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Abstract

We introduce a novel active learning framework for video annotation. By judi-
ciously choosing which frames a user should annotate, we can obtain highly accu-
rate tracks with minimal user effort. We cast this problem as one of active learning,
and show that we can obtain excellent performance by querying frames that, if an-
notated, would produce a large expected change in the estimated object track. We
implement a constrained tracker and compute the expected change for putative
annotations with efficient dynamic programming algorithms. We demonstrate our
framework on four datasets, including two benchmark datasets constructed with
key frame annotations obtained by Amazon Mechanical Turk. Our results indicate
that we could obtain equivalent labels for a small fraction of the original cost.

1 Introduction

With the decreasing costs of personal portable cameras and the rise of online video sharing services
such as YouTube, there is an abundance of unlabeled video readily available. To both train and eval-
uate computer vision models for video analysis, this data must be labeled. Indeed, many approaches
have demonstrated the power of data-driven analysis given labeled video footage [12, 17].

But, annotating massive videos is prohibitively expensive. The twenty-six hour VIRAT video data
set consisting of surveillance footage of cars and people cost tens of thousands of dollars to annotate
despite deploying state-of-the-art annotation protocols [13]. Existing video annotation protocols
typically work by having users (possibly on Amazon Mechanical Turk) label a sparse set of key
frames followed by either linear interpolation [16] or nonlinear tracking [1, 15].

We propose an adaptive key-frame strategy which uses active learning to intelligently query a worker
to label only certain objects at only certain frames that are likely to improve performance. This
approach exploits the fact, that for real footage, not all objects/frames are “created equal”; some
objects during some frames are “easy” to automatically annotate in that they are stationary (such as
parked cars in VIRAT [13]) or moving in isolation (such a single basketball player running down
the court during a fast break [15]). In these cases, a few user clicks are enough to constrain a visual
tracker to produce accurate tracks. Rather, user clicks should be spent on more “hard” objects/frames
that are visually ambiguous, such as occlusions or cluttered backgrounds.

Related work (Active learning): We refer the reader to the excellent survey in [14] for a con-
temporary review of active learning. Our approach is an instance of active structured prediction

Figure 1: Videos from the VIRAT data set [13] can have hundreds of objects per frame. Many of
those objects are easily tracked except for a few difficult cases. Our active learning framework au-
tomatically focuses the worker’s effort on the difficult instances (such as occlusion or deformation).



2 TRACKING 2

[8, 7], since we train object models that predict a complex, structured label (an object track) rather
than a binary class output. However, rather than training a single car model over several videos
(which must be invariant to instance-specific properties such as color and shape), we train a sepa-
rate car model for each car instance to be tracked. From this perspective, our training examples are
individual frames rather than videos. But notably, these examples are non-i.i.d; indeed, temporal
dependencies are crucial for obtaining tracks from sparse labels. We believe this property makes
video a prime candidate for active learning, possibly simplifying its theoretical analysis [14, 2] be-
cause one does not face an adversarial ordering of data. Our approach is similar to recent work in
active labeling [4], except we determine which part of the label the user should annotate in order to
improve performance the most. Finally, we use a novel query strategy appropriate for video: rather
than use expected information gain (expensive to compute for structured predictors) or label entropy
(too coarse of an approximation), we use the expected label change to select a frame. We select the
frame, that when labeled, will produce the largest change in the estimated track of an object.

Related work (Interactive video annotation): There has also been work on interactive tracking
from the computer vision community. [5] describe efficient data structures that enable interactive
tracking, but do not focus on frame query strategies as we do. [16] and [1] describe systems that
allow users to manually correct drifting trackers, but this requires annotators to watch an entire video
in order to determine such erroneous frames, a significant burden in our experience.

2 Tracking

In this section, we outline the dynamic programming tracker of [15]. We will extend it in Section
3 to construct an efficient active learning algorithm. We begin by describing a method for tracking
a single object, given a sparse set of key frame bounding-box annotations. As in [15], we use a
visual tracker to interpolate the annotations for the unlabeled in-between frames. We define bit to
be a bounding box at frame t at pixel position i. Let ζ be the non-empty set of worker annotations,
represented as a set of bounding boxes. Without loss of generality, assume that all paths are on the
interval 0 ≤ t ≤ T .

2.1 Discriminative Object Templates

We build a discriminative visual model of the object in order to predict its location. For every
bounding box annotation in ζ, we extract its associated image patch and resize it to the average
size in the set. We then extract both histogram of oriented gradients (HOG) [9] and color features:
φn(bn) = [HOG RGB]

T where RGB are the means and covariances of the color channels. When
trained with a linear classifier, these color features are able to learn a quadratic decision boundary in
RGB-space. In our experiments, we used a HOG bin size of either 4 or 8 depending on the size of
the object.

We then learn a model trained to discriminate the object against the the background. For every an-
notated frame, we extract an extremely large set of negative bounding boxes that do not significantly
overlap with the positive instances. Given a set of features bn with labels yn ∈ {−1, 1} classifying
them as positive or negative, we train a linear SVM by minimizing the loss function:

w∗ = argmin
1

2
w · w + C

N∑
n

max(0, 1− ynw · φn(bn)) (1)

We use liblinear [10] in our experiments. Training typically took only a few seconds.

2.2 Motion Model

In order to score a putative interpolated path b0:T = {b0 . . . bT }, we define the energy function
E(b0:T ) comprised of both unary and pairwise terms:

E(b0:T ) =

T∑
t=0

Ut(bt) + S(bt, bt−1) (2)

Ut(bt) = min (−w · φt(bt), α1) , S(bt, bt−1) = α2||bt − bt−1||2 (3)
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where Ut(bt) is the local match cost and St(bt, bt−1) is the pairwise spring. Ut(bt) scores how well
a particular bt matches against the learned appearance model w, but truncated by α1 so as to reduce
the penalty when the object undergoes an occlusion. We are able to efficiently compute the dot
product w ·φt(bt) using integral images on the RGB weights [6]. St(bt, bt−1) favors smooth motion
and prevents the tracked object from teleporting across the scene.

2.3 Efficient Optimization

We can recover the missing annotations by computing the optimal path as given by the energy
function. We find the least cost path b∗0:T over the exponential set of all possible paths:

b∗0:T = argmin
b0:T

E(b0:T ) s.t. bt = bit ∀bit ∈ ζ (4)

subject to the constraint that the path crosses through the annotations labeled by the worker in ζ. We
note that these constraints can be removed by simply redefining Ut(bt) =∞ ∀bt 6= bit.

A naive approach to minimizing (4) would takeO(KT ) forK locations per frame. However, we can
efficiently solve the above problem in O(TK2) by using dynamic programming through a forward
pass recursion [3]:

C→0 (b0) = U0(b0)

C→t (bt) = Ut(bt) + min
bt−1

C→t−1(bt−1) + S(bt, bt−1) (5)

π→t (bt) = argmin
bt−1

C→t−1(bt−1) + S(bt, bt−1) (6)

By storing the pointers in (6), we are able to reconstruct the least cost path by backtracking from the
last frame T . We note that we can further reduce this computation to O(TK) by applying distance
transform speed ups to the pairwise term in (3) [11].

3 Active Learning

Let curr0:T be the current best estimate for the path given a set of user annotations ζ. We wish to
compute which frame the user should annotate next t∗. In the ideal case, if we had knowledge of the
ground-truth path bgt0:T , we should select the frame t, that when annotated with bgtt , would produce
a new estimated path closest to the ground-truth. Let us write next0:T (bgtt ) for the estimated track
given the augmented constraint set ζ ′ = ζ ∪ bgtt . The optimal next frame is:

topt = argmin
0≤t≤T

T∑
j=0

err(bgtj , nextj(b
gt
t )) (7)

where err could be squared error or a thresholded overlap (in which err evaluates to 0 or 1 depend-
ing upon if the two locations sufficiently overlap or not). Unfortunately, we cannot directly compute
(7) since we do not know the true labels ahead of time.

3.1 Maximum Expected Label Change (ELC)

We make two simplifying assumptions to implement the previous ideal selection strategy, inspired
by the popular maximum expected gradient length (EGL) algorithm for active learning [14] (which
selects an example so as to maximize the expected change in a learned model). First, we change
the minimization to a maximization and replace the ground-truth error with the change in track
label: err(bgtj , nextj(b

gt
t )) ⇒ err(currj , nextj(b

gt
t )). Intuitively, if we make a large change in the

estimated track, we are likely to be taking a large step toward the ground-truth solution. However,
this requires knowing the ground-truth location bgtt . We make the second assumption that we have
access to an accurate estimate of P (bit), which is the probability that, if we show the user frame t,
then they will annotate a particular location i. We can use this distribution to compute an expected
change in track label:

t∗ = argmax
0≤t≤T

K∑
i=0

P (bit) ·∆I(bit) where ∆I(bit) =

T∑
j=0

err(currj , nextj(bit)) (8)
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(b) Two clicks: Initial and requested frame

(c) Identical objects. (d) About to intersect. (e) Intersection point.
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(f) After intersection.

Figure 2: We consider a synthetic video of two nearly identical rectangles rotating around a point—
one clockwise and the other counterclockwise. The rectangles intersect every 20 frames, at which
point the tracker does not know which direction the true rectangle is following. Did they bounce or
pass through? (a) Our framework realizes the ambiguity can be resolved by requesting annotations
when they do not intersect. Due to the periodic motion, a fixed rate tracker may request annotations
at the intersection points, resulting in wasted clicks. The expected label change plateaus because
every point along the maximas provide the same amount of disambiguating information. (b) Once
the requested frame is annotated, that corresponding segment is resolved, but the others remain
ambiguous. In this example, our framework can determine the true path for a particular rectangle in
only 7 clicks, while a fixed rate tracker may require 13 clicks.

The above selects the frame, that when annotated, produces the largest expected track label change.
We now show how to compute P (bit) and ∆I(bit) using costs and constrained paths, respectively,
from the dynamic-programming based visual tracker described in Section 2. By considering every
possible space-time location that a worker could annotate, we are able to determine which frame we
expect will change the current path the most. Even though this calculation searches over an expo-
nential number of paths, we are able to compute it in polynomial time using dynamic programming.
Moreover, (8) can be parallelized across frames in order to guarantee a rapid response time, often
necessary due to the interactive nature of active learning.

3.2 Annotation Likelihood and Estimated Tracks

A user has access to global knowledge and video history when annotating a frame. To capture such
global information, we define the annotation likelihood of location bit to be the score of the best track
given that additional annotation:

P (bit) ∝ exp

(
−Ψ(bit)

σ2

)
where Ψ(bit) = E

(
next0:T (bit)

)
(9)

The above formulation only assigns high probabilities to locations that lie on paths that agree with
the global constraints in ζ, as explained in Fig.2 and Fig.3. To compute energies Ψ(bit) for all
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Figure 3: Consider two identical rectangles that
translate, but never intersect. Although both ob-
jects have the same appearance, our framework
does not query for new annotations because the
pairwise cost has made it unlikely that the two
objects switch identities, indicated by a single
mode in the probability map. A probability ex-
clusively using unary terms would be bimodal.
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Figure 4: Consider a white rectangle moving on
a white background. Since it is impossible to
distuingish the foreground from the background,
our framework will query for the midpoint and
gracefully degrade to a fixed rate labeling. If the
object is extremely difficult to localize, the active
learner will automatically decide the optimal an-
notation strategy is to use fixed rate key frames.

spacetime locations bit, we use a standard two-pass dynamic programming algorithm for computing
min-marginals:

Ψ(bit) = C→t (bit) + C←t (bit)− U(bit) (10)

where C←t (bit) corresponds to intermediate costs computed by running the recursive algorithm from
(5) backward in time. By caching forward and backward pointers π→t (bit) and π←t (bit), the associated
tracks next0:T (bit) can be found by backtracking both forward and backward from any spacetime
location bit.

3.3 Label Change

We now describe a dynamic programming algorithm for computing the label change ∆I(bit) for all
possible spacetime locations bit. To do so, we define intermediate quantities Θ→t (bit) which represent
the label change up to time t given the user annotates location bit:

Θ→0 (b0) = err(curr0, next0(b0)) (11)
Θ→t (bt) = err(currt, nextt(bt)) + Θ→t−1(π→t (bt)) (12)

We can compute Θ←t (bit), the expected label change due to frames t to T given a user annotation at
bit, by running the above recursion backward in time. The total label change is their sum, minus the
double-counted error from frame t:

∆I(bit) = Θ→t (bit) + Θ←t (bit)− err(currt, nextt(bit)) (13)

(13) is sensitive to small spatial shifts; i.e. ∆I(bit) 6≈ ∆I(bi+εt ). To reduce the effect of imprecise
human labeling (which we encounter in practice), we replace the label change with a worst-case
label change computed over a neighboring window N(bit):

∆̃I(bit) = min
bjt∈N(bit)

∆I(bjt ) (14)

By selecting frames that have a large expected “worse-case” label change, we avoid querying frames
that require precise labeling and instead query for frames that are easy to label (e.g., the user may
annotate any location within a small neighborhood and still produce a large label change).

3.4 Stopping Criteria

Our final active learning algorithm is as follows: we query a frame t∗ according to (8), add the
user annotation to the constraint set ζ, retrain the object template with additional training examples
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(a) One click: Initial frame only
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(b) Two clicks: Initial and requested frame

(c) Training (d) Walking, Yes Jacket (e) Taking Off Jacket (f) Walking, No Jacket

Figure 5: We analyze a video of a man who takes off a jacket and changes his pose. A tracker trained
only on the initial frame will lose the object when his appearance changes. Our framework is able
to determine which additional frame the user should annotate in order to resolve the track. (a) Our
framework does not expect any significant label change when the person is wearing the same jacket
as in the training frame (black curve). But, when the jacket is removed and the person changes
his pose (colorful curves), the tracker cannot localize the object and our framework queries for an
additional annotation. (b) After annotating the requested frame, the tracker learns the color of the
person’s shirt and gains confidence in its track estimate. A fixed rate tracker may pick a frame where
the person is still wearing the jacket, resulting in a wasted click. (c-f) The green box is the predicted
path with one click and red box is with two clicks. If there is no green box, it is the same as the red.

extracted from frame t∗ (according to (1)), and repeat. We stop requesting annotations once we are
confident that additional annotations will not significantly change the predicted path:

max
0≤t≤T

K∑
i=0

P (bit) ·∆I(bit) < tolerance (15)

We then report b∗0:T as the final annotated track as found in (4). We note, however, that in practice
external factors, such as budget, will often trigger the stopping condition before we have obtained a
perfect track. As long as the budget is sufficiently high, the reported annotations will closely match
the actual location of the tracked object.

We also note that one can apply our active learning algorithm in parallel for multiple objects in a
video. We maintain separate object models w and constraint sets ζ for each object. We select the
object and frame with the maximum expected label change according to (8) . We demonstrate that
this strategy naturally focuses labeling effort on the more difficult objects in a video.

4 Qualitative Experiments

In order to demonstrate our framework’s capabilities, we show how our approach handles a couple
of interesting annotation problems. We have assembled two data sets: a synthetic video of easy-to-
localize rectangles maneuvering in an uncluttered background, and a real-world data set of actors
following scripted walking patterns.
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(a) One click: Initial frame only
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(b) Two clicks: Initial and requested frame

(c) Training image (d) Entering occlusion (e) Total occlusion (f) After occlusion

Figure 6: We investigate a car from [13] that undergoes a total occlusion and later reappears. The
tracker is able to localize the car until it enters the occlusion, but it cannot recover when the car
reappears. (a) Our framework expects a large label change during the occlusion and when the object
is lost. The largest label change occurs when the object begins to reappear because this frame would
lock the tracker back onto the correct path. (b) When the tracker receives the requested annotation,
it is able to recover from the occlusion, but it is still confused when the object is not visible.

(a) Initial frame (b) Rotation (c) Scale (d) Estimated

Figure 7: We examine situations where there are many easy-to-localize objects (e.g., stationary
objects) and only a few difficult instances. In this example, red boxes were manually annotated and
black boxes are automatically estimated. Our framework realizes that the stationary objects are not
likely to change their label, so it focuses annotations on moving objects.

We refer the reader to the figures. Fig.2 shows how our framework is able to resolve inherently
ambiguous motion with the minimum number of annotations. Fig.3 highlights how our framework
does not request annotations when the paths of two identical objects are disjoint because the motion
is not ambiguous. Fig.4 reveals how our framework will gracefully degrade to fixed rate key frames
if the tracked object is difficult to localize. Fig.5 demonstrates motion of objects that deform. Fig.6
shows how we are able to detect occlusions and automatically recover by querying for a correct
annotation. Finally, Fig.7 shows how we are able to transfer wasted clicks from stationary objects
on to moving objects.
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Figure 8: A hard scene in a basketball game [15]. Players frequently undergo total and partial
occlusion, alter their pose, and are difficult to localize due to a cluttered background.
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(a) VIRAT Cars [13]
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(b) Basketball Players [15]

Figure 9: We compare active key frames (green curve) vs. fixed rate key frames (red curve) on a sub-
set (a few thousand frames) of the VIRAT videos and part of a basketball game. We could improve
performance by increasing annotation frequency, but this also increases the cost. By decreasing
the annotation frequency in the easy sections and instead transferring those clicks to the difficult
frames, we achieve superior performance over the current methods on the same budget. (a) Due to
the large number of stationary objects in VIRAT, our framework assigns a tremendous number of
clicks to moving objects, allowing us to achieve nearly zero error. (b) By focusing annotation effort
on ambiguous frames, we show nearly a 5% improvement on basketball players.

5 Benchmark Results

We validate our approach on both the VIRAT challenge video surveillance data set [13] and the
basketball game studied in [15]. VIRAT is unique for its enormous size of over three million frames
and up to hundreds of annotated objects in each frame. The basketball game is extremely difficult
due to cluttered backgrounds, motion blur, frequent occlusions, and drastic pose changes.

We evaluate the performance of our tracker using active key frames versus fixed rate key frames. A
fixed rate tracker simply requests annotations every T frames, regardless of the video content. For
active key frames, we use the annotation schedule presented in section 3. Our key frame baseline
is the state-of-the-art labeling protocol used to originally annotate both datasets [15, 13]. In a given
video, we allow our active learning protocol to iteratively pick a frame and an object to annotate
until the budget is exhausted. We then run the tracker described in section 2 constrained by these
key frames and compare its performance.

We score the two key frame schedules by determining how well the tracker is able to estimate
the ground truth annotations. For every frame, we consider a prediction to be correct as long as
it overlaps the ground truth by at least 30%, a threshold that agrees with our qualitative rating of
performance. We compare our active approach to a fixed-rate baseline for a fixed amount of user
effort: is it better to spend X user clicks on active or fixed-rate key frames? Fig.9 shows the former
strategy is better. Indeed, we can annotate the VIRAT data set for one tenth of its original cost.

Acknowledgements: Funding for this research was provided by NSF grants 0954083 and
0812428, ONR-MURI Grant N00014-10-1-0933, an NSF GRF, and support from Intel and Amazon.
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