annotated in detail with
many examples per category. In particular, characteristics
such as (1) existence of incidental objects and activities and
(2) recording of end-to-end activities attribute our dataset
to be more suitable for CVER in real world. By incidental
objects and activities, we mean that there are multiple mov-
ing objects or activities occurring simultaneously at multi-
ple space locations in the same scene. By end-to-end activ-
ities, event instances in our dataset capture the entire tem-
poral context of events. For example, an example sequence
in Fig. 1 shows a person with full temporal context where
he appears into a scene carrying a bag, approaches a vehi-
cle, loads the bag into the vehicle, gets into the vehicle, and
finally leaves out of scene driving the vehicle. The com-
parison of our dataset and other existing datasets are shown
in Table 12. In particular, Table 1 shows that the amount
of pixels occupied by moving objects (especially people)
in this dataset constitute very small portion of captured im-
ages. For example, HOHA 1 dataset consists of movie clips
which sometimes include only 20% of entire human figure
(e.g., above shoulder), amounting to 500% human to video

2Some statistics are approximate, obtained from the CAVIAR 1st scene
and TRECVID dry-run data only, due to limited public information.



KTH Weizmann HOHA 1 TRECVID This Work
# of Event Types 6 10 8 10 23
Avg. # of samples per class 100 9 ~85 3~1670 10~1500
Max. Resolution (w x h) 160 x 120 180 x 144 ~540 x 240 720 x 576 1920 x 1080
Human Height in Pixels 80~100 60~70 100~1200 20~200 20~180
Human to video height ratio 65~85% 42~50% 50~500% 4~36% 2~20%
# Scenes N/A N/A Many 5 17
Viewpoint Type Side Side Varying 5/ Varying Varying
Natural Background Clutter No No Yes Yes Yes
Incidental Objects/Activities No No Yes, Varying Yes Yes
End-to-end Activities No No Yes, Varying Yes Yes
Tight Bounding boxes Cropped Cropped No No Yes
Multiple annotations on movers No No No No Yes
Camera Motion No No Varying No Varying

Table 1. Comparison of characteristics of datasets

height ratio. By contrast, in this dataset, a 20-pixel-tall per-
son frequently appears in 1080p video, amounting to 2% of
the video height ratio, which makes this dataset to be an ex-
cellent batch for CVER tasks. In terms of annotation, we
provide multiple annotations, e.g., a person may be marked
by simultaneous events of walking and carrying.

2.1. First Part: VIRAT Ground Video Dataset

The first portion of the video dataset consists of sta-
tionary ground camera data. We collected approximately
25 hours of stationary ground videos across 16 different
scenes, amounting to approximate average of 1.6 hours of
video per scene. The snapshots of these scenes are shown in
Fig. 2, which include parking lots, construction sites, open
outdoor spaces, and streets. These scenes were selected
based on the observation that human and vehicle events oc-
cur frequently in these areas. Multiple models of HD video
cameras recorded scenes at 1080p or 720p to ensure that we
obtain appearance information from objects at distance, and
frame rates range 25~30 Hz. The view angles of cameras
towards dominant ground planes ranged between 20 and 50
degrees by stationing cameras mostly at the top of buildings
to record large number of event instances across area while
avoiding occlusion as much as possible. Heights of humans
within videos range 25~200 pixels, constituting 2.3~20% of
the heights of recorded videos with average being about 7%.
In terms of scene diversity, only two pairs of scenes (total
4) among 16 scenes had FOV overlap, with substantial out-
door illumination changes captured over days. In addition,
our dataset includes approximate homography estimates for
all scenes, which can be useful for functions such as track-
ing which needs ground coordinate information.

Most importantly, most of this stationary ground video
data captured natural events by monitoring scenes over
time, rather than relying on recruited actors. Recruited
multi-actor acting of both people and vehicles was involved
in the limited subset of 4 scenes only: total acted scenes are
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approximately 4 hours in total and the remaining 21 hours
of data was captured simply by watching real-world events.
Originally, more than 100 hours of videos were recorded in
monitoring mode during peak activity hours which include
morning rush hour, lunch time, and afternoon rush hour,
from which 25 hours of quality portions were manually se-
lected based on the density of activities in the scenes.

For comparison purpose, six scenes in our dataset and
snapshots from other datasets are shown in Fig.2 and Fig.3
respectively. It can be observed that our new dataset pro-
vides a new benchmark for CVER: it is more challenging in
terms of pixel resolution on humans, wide spatial coverage
of scenes, background clutters, and diversity in both col-
lection sites and viewpoints. In comparison to surveillance
datasets such as CAVIAR [7] and TRECVID [16] shown
in Fig. 3 (d) & (e), our dataset provides diversified out-
door scenes and event categories. In addition, our station-
ary datasets include image-to-ground homographies for re-
searchers interested in exploiting geometry.

Figure 4. An example person: 140, and 50, 20, and 10 pixels tall

Downsampled Versions. In the stationary dataset, we
include downsampled versions of dataset obtained by down-
sampling the original HD videos to lower framerates and
pixel resolution. For CVER, it is expected that different
approaches will demonstrate varying performance based on
the characteristics of videos.  For example, STIP-based
approaches may be more accurate in high-resolution im-
ageries while approaches based on histogram of gradients
(HOG) [3] may be superior when video framerates and pixel
resolutions are low. This is a relatively unexplored area



(a) KTH (b) Weizmann (c) HOHA (d) CAVIAR (e) TRECVID
Figure 3. Example images from existing video datasets: (a) KTH, (b) Weizmann, (¢) HOHA, (d) CAVIAR, and (¢) TRECVID

and it is important to understand how existing approaches provide a large number of instances of each visual event,
will behave differently based on video characteristics. Ac- collected from aerial vehicles. The CVER problem is more
cordingly, we provide several different versions of datasets challenging for aerial videos due to the auxiliary variables
downsampled both spatially and temporally. For temporal such as changing viewpoints, illumination, and visibility.
downsampling, we provide datasets sampled at three differ- Due to privacy and cost constraints, the events in this dataset
ent framerates of 10, 5, 2 Hz. In fact, large number of exist- are acted by hired human actors and vehicles at a designated
ing surveillance cameras operate at 2 Hz or lower, and stud- site. The overall scene of the site and example imageries
ies on downsampled data with lower framerates will provide across the collection site are shown in Fig. 5 (a). It can
important insights into this largely open area for research be seen that the site includes various types of facilities such
on surveillance. Spatial down-sampling needs more atten- as buildings and parking lots where people and vehicles are
tion because vanilla spatial downsampling by fixed ratios acting events of interest. In addition, examples of evolving
will not result in the type of data that will be most useful. image snapshots from a video sequence are shown in Fig. 5
In fact, datasets with movers exhibiting similar amount of (b) where imageries are roughly 10 seconds apart in time.
pixel appearance information, i.e., similar heights, will be Defining characteristics of aerial videos such as changing
more useful for performance evaluation. Accordingly, we viewpoints and scales can be observed, which presents cru-
measure the average pixel heights of people in each scene, cial challenges such as stabilization of videos and dealing
and created downsampled versions in such a way that aver- with any imperfect pixel-to-pixel alignment during CVER.

age downsampled people are at 3 consistent pixel heights:

50, 20, 10 pixels. A set of downsampled examples of a per- The resolution of aerial videos are at 640x480 with 30Hz

son in the dataset is shown in Fig. 4. After both temporal framerate and the camera is on a gimbal on a manned air-
(3 cases) and spatial down-sampling (3 cases), 9 different craft where the typical pixel height of people in collections
downsampled versions of videos are additionally provided. are about 20 pixels tall. From a total of 25 hours of original
videos recorded at this site, a subset of dataset which exhibit

2.2. Second Part: VIRAT Aerial Video Dataset relatively smooth camera motion and good weather condi-
tions (no severe cloud) were manually selected and included

The second part of our benchmark dataset includes aerial in this dataset with the total amount of 4 hours of videos.
video datasets. Again, the goal of this aerial dataset is to Downsampled versions were not considered because cap-

3156



Overall site scene Building facilities

Vehicle lots Storage facilities

(a) Aerial dataset contains diverse scenes with varying scales and viewpoints.

time

(b) Sample image shots containing person/vehicle/facility events with viewpoints changing over time due to flight motion.
Figure 5. Aerial dataset: (a) Diversity of scenes (b) Sample images containing person activities over time (avg. 10 secs apart).

tured moving objects are already at fairly low resolution.

2.3. Annotations

Annotating a large video dataset presents a challenge
on its own. Two major trade-off factors are: quality and
cost. In particular, the annotation of the dataset includes
two different types of ground-truths: tracks consisting of
bounding boxes for moving objects and localized spatio-
temporal events. In our work, a two-step procedural ap-
proach brings us a plausible solution: (1) creating tracks
of bounding boxes for moving objects by Internet Mechan-
ical Turks (MTs), and (2) event annotation by associating
related objects with identified time intervals by experts.

2.3.1 Ground-truth for moving multi-object tracks

Moving objects in this dataset are marked and tracked by
bounding boxes. Only the visible part of moving objects
are labeled, and they are not extrapolated beyond occlusion
by guessing. For example, if upper body of a person is the
only visible part, then, only the upper body is labeled as
"person’. This consideration is important because it allows
us to measure the performance of multiple moving object
trackers more accurately. Bounding boxes around the ob-
jects are targeted to be *whole’ and ’tight’. By ’tight’, we
mean that bounding boxes should be as tight as possible and
should not extrapolate beyond the objects being labeled. On
the other hand, *whole’ means that all related parts are cap-
tured in the bounding boxes. For example, all the visible
limbs of people should be in the bounding box, not just the
person’s torso. These two characteristics are enforced in
our dataset to ensure that high-quality event examples with
minimal irrelevant pixels are provided to learning modules.
Occasionally, other important static parts of scenes such as
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entrances of buildings, and other related objects such as a
bag being carried are labeled when possible.

The annotation of bounding boxes were mostly con-
ducted by MTs, following the insights reported recently
in VATIC [18]. More specifically, videos were broken up
into segments of ten seconds each and placed on MT. We
instructed workers to annotate periodically and used auto-
matic interpolation to recover the annotations in-between
key frames. In order to guarantee plausible quality, workers
were required to pass an automated test designed to evaluate
their annotation ability where only the high quality workers
were allowed to continue. During the annotation sessions,
we occasionally sampled annotations from each worker to
detect whether a worker’s quality had decreased since their
initial evaluation. This approach eliminated most system-
atic low-quality jobs. Results were then vetted and edited
manually as needed, in a minimalistic fashion. An exam-
ple standard for ground-truth tracking annotation is shown
in Fig. 6 where individual objects, both person and vehicle
are tracked over time maintaining identities.

2.3.2 Visual event annotations

Once bounding boxes are labeled, spatio-temporal events
are annotated by experts. One of the fundamental is-
sues in event labeling is ambiguity. To avoid ambigu-
ity in event labeling tasks, we define events very ex-
plicitly and enforce that events are always annotated
based on visual pixel information and not on guesses.
For example, even though a person goes behind a car
and disappear, which is a strong indicator for an event
person_getting_into_a_car, it will not be annotated
so without an apparent pixel evidence because it can be an
instance of person_crawling_under_car as well. In



Figure 6. Example ground-truth tracking annotations on stationary dataset. Individual objects, either person or vehicle, are tracked over
time at every fixed frame intervals (20 frames in this work), by human annotators who are mostly MTs. For unannotated frames, annotations

are automatically generated by interpolation.

Figure 7. An example snapshot of event annotation system: Events are annotated from individual objects by identifying time interval of
every event and all associated objects. (a) a red event box shows an instance of person (bright green) getting out of vehicle (blue). (b-c)
additional example annotations with labels on static scene elements such as parking lots and sidewalk.

addition, we define the start and end moments of events
very specifically. As an example, the event of carrying
is defined in detail as follows:

® Description: A person carrying an object. The object may be carried

in either hand, with both hands, or on one’s back.

e Start: The event begins when the person who will carry the object,

makes contact with the object. If someone is carrying an object that
is initially occluded, the event begins when the object is visible.
End: The event ends when the person is no longer supporting the
object against gravity, and contact with the object is broken. In the
event of an occlusion, it ends when the loss of contact is visible.
For event annotation, we have extended the approaches
studied in Video LabelMe [21]. Example snapshots of an-
notation system is shown in Fig. 7 where events are anno-
tated from individual objects by identifying time interval of
every event and associating related objects. For example, in
Fig. 7(a), it can be seen that a red event box shows an in-
stance of person (bright green) getting out of vehicle (blue).
List of annotated objects and events in videos are available
as part of annotation system. The additional example an-
notations in Fig. 7(b-c) show the quality and density of
the annotation efforts where stationary scene elements such
as sidewalk and parking lots are annotated as well. It can
be observed that our event annotations encode logical in-
teraction information between objects and/or scene, which
makes it suitable for the evaluation of algorithms involving
probabilistic logic approaches such as [9].

3. Evaluation Approaches

Our new dataset can be used for evaluation of diverse
computer vision algorithms. Examples include CVER,
multi-object tracking, and functional scene recognition,
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among others. The available ground-truth annotations pro-
vide crucial grounds to conduct large-scale evaluations and
obtain measures closer to real-world performance. In this
section, we describe potential evaluation areas and modes
for diverse computer vision problems, potential metrics, our
considerations to support objective evaluations such as data
splitting, along with sample experimental results.

3.1. Continuous Visual Event Recognition (CVER)

CVER involves localizing events of interest both spa-
tially and temporally. In the following sections, we propose
a useful definition of metrics and two different types of pri-
mary evaluation modes along with sample results.

3.1.1 Maetrics

It is important to devise well-defined metrics for the evalu-
ation of CVER algorithms®. We propose to use a standard
definition for hits’ where a recognition result is a hit’ if
both the ratio of spatial and temporal intersection divided
by both ground truth and recognition are above designated
threshold. However, we propose that "hits’ are counted from
the ground truth point of view - every instance of ground
truth example only contributes towards one correct detec-
tion even though there are many reasonable overlapping
recognition results for it, but, avoiding penalizing multiple
positive overlapping detections towards false alarm. This is
to avoid the cases where algorithms which produce many
similar overlapping recognition results for high-likelihood
regions do not get advantage by such operations. Then, we

3Exact definitions of diverse metrics and scoring software tools are pro-
vided from the data webpage at: www.viratdata.org.



Event Categories ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘
# Ground Truth 11 | 16 | 18 | 19 | 61 | 63

# Hit Upper-bound | 6 8 8 9 | 18 | 14
Table 2. Statistics of the dataset subset used for evaluations.Total
number of ground truth examples across three scenes and the
upper-bounds for hits after tracking are shown.

Getting Into Vehicle

=——t— BOW-SVM 75/200

——t— BOW-SVM 75/500
BOW-SVM 75/1000
BOW-SVM 200/200
BOW-SVM 200/500

=——#— BOW-SVM 200/1000

== HOF /HOG—SVM

¢ Random

Precision

O = ——————— -
. L L L n T h ! !

5 .3
Recall

Figure 8. PR curves by 7 evaluations sets for the event ’get-
ting_into_vehicle’. The red diamond at the bottom middle cor-
responds to random performance. The red vertical dotted line at
the right represents the best potential recall after tracking.

propose to use standard metrics such as precision, recall,
and false alarm rates to characterize CVER performance.

3.1.2 Independent Recognition Mode

The first mode for CVER is independent recognition - we
mean that all the ground truth examples used to learn event
models and all the test examples are considered to be inde-
pendent from each other. More specifically, any prior prob-
ability distributions or patterns such as subject appearance
or location prior regarding specific subjects and scenes are
not to be learned and used during testing.

To support independent recognition mode carefully, it
is critical to have different scenes for training and test-
ing datasets. Frequently-used leave-one-out approach, e.g.,
[12], is challenging due to the large dataset size, but, also
is not desirable for independent recognition mode because
scene-based correlation across examples can lead to opti-
mistic results. Accordingly, the video dataset is divided into
multiple sets based on scenes and support users to easily
obtain reliable independent recognition results via N-fold
cross validation. Furthermore, a few scenes have been com-
pletely sequestered, included in neither training nor testing
datasets. The purpose is to provide a completely overfitting-
free environment to assess the performance of algorithms.
Official venue or process will be provided to aid official
evaluation on the sequestered data.

Experimental Results To understand the performance
of existing approaches on this dataset, a preliminary
evaluation was conducted on a subset of the ground video
dataset*, with focus on 6 event categories: loading(1),

4Available as Release 1.0 training dataset at the dataset webpage.
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unloading(2), opening_trunk(3), closing_trunk(4), get-
ting_into_vehicle(5), and getting_out_of_vehicle(6).
This subset contained examples from three different scenes
with approximately equal number of examples, and the
total video duration is approximately three hours. The total
number of ground truth examples per category are shown
in Table 2. We used two learning-based approaches similar
to [10, 2]. The training and testing were conducted via
leave-one-scene-out evaluation, and results were averaged
afterwards. For the first approach, separate one-vs-all event
detectors were trained for every six event types, and used
individually to detect events, making it possible that a
single example is labeled with multiple event types. For
the second approach, N-way classification was used. For
training, available ground truth spatio-temporal volumes
were used. For testing, spatio-temporal volumes were
obtained by a frame-differencing multi-object tracker with
automatic track initialization. In particular, tracking was
used to reduce the huge video volume. Once tracks are
obtained, tracks were divided into detection units of 3~4
second segments (with 2 seconds overlap) each, which
resulted in the total of more than 20K detection units. Note
that some of the ground truth examples exhibited durations
longer than detection units, which we will miss in most
cases. Each detection had confidence score generated by
event detectors where a ’hit’ is defined between a detection
and a ground truth if both the spatial and temporal overlap
are over 20%. Note that the imperfect tracking results
will limit the final performance. While many tracks are
correctly formed to capture spatio-temporal extent of events
correctly, there are also many tracks formed on shadows or
partial spatio-temporal volumes of events, e.g., only on one
arm of a person. Accordingly, we measured the quality of
tracking results and computed the best possible number of
hits, which are shown both in Table 2 and Fig. 8.

In detail, our first approach (BOW-SVM) is similar to
[10] where we use the spatio-temporal interest point detec-
tor and descriptor analogous to [5]. Six different sets of
evaluations were conducted with different numbers of in-
terest points per detection unit and codebooks with differ-
ent sizes. For every ground truth spatio-temporal volume,
we used adaptive thresholds to extract two different number
of interest points, which are 75 and 200. Then, the col-
lected vectors are clustered by K-means to form codebooks
after PCA-based dimension reduction where we obtained
three codebooks with different sizes (200/500/1000). Fi-
nally, a bag of words (BOW) representation is computed for
every detection unit, which is classified by SVM with his-
togram intersection kernel. We also tried a nearest-neighbor
approach, but, SVM results were superior. Our second
method (HOG/HOF-SVM) uses an approach similar to [2]
which uses both HOG and HOF [4] descriptors from spatio-
temporal volumes. The final activity descriptor is formed by



concatenating time series of dimension-reduced HOG and
HOF features, which are classified by a linear SVM.

We obtained the best results for the event category
‘getting_into_vehicle’, shown in Fig. 8 along with
the PR performance by a notional random classifier and best
possible recall after tracking. For the other five categories,
results were less accurate and omitted for brevity. It can be
observed that tracking imposes fairly low upperbound. Ac-
cordingly, we will explore searching entire video volume
and reducing false alarms in the future evaluation efforts°.

3.1.3 Learning-Enabled Recognition Mode

In addition to the conventional independent recognition
mode, another mode for CVER is learning-enabled recog-
nition. By learning-enabled recognition, we mean that the
learning of important patterns regarding current scene is al-
lowed for future recognition tasks. For example, event or
trajectory priors are allowed to be learned from scenes
to aid future recognition. To support this type of research
goals, we provide another data splitting where ground truth
examples in every scene are divided into multiple sets per
scene and event type, in time-linear way. For every testing
set for a particular scene, examples from other subsets from
the same scene and all the rest of out-of-scene examples
can be used for training. In particular, training examples
from the same scene can be used towards learning scene-
dependent priors. Again, to support object evaluation of
learning-enabled CVER, certain portions of collected data
are sequestered from all available scenes, as a way to pro-
vide overfitting-free evaluation setting.

Functional Scene Recognition Potentially related research
area is the problem of scene understanding based on activi-
ties. Recent work [17, 9] showed that functionalities of dif-
ferent parts of scenes can be automatically reasoned based
on the observed activities. We expect that such contextual
models can benefit CVER performance.

4. Conclusion

We have presented the VIRAT dataset, a large-scale real-
world surveillance video dataset containing diverse exam-
ples of multiple types of complex visual events. We believe
that this dataset will stimulate diverse aspects of computer
vision research in the years ahead.
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