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Abstract—We describe a method for articulated human detection and human pose estimation in static images based on
a new representation of deformable part models. Rather than modeling articulation using a family of warped (rotated and
foreshortened) templates, we use a mixture of small, non-oriented parts. We describe a general, flexible mixture model that
jointly captures spatial relations between part locations and co-occurrence relations between part mixtures, augmenting standard
pictorial structure models that encode just spatial relations. Our models have several notable properties: (1) they efficiently model
articulation by sharing computation across similar warps (2) they efficiently model an exponentially-large set of global mixtures
through composition of local mixtures and (3) they capture the dependency of global geometry on local appearance (parts
look different at different locations). When relations are tree-structured, our models can be efficiently optimized with dynamic
programming. We learn all parameters, including local appearances, spatial relations, and co-occurrence relations (which encode
local rigidity) with a structured SVM solver. Because our model is efficient enough to be used as a detector that searches over
scales and image locations, we introduce novel criteria for evaluating pose estimation and human detection, both separately
and jointly. We show that currently-used evaluation criteria may conflate these two issues. Most previous approaches model
limbs with rigid and articulated templates that are trained independently of each other, while we present an extensive diagnostic
evaluation that suggests that flexible structure and joint training are crucial for strong performance. We present experimental
results on standard benchmarks that suggest our approach is the state-of-the-art system for pose estimation, improving past

work on the challenging Parse and Buffy datasets, while being orders of magnitude faster.

Index Terms—Pose Estimation, Object Detection, Articulated Shapes, Deformable Part Models

1 INTRODUCTION

ARTICULATED pose estimation is a fundamental

task in computer vision. A working technology
would immediately impact many key vision tasks
such as image understanding and activity recogni-
tion. An influential approach is the pictorial structure
framework [1], [2] which decomposes the appearance
of objects into local part templates, together with geo-
metric constraints on pairs of parts, often visualized as
springs. When parts are parameterized by pixel loca-
tion and orientation, the resulting structure can model
articulation. This has been the dominant approach
for human pose estimation. In contrast, traditional
models for object recognition use parts parameterized
solely by locations, which simplifies both inference
and learning. Such models have been shown to be
very successful for object detection [3], [4]. In this
work, we introduce a novel, unified representation for
both models that produces state-of-the-art results for
the tasks of detecting articulated people and estimat-
ing their poses.

Representations for articulated pose: Full-body
pose estimation is difficult because of the many de-
grees of freedom to be estimated. Moreover, limbs
vary greatly in appearance due to changes in clothing
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Fig. 1: Our flexible mixture-of-parts model (middle)
differs from classic approaches (left) that model artic-
ulation by warping a single template to different ori-
entation and foreshortening states (top right). Instead,
we approximate small warps by translating patches
connected with a spring (bottom right). For a large
warp, we use a different set of patches and a different
spring. Hence, our model captures the dependence
of local part appearance on geometry (i.e. elbows in
different spatial arrangements look different).

and body shape, as well as changes in viewpoint man-
ifested in in-plane rotations and foreshortening. These
difficulties complicate inference as one must typically
search images with a large number of warped (ro-
tated and foreshortened) templates. We address these
problems by introducing a simple representation for
modeling a family of warped templates: a mixture
of pictorial structures with small, non-oriented parts
(Fig. 1).

Our approach is significantly faster than an ar-
ticulated model because we exploit dynamic pro-



gramming to share computation across similar warps
during matching. Our approach can also outperform
articulated models because we capture the effect of
global geometry on local appearance; an elbow looks
different when positioned above the head or beside
the torso. One reason for this is that elbows rotate and
foreshorten. However, appearance changes also arise
from other geometric factors such as partial occlusions
and interactions with clothing. Our models capture
such often ignored dependencies because local mix-
tures depend on the spatial arrangement of parts.

Representations for objects: Part models are also
common in general object recognition. Because trans-
lating parts do not deform too much in practice,
one often resorts to global mixture models to capture
large appearance changes [4]. Rather, we compose
together local part mixtures to model an exponentially-
large set of global mixtures. Not all such combinations
are equally likely; we learn a prior over what local
mixtures can co-occur. This allows our model to learn
notions of local-rigidity; for example, two parts on
the same rigid limb must co-occur with consistent
oriented edge structure. An open challenge is that
of learning such complex object representations from
data. We find that supervision is a key ingredient
for learning structured relational models; one can use
limb orientation as a supervisory signal to annotate
part mixture labels in training data.

Efficiency: For computational reasons, most prior
work on pose estimation assumes that people are pre-
localized with a detector that provides the rough pixel
location and scale of each person. Our model is fast
enough to search over all locations and scales, and so
we both detect and estimate human poses without any
pre-processing. Our model requires roughly 1 second
to process a typical benchmark image, allowing for
the possibility of real-time performance with further
speedups (such as cascaded [5] or parallelized imple-
mentations). We have released open-source code [6]
which appears to be in use within the community.

Evaluation: The most popular evaluation criteria
for pose estimation is the percentage of correctly lo-
calized parts (PCP) criteria introduced in [7]. Though
this criteria was crucial and influential in spurring
quantitative evaluation, it was somewhat ambigu-
ously specified in [7], resulting in possibly conflicting
implementations.

One point of confusion is that PCP, as original
specified, assume humans are pre-detected on test
images. This assumption may be unrealistic because it
is hard to build detectors for highly articulated poses
(for the same reason it is hard to correctly estimate
their configurations). Another point of confusion is
that there appears to be two interpretations of the def-
inition of correctly localized parts criteria introduced
in [7]. We will give a detailed description of these
issues in Section 7.

Unfortunately these subtle confusions lead to signif-

icant differences in terms of final performance results.
We show that that there may exist a negative correla-
tion between body-part detection accuracy and PCP
as implemented in the toolkit released by [8]. We then
introduce new evaluation criteria for pose estimation
and body-part detection that are self-consistent. We
evaluate all different types of PCP criteria and our
new criteria on two standard benchmark datasets [7],
[°].

Overview: An earlier version of this manuscript
appeared in [10]. This version includes a slightly
refined model, additional diagnostic experiments, and
an in-depth discussion of evaluation criteria. After
discussing related work, we motivate our approach
in Section 3, describe our model in Section 4, describe
algorithms for inference in Section 5, and describe
methods for learning parameters from training data
in Section 6. We then show experimental results and
diagnostic experiments on our benchmark datasets in
Section 7.

2 RELATED WORK

Pose estimation has typically been addressed in the
video domain, dating back to classic model-based
approaches of O’'Rourke and Badler [11], Hogg [12],
Rohr [13]. Recent work has examined the problem for
static images, assuming that such techniques will be
needed to initialize video-based articulated trackers.
We refer the reader to the recent survey article [14]
for a full review of contemporary approaches.

Spatial structure: One area of research is the en-
coding of spatial structure, often described through
the formalism of probabilistic graphical models. Tree-
structured graphical models allow for efficient infer-
ence [1], [15], but are plagued by double-counting;
given a parent torso, two legs are localized indepen-
dently and often respond to the same image region.
Loopy constraints address this limitation but require
approximate inference strategies such as sampling [1],
[16], [17], loopy belief propagation [18], or iterative
approximations [19]. Recent work has suggested that
branch and bound algorithms with tree-based lower
bounds can globally solve such problems [20], [21].
Another approach to eliminating double-counting is
the use of stronger pose priors [22]. However, such
methods may overfit to the statistics of a particu-
lar dataset, as warned by [18], [23]. We find that
simple tree models, when trained contextually with
part models in a discriminative framework, are fairly
effective.

Learning: An alternate family of techniques has
explored the trade-off between generative and dis-
criminative models. Approaches include conditional
random fields [24], margin-based learning [25], and
boosted detectors [26], [27], [21]. Most previous ap-
proaches train limb detectors independently, in part
due to the computational burdens of inference. Our



representation is efficient enough to be learned jointly;
we show in our experimental results that joint learn-
ing is crucial for accurate performance. A small part
trained by itself is too weak to provide a strong signal,
but a collection of patches trained contextually are
rather discriminative.

Image features: An important issue for computer
vision tasks is feature description. Past work has
explored the use of superpixels [28], contours [26],
[29], [30], foreground/background color models [9],
[7], edge-based descriptors [31], [32], and gradient
descriptors [27], [33]. We use oriented gradient de-
scriptors [34] that allow for fast computation, but our
approach could be combined with other descriptors.
Recent work has integrated our models with steerable
image descriptors for highly efficient pose estimation
[35]-

Large vs small parts: In recent history, researchers
have begun exploring large-scale, non-articulated
parts that span multiple limbs on the body ("Poselets’)
[3]. Such models were originally developed for human
detection, but [36] extends them to pose estimation.
Large-scale parts can be integrated into a hierarchical,
coarse-to-fine representation [37], [38]. The underly-
ing intuition behind such approaches stems from the
observation that it is hard to build accurate limb
detectors because they are nondescript in appearance
(i.e., limbs are defined by parallel lines that may
commonly occur in clutter). This motivates the use of
larger parts with more context. We demonstrate that
jointly training small parts has the same contextual
effect.

Object detection: In terms of object detection, our
work is most similar to pictorial structure models that
reason about mixtures of parts [39], [1], [4], [15]. We
show that our model generalizes such representations
in Section 4.1. Our local mixture model can also be
seen as an AND-OR grammar, where a pose is derived
by AND’ing across all parts and OR’ing across all
local mixtures [4], [40].

3 MOTIVATION

Our model is an approximation for capturing a con-
tinuous family of warps. The classic approach of using
a finite set of articulated templates is also an approx-
imation. In this section, we present a straightforward
theoretical analysis of both. For simplicity, we restrict
ourselves to affine warps, though a similar derivation
holds for any smooth warping function, including
perspective warps (Fig. 2).

Let us write = for a 2D pixel position in a template,
and w(x) = (I + AA)z + b for its new position under
a small affine warp A = I+ AA and any translation b.
We use AA to parameterize the deviation of the warp
from an identity warp. Define s(z) = w(z) —  to be
the shift of position z. The shift of a nearby position
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(a) Original

(b) Foreshortening

(c) Out-of-plane

Fig. 2: We show that 4 small, translating parts can
approximate non-affine (e.g., perspective) warps.

x 4+ Az can be written as
s(z+ Az) = w(x + Az) — (x + Ax)
=T+ AA)(x+Ax)+b—z— Az
= s(z) + AAAx

Both pixels  and = + Az shift by the same amount
(and can be modeled as a single part) if the product
AAAzx is small, which is true if A A has small determi-
nant or Az has small norm. Classic articulated models
use a large family of discretized articulations, where
each discrete template only needs to explain a small
range of rotations and foreshortening (e.g., a small-
determinant AA). We take the opposite approach,
making Az small by using small parts. Since we want
the norm of Az to be small, this suggests that circular
parts would work best, but we use square parts as a
discrete approximation. In the extreme case, one could
define a set of single-pixel parts. Such a representation
is indeed the most flexible, but becomes difficult to
train given our learning formulation described below.

4 MODEL

Let us write I for an image, I; = (z,y) for the pixel
location of part ¢ and ¢; for the mixture component
of part i. We write ¢ € {1,...K}, l; € {1,...L} and
t; € {1,...T}. We call t; the “type” of part i. Our moti-
vating examples of types include orientations of a part
(e.g., a vertical versus horizontally oriented hand),
but types may span out-of-plane rotations (front-view
head versus side-view head) or even semantic classes
(an open versus closed hand). For notational conve-
nience, we define the lack of subscript to indicate a set
spanned by that subscript (e.g., t = {t1,...tx}). For
simplicity, we define our model at a fixed scale; at test-
time we detect people of different sizes by searching
over an image pyramid.

Co-occurrence model: To score of a configuration of
parts, we first define a compatibility function for part



types that factors into a sum of local and pairwise
scores:

SM) = b+ 3 by (1)

eV ijeE

The parameter b!' favors particular type assignments
for part i, while the pairwise parameter bf; 7 favors
particular co-occurrences of part types. For example,
if part types correspond to orientations and part 4
and j are on the same rigid limb, then bf]t7 would
favor consistent orientation assignments. Specifically,
sz’57 should be a large positive number for consistent
orientations ¢; and t¢;, and a large negative number
for inconsistent orientations ¢; and t;.

Rigidity: We write G = (V, E) for a (tree-structured)
K-node relational graph whose edges specify which
pairs of parts are constrained to have consistent rela-
tions. Such a graph can still encode relations between
distant parts through transitivity. For example, our
model can force a collection of parts to share the same
orientation, so long as the parts form a connected
subtree of G = (V, E). We use this property to model
multiple parts on the torso. Since co-occurrence pa-
rameters are learned, our model learns which collec-
tions of parts should be rigid.

We can now write the full score associated with a
configuration of part types and positions:

S(I,1,t)= S(t) + 2)
Yowi L)+ Y w (1)
i€V ijeER

where ¢(1,1;) is a feature vector (e.g., HOG descriptor
[34]) extracted from pixel location /; in image I.
We write ¢(l; — I;) = [dv da® dy dy?]", where
dx = x; — z; and dy = y; — y;, the relative location of
part ¢ with respect to j. Notably, this relative location
is defined with respect to the pixel grid and not the
orientation of part 4 (as in classic articulated pictorial
structures [1]).

Appearance model: The first sum in (2) is an
appearance model that computes the local score of
placing a template w;” for part 4, tuned for type ¢;, at
location ;.

Deformation model: The second term can be inter-
preted as a “switching” spring model that controls
the relative placement of part ¢ and j by switch-
ing between a collection of springs. Each spring is
tailored for a particular pair of types (¢;,t;), and
is parameterized by its rest location and rigidity,
which are encoded by wf]t7 Our switching spring
model encodes the dependence of local appearance
on geometry, since different pairs of local mixtures are
constrained to use different springs. Together with the
co-occurrence term, it specifies an image-independent
“prior” over part locations and types.
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We now describe various special cases of our model.
The first three correspond to special cases that have
previously occurred in the literature, while the last
refers to a special case we implement in our experi-
ments.

Stretchable human models: [41] describes a human
part model that consists of a single part at each joint.
This is equivalent to our model with K = 14 parts,
each with a single mixture 7' = 1. Similar to us,
[41] argue that a joint-centric representation efficiently
captures foreshortening and articulation effects. How-
ever, our local mixture models (for T > 1) also
capture the dependence of global geometry on local
appearance; elbows look different when positioned
above the head or beside the torso. We compare to
such a model in our diagnostic experiments.

Semantic part models: [39] argues that part ap-
pearances should capture semantic classes and not
visual classes; this can be done with a type model.
Consider a face model with eye and mouth parts.
One may want to model different types of eyes (open
and closed) and mouths (smiling and frowning). The
spatial relationship between the two does not likely
depend on their type, but open eyes may tend to co-
occur with smiling mouths. This can be obtained as a
special case of our model by using a single spring for
all types of a particular pair of parts:

Special cases

wit = Wij (©)]

Mixtures of deformable parts: [4] define a mixture
of models, where each model is a star-based pictorial
structure. This can be achieved by restricting the co-
occurrence model to allow for only globally-consistent

types:

tity 0 if trL = t]
bij = { —oo otherwise )

Articulation: In our experiments, we explore a sim-
plified version of (2) with a reduced set of springs:
wz;-’t] = wfj )
The above simplification states that the relative loca-
tion of part with respect to its parent is dependent
on part-type, but not parent-type. For example, let i
be a hand part, j its parent elbow part, and assume
part types capture orientation. The above relational
model states that a sideways-oriented hand should
tend to lie next to the elbow, while a downward-
oriented hand should lie below the elbow, regardless
of the orientation of the upper arm.

5 |INFERENCE

Inference corresponds to maximizing S(I,1,t) from (2)
over | and ¢t. When the relational graph G = (V, E)
is a tree, this can be done efficiently with dynamic



programming. To illustrate inference, let us re-write
(2) by defining z; = (I;,;) to denote both the discrete
pixel location and discrete mixture type of part

S(1,2) :Z¢i(I’Zi) + Z wij(zivzj)’
i€V ijeE
where  ¢;(1,2) = wi' - ¢(I,1;) + by’
Wij(zi ) = wii™ -l — 1) + by
From this perspective, it is clear that our final model
is a discrete, pairwise Markov random field (MRF).
When G = (V, E) is tree-structured, one can compute
max, S(I, z) with dynamic programming.

To be precise, we iterate over all parts starting from
the leaves and moving “upstream” to the root part.
We define kids(i) be the set of children of part i,
which is the empty set for leaf parts. We compute the
message part i passes to its parent j by the following:

scorei(zi) :(bl(l, Zi) + Z mk(zi) (6)

kekids(z)
m;(z;) = max [scorei(zi) + i;(2i, 25) (7)

Eq.(6) computes the local score of part i, at all pixel
locations /; and for all possible types t;, by collecting
messages from the children of i. Eq.(7) computes for
every location and possible type of part j, the best
scoring location and type of its child part . Once
messages are passed to the root part (i = 1), score; (1)
represents the best scoring configuration for each root
position and type. One can use these root scores to
generate multiple detections in image I by thresh-
olding them and applying non-maximum suppression
(NMS). By keeping track of the argmax indices, one
can backtrack to find the location and type of each
part in each maximal configuration. To find multiple
detections anchored at the same root, one can use N-
best extensions of dynamic programming [42].

Computation: The computationally taxing portion
of dynamic programming is (7). We rewrite this step
in detail:

m;(tj,l;) = mt?x [b:;’tj-i-

max score; (t;,l;) + wf}’tj ~p(l; — lj)} 8)

One has to loop over L xT" possible parent locations
and types, and compute a max over L x T possible
child locations and types, making the computation
O(L*T?) for each part. When ¢ (l; — ;) is a quadratic
function (as is the case for us), the inner maximization
in (8) can be efficiently computed for each combi-
nation of ¢; and ¢; in O(L) with a max-convolution
or distance transform [1]. Since one has to perform
T? distance transforms, message passing reduces to
O(LT?) per part.

Special cases: Model (3) maintains only a single
spring per part, so message passing reduces to O(L).

Models (4) and (5) maintain only T" springs per part,
reducing message passing to O(LT). It is worthwhile
to note that our articulated model is no more com-
putationally complex than the deformable mixtures
of parts in [4], but is considerably more flexible be-
cause it searches over an exponential number (7X)
of global mixtures. In practice, the computation time
is dominated by computing the local scores of each
type-specific appearance models w!*-$(I, ;). Since this
score is linear, it can be efficiently computed for all
positions [; by optimized convolution routines.

6 LEARNING

We assume a supervised learning paradigm. Given
labeled positive examples {I,,l,,t,} and negative
examples {I,,}, we will define a structured prediction
objective function similar to those proposed in [4],
[25]. To do so, let us write z, = (I,,t,) and note that
the scoring function (2) is linear in model parameters
B = (w,b), and so can be written as S(I, z) = 8-®(1, z).
We would learn a model of the form:
arg min

1
Jin §B-B+C;§n ©)

VYnepos [-®(L,,z,) >1—-&,
B-O(In,2) < -1+,

The above constraint states that positive examples
should score better than 1 (the margin), while negative
examples, for all configurations of part positions and
types, should score less than -1. The objective function
penalizes violations of these constraints using slack
variables &,,.

Detection vs pose estimation: Traditional struc-
tured prediction tasks do not require an explicit neg-
ative training set, and instead generate negative con-
straints from positive examples with mis-estimated
labels z. This corresponds to training a model that
tends to score a ground-truth pose highly and alter-
nate poses poorly. While this translates directly to
a pose estimation task, our above formulation also
includes a “detection” component: it trains a model
that scores highly on ground-truth poses, but gener-
ates low scores on images without people. We find
the above to work well for both pose estimation and
person detection.

Optimization: The above optimization is a
quadratic program (QP) with an exponential number
of constraints, since the space of z is (LT)%.
Fortunately, only a small minority of the constraints
will be active on typical problems (e.g., the support
vectors), making them solvable in practice. This form
of learning problem is known as a structural SVM,
and there exists many well-tuned solvers such as
the cutting plane solver of SVMStruct [43] and the
stochastic gradient descent solver (SGD) in [4]. To
allow greater flexibility in scheduling model updates
and active-set pruning, we implemented our own

s.t.
Vn € neg,Vz
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Fig. 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts
with respect to their parents. These clusters are used to generate mixture labels for parts during training.
For example, heads tend to be upright, and so the associated mixture models focus on upright orientations.
Because hands articulate to a large degree, mixture models for the hand are spread apart to capture a larger

variety of relative orientations.

dual coordinate-descent solver, briefly described
below.

Dual coordinate descent: The currently fastest
solver for linear SVMs appears to be liblinear [44],
which is a dual coordinate descent method. A naive
implementation of a dual SVM solver would require
maintaining a M x M kernel matrix, where M is the
total number of active constraints (support vectors).
The innovation of liblinear is the realization that one
can implicitly represent the kernel matrix for linear
SVMs by maintaining the primal weight vector §,
which is typically much smaller. In practice, dual
coordinate descent methods are efficient enough to
reach near-optimal solutions in a single pass through
large datasets [45]. Algorithmically, such a pass takes
no more computation than SGD, but is guaranteed
to always increase the dual objective, while stochastic
methods may take wrong steps along the way. We
have derived an extension of this insight for structural
SVMs, described further in [46]. Briefly put, the main
required modification is the ability for linear con-
straints to share the same slack variable. Specifically,
the negative examples from (9) that correspond to
a single window I,, with different latent variables =
share the same slack &,. This somewhat complicates
a dual coordinate step, but the same principle ap-
plies; we solve the dual problem coordinate-wise, one-
variable at a time, implicitly representing the kernel
matrix with 8. We also find that we reach optimal
solutions in a single pass through our training set.

6.1 Learning in practice

Most human pose datasets include images with la-
beled joint positions [9], [7], [3]. We define parts to be
located at joints, so these provide part position labels
[, but not part type labels ¢t. We now describe a pro-
cedure for generating type labels for our articulated
model (5).

We first manually define the edge structure E by
connecting joint positions based on average proxim-
ity. Because we wish to model articulation, we can
assume that part types should correspond to different
relative locations of a part with respect to its parent in

E. For example, sideways-oriented hands occur next
to elbows, while downward-facing hands occur below
elbows. This means we can use relative location as a
supervisory cue to help derive type labels that capture
orientation.

Deriving part type from position: Assume that
our n'" training image I,, has labeled joint positions
l,. Let [ be the relative position of part ¢ with
respect to its parent in image I,,. For each part ¢,
we cluster its relative position over the training set
{l : Vn} to obtain T clusters. We use K-means with
K = T. Each cluster corresponds to a collection of part
instances with consistent relative locations, and hence,
consistent orientations by our arguments above. We
define the type labels for parts t' based on cluster
membership. We show example results in Fig. 3.

Partial supervision: Because part type is derived
heuristically above, one could treat ¢} as a latent
variable that is also optimized during learning. This
latent SVM problem can be solved by coordinate
descent [4] or the CCP algorithm [47]. We performed
some initial experiments with latent updating of part
types using the coordinate descent framework of [4],
but we found that type labels tend not to change over
iterations. We leave such partially-supervised learning
as interesting future work.

Problem size: On our training datasets, the number
of positive examples varies from 200-1000 and the
number of negative images is roughly 1000. We treat
each possible placement of the root on a negative
image as a unique negative example z,, meaning we
have millions of negative constraints. Furthermore,
we consider models with hundreds of thousands of
parameters. We found that a careful optimized solver
was necessary to manage learning at this scale.

7 EXPERIMENTAL RESULTS
7.1 Datasets

We evaluate results using the Image Parse dataset [9]
and the Buffy Stickmen dataset [7], [48]. The Parse
set contains 305 pose-annotated images of highly-
articulated full-body human poses. The Buffy dataset
contains 748 pose-annotated video frames over 5



Fig. 4: We show images from the Parse benchmark
for which the best-scoring pose of our model lies
on a figure in the background, and not the central
annotated figure. Previous evaluation criteria either
penalize such matches as incorrect or match multiple
candidate poses to the ground-truth (inadvertently
favoring algorithms that return more candidates). We
propose two new evaluation criteria that address
these shortcomings.

episodes of a TV show. Both datasets include a stan-
dard train/test split. To train our models, we use
the negative training images from the INRIAPerson
database [34] as our negative training set. These im-
ages tend to be outdoor scenes that do not contain
people. Our good performance on other datasets (such
as Buffy, which tends to include indoor images) sug-
gests our model generalizes well.

7.2 Evaluation Criteria

In this section, we describe our new proposed eval-
uation criteria for evaluating pose estimation, and
compare it to existing evaluation methods.

PCP: [7] describe a broadly-adopted evaluation
protocol based on the probability of a correct pose
(PCP), which measures the percentage of correctly
localized body parts. A candidate body part is labeled
as correct if its segment endpoints lie within 50% of
the length of the ground-truth annotated endpoints.
This criteria was clearly crucial and influential in
spurring quantitative evaluation, thus considerably
moving the field forward. However, there are three
difficulties associated with using it in practice. Firstly,
the Buffy toolkit [8] released with [7] uses a relaxed
definition that scores the average of the predicted limb
endpoints, and not the limb endpoints themselves.
It is not clear which previous published PCP values
use the evaluation code versus the original definition.
Secondly, PCP is sensitive to the amount of foreshort-
ening of a limb, and so can be too loose a measure in
some cases and too strict a measure in others. Finally,
PCP requires candidate and ground-truth poses to
be placed in correspondence, but does not specify
how to obtain this correspondence. Common solu-
tions include evaluating the highest-scoring candidate
given (a) an image with a single annotated person or
(b) a window returned by a person detector. Option
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Fig. 5: We compare our “gold standard” evaluation
criteria of average precision of keypoints (APK) with
PCP and PCK (probability of correct keypoint). Re-
call that APK treats pose estimation as a body-part
detection problem, and computes average precision
from a precision-recall detector curve. On the left,
we plot different PCP and APK values obtained by
tweaking non-maximum suppression strategies. By
generating more candidates, one produces a low APK
but an articificially high PCP (as defined in the Buffy
toolkit [8]), suggesting PCP does not correlate well
with our gold standard. On the right, we show that
PCK correlates positively with APK.

(a) is not satisfactory because the candidate may
fire on an un-annotated person in the background
(Fig. 4), while option (b) is not satisfactory because
this biases the test data to be responses of a (rigid)
person detector, as warned by [23]. The Buffy toolkit
[8] instead matches multiple candidates to multiple
ground-truth poses. Unmatched ground-truth poses
(missed detections/false negatives) are penalized as
incorrect localizations, but notably, unmatched candi-
dates (false positives) are not penalized. This gives an
unfair advantage to approaches that predict a large
number of candidates, as we will show.

PCK: We propose two measures for pose estimation
that address these issues. Our first evaluation explic-
itly factors out detection by requiring test images to
be annotated with tightly-cropped bounding box for
each person. Crucially, we do not limit ourselves to
evaluating a subset of verified bounding boxes found
by a detector, as this biases the test windows to be
rigid poses (as warned by [23]). Our approach is sim-
ilar to the protocol used in the PASCAL Person Layout
Challenge [49]. Given the bounding box, a pose esti-
mation algorithm must report back keypoint locations
for body joints. The Person Layout Challenge mea-
sures the overlap between keypoint bounding boxes,
which can suffer from quantization artifacts for small
bounding boxes. We define a candidate keypoint to
be correct if it falls within « - max(h, w) pixels of the
ground-truth keypoint, where h and w are the height
and width of the bounding box respectively, and «
controls the relative threshold for considering correct-
ness. We use o = 0.1 for Parse dataset and o = 0.2 for
Buffy dataset, due to the fact that Buffy contains half-
body people while Parse contains full-body people.
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Fig. 6: A visualization of our model for K = 14 parts and 7" = 4 local mixtures, trained on the Parse dataset.
We show the local templates above, and the tree structure below, placing parts at their best-scoring location
relative to their parent. Though we visualize 4 trees, there exists T a 27 global combinations, obtained by
composing different part types together with different springs. The score associated with each combination
decomposes into a tree, and so is efficient to search over using dynamic programming (1).

Instead of manually annotating bounding boxes as
PASCAL Person Layout Challenge does, we generate
each of them as the tightest box that covers the set of
ground truth keypoints.

APK: In a real system, however, one will not have
access to annotated bounding boxes at test time, and
so must address the detection problem as well. One
can cleanly combine the two problems by thinking
of body parts (or rather joints) as objects to be de-
tected, and evaluate object detection accuracy with
a precision-recall curve [49]. As above, we deem a
candidate to be correct (true positive) if it lies within
a - max(h,w) of the ground-truth. We call this the
average precision of keypoints (APK). This evaluation
correctly penalizes both missed-detections and false-
positives. Note that correspondence between candi-
dates and ground-truth poses are established sepa-
rately for each keypoint, and so this only provides a
“marginal” view of keypoint detection accuracy. But
such marginal statistics are useful for understanding
which parts are more difficult than others. Finally,
APK requires all people to be labeled in a test im-
age, unlike PCP and PCK. We have produced such
annotations for Parse and Buffy, and will make them
public.

PCP vs PCK vs APK. We compare different eval-
uations for the Parse dataset in Fig. 5, using the
implementation of PCP in the Buffy toolkit. Because
APK is the most realistic and strictest evaluation, we
deem it the “gold standard”. By tweaking the non-
maximum suppression (NMS) strategy for our detec-
tor to return more candidate poses, we do worse at

APK but artificially do better at PCP (as implemented
in the Buffy toolkit). This behavior makes sense given
that false positives are not penalized by PCP, but
penalized by APK. We would like to produce a similar
curve comparing APK and PCK under different NMS
strategies, but recall that PCK is not affected by NMS
because ground-truth windows are given. Rather, we
select a arbitrary dimension of our model to evaluate
(such as the number of mixtures), and show a positive
correlation of PCK with APK. Because PCK is easier to
interpret and faster to evaluate than APK, we use PCK
to perform diagnostic experiments exploring different
aspects of our model in the next section.

7.3 Diagnostic experiments

We define a full-body skeleton for the Parse set, and
a upper-body skeleton for the Buffy set. To define a
fully labeled dataset of part locations and types, we
group parts into orientations based on their relative
location with respect to their parents (as described
in Section 6.1). We show clustering results in Fig. 3.
We use the derived type labels to construct a fully
supervised dataset, from which we learn flexible mix-
tures of parts. We show the full-body model learned
on the Parse dataset in Fig. 6. We set all parts to be
5 x 5 HOG cells in size. To visualize the model, we
show 4 trees generated by selecting one of the four
types of each part, and placing it at its maximum-
scoring position. Recall that each part type has its own
appearance template and spring encoding its relative
location with respect to its parent. This is because we
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Fig. 7: We show the effect of model structure on pose
estimation by evaluating PCK performance on the
Parse dataset. Overall, increasing the number of parts
from 14 to 26 (by instancing parts at limb midpoints in
addition to joints) improves performance. Instancing
additional middle parts between limb midpoints and
joints (from 26 to 51) yields no clear improvement.
In all cases, increasing the number of mixtures im-
proves performance, likely due to the fact that more
orientations and foreshortening can be modeled. We
find a 26-part model with 6 mixtures provides a good
trade-off of performance vs computation.

K = 14 parts

K = 26 parts

Fig. 8: We visualize our 14 and 26 part model. In Fig. 7,
we demonstrate that the additional parts in the 26-
part model significantly increase performance.

expect part types to correspond to orientation because
of the supervised labeling shown in Fig. 3. Though
we visualize 4 trees, we emphasize that there exists
an exponential number of trees that our model can
generate by composing different part types together.

Structure: We consider the effect of varying T (the
number of mixtures or types) and K (number of
parts) on the accuracy of pose estimation on the
Parse dataset in Fig. 7. We experiment with a 14
part model defined at 14 joint positions (shoulder,
elbow, hand, etc.) and a 26 part model where midway
points between limbs are added (mid-upper arm, mid-
lower arm, etc.) to increase coverage. Following the

Joint, Independent, and Invariant parts (PCK)

[ Model | Joint [ Indep | Indep+Invar |
14 parts | 67.8 56.8 484
26 parts | 72.9 56.8 39.6

TABLE 1: We evaluate various strategies for training
parts. We jointly train rotationally-variant part mod-
els, but much past work trains rotationally-invariant
part detectors. We demonstrate the latter decreases
our performance by nearly a factor of 2, suggesting
that joint training and rotationally-variant detectors
are crucial for high performance.

Diagnostic analysis (PCK)
[ Joint | No latent | Star | Add rotated images |
[729 | 734 [ 567 | 746 ]

TABLE 2: We consider the effect of other aspects
of our model (using 26 parts model as an exam-
ple), including no latent updating, the use of a star
structure versus a tree structure, and the addition
of rotated training images to increase the size of
our training set. We find that the latent updating of
mixture labels is not crucial, a star model definitively
hurts performance, and adding rotated copies of our
training images increases performance by a small but
noticeable amount.

clustering procedure Sec. 6.1, multiple parts on the
same limb will have identical mixture type assign-
ments, and so will have consistent orientation states.
Performance increases with denser coverage and an
increased number of part types, presumably because
additional orientations are being captured.

Independently-trained parts: In Table 1, we con-
sider different strategies for training parts. Our model
jointly trains all parts and their relational constraints
with a structured SVM. We also consider a variant
of our model where part templates are trained in-
dependently with an SVM (the middle column); at
test time, we use still dynamic programming to find
full-body configurations. We see a significant drop in
performance, indicating that joint contextual training
is crucial. For example, a forearm part trained inde-
pendently will be inaccurate because many negative
examples will contain parallel lines and be “hard”
(e.g., support vectors for an SVM). However, struc-
tured SVMs (that jointly train all parts) need collect
hard negatives only from backgrounds that trigger
a full-body part configuration. This vastly reduces
the amount of background clutter that the forearm
part must compete against at train-time. We see a
larger drop for our 26-part model compared to our
14-part model. Because parts in the larger model
tend to overlap more, we posit that they need to be
trained jointly to properly calibrate the influence of
overlapping regions.
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Image Parse Testset

[ Method | Torso [ Head [ Upper legs | Lower legs | Upper arms | Lower arms [ Total ]
Ramanan [9] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
Andriluka [27] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
Johnson [33] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
Singhi [21] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Johnson [50] 85.4 76.1 73.4 65.4 64.7 46.9 66.2
Johnson [51] 87.6 76.8 74.7 67.1 67.4 459 67.4
Us [52] single+both (strict) 78.5 81.5 72.2 65.9 55.6 33.7 61.5
Us [6] single+both (strict) 85.9 86.8 749 68.3 63.4 42.7 67.1
Us [6] match+avg (buffy tk) | 96.1 99.0 85.9 79.0 79.0 53.4 79.0
Us [6] match+both 91.7 94.6 79.3 71.0 66.3 43.9 70.7

TABLE 3: We compare our model to all previous published results on the Parse dataset. Because authors are
likely using different definitions/implementations of PCP, previous values may not be comparable to each
other. Here we list all possible interpretations of PCP for our model in the last four rows. We also include
a preliminary version of model [52]. Single+both is the strictest interpretation of PCP which evaluates only
a single detection (given by the maximum scoring detection of an algorithm) for one image and it requires
both endpoints of a limb to be correct. Match+avg is the Buffy toolkit [8] implementation, which allows an
algorithm to report multiple detections per image, and performs an explicit correspondence matching with the
ground truth without penalizing false positives. It also requires only the average of the endpoints of a limb
to be correct, rather than both endpoints. Match+both matches multiple candidates without penalizing false
positive, but requires both endpoints to be correct. Even under the most strictest criteria, our current model
(67.1%) still outperforms all the others and works almost same as Johnson[51] which uses a separate dataset
of 10000 images. We argue that none of these interpretations are satisfactory, and propose new evaluation
criteria (PCK and APK) described at length in the text.

Rotationally-invariant parts: We also consider the
effect of rotationally-invariant parts in the third col-
umn of Table 1. We train independent, rotationally-
invariant parts (for say, the elbow) as follows: for each
discrete rotation, we warp all elbow training patches
to that rotation and train an SVM. This means each
oriented elbow part is trained with the entire training
set, while our mixture model uses only a subset of
data belonging to that mixture. We see a large drop in
performance, suggesting that elbows (and other parts)
look different even when rotated to an appropriate
coordinate system. We posit this is due to geometric
interactions with other parts, such as partial occlu-
sions and effects from clothing. Our local mixtures
capture this geometric dependency. Most previous
approaches to pose estimation use independently-
trained, invariant parts. We find that joint training
of orientation-variant parts increases performance by
nearly a factor of 2, from 39% to 72% PCK.

Other aspects: We consider the effect of other as-
pects of our model in Table 2, including no latent
updating, the use of a star structure versus a tree
structure, and the addition of rotated training im-
ages to increase the size of our training set. We find
that latent updating of mixture labels is not help-
ful, a star model definitively hurts performance, and
adding small copies of our training data rotated by
+15° increases performance by a small but noticeable
amount. The latter probably holds true because the
training set on PARSE is rather small (100 images), so
artificially augmenting the training set helps some-
what. Our final system used in the benchmark results

below makes use of the augmented training set.

7.4 Benchmark results

Parse: We give quantitative results for PCP in Table
3, PCK and APK in Fig. 9, and show example images
in Fig. 12. It is difficult to directly compare PCP
performance due to the ambiguities in the definition
and implementation that were discussed earlier. We
refer the reader to the captions for a detailed analysis,
but our method appears to be at or above the state-of-
the-art. We suspect that previous authors either report
a single candidate pose per image, or multiple poses
that are matched using the code of [7]. Our analysis
suggests both of these reports are unsatisfactory, since
the former unfairly penalizes an algorithm for finding
a person in the background (Fig. 4), while the latter
unfairly favors algorithms that report many candidate
detections (Fig. 5). We report our performance for all
possible interpretations of PCP. Under all variants, our
algorithm still outperforms all prior work that makes
use of the given benchmark training set, while being
orders of magnitude faster.

Our diagnostic analysis suggests our high perfor-
mance is due to the fact that our mixtures of parts
are learned jointly in a discriminative framework,
and the fact that our model is efficient enough to
search over scales and locations. In contrast, articu-
lated models are often learned in stages (using pre-
trained, orientation-invariant part detectors), and are
often applied at a fixed scale and location due to the
computational burden of inference.



1

(a) PCK on Parse

Avg | Hea | Sho | EIb | Wri | Hip | Kne | Ank
729 | 90.2 | 854 | 680 | 471 | 77.1 | 754 | 67.1 Subset of Buffy Testset
[ Buffy | Torso [ Head [ U.arms | L.arms [ Total |
Tran 62.3
] (b) APK on Parse Aol [ ]] 907 | 955 | 793 | 412 | 735
Eich. [53] 98.7 97.9 82.8 59.8 80.1
0.9 Sapp [29] 100 100 91.1 65.7 85.9
Sapp [26] 100 96.2 95.3 63.0 85.5
0.8 Us [52] buffy tk | 988 | 992 | 978 686 | 885
Us [52] strict 98.4 98.8 94.3 57.5 83.5
5 07 TABLE 4: The Bulffy testset is distributed with a subset
'§ 0.6 of windows detected by a rigid HOG upper-body
a . ¢ detector. We compare our results to all published
0-5 [—Average 64.9% \ work on this set. We obtain the best overall PCP while
0.4H —Head 85.7% being orders of magnitude faster than the next-best
— Wrist 31.2% approaches. These results have the caveat that authors
03[ __ Ankle 53.7% maybe using different definitions / implementations
P e s s S S S S of PCP, making them incomparable. Our total pipeline
0 01 02 03 04 RgéSaIIOB 0.7 0.8 09 1 requires 1 second to process an image, while [29],

Fig. 9: We present our new evaluations of probability
of correct keypoint (PCK) and average precision of
keypoints (APK) on the Parse testset, using a full-body
model of K = 26 parts and T' = 6 mixtures. PCK is
the fraction of times a predicted keypoint was close to
a ground-truth keypoint given a human bounding box
on a test image. APK evaluates the average precision
of keypoint detections obtained without access to
any annotations on the test image; this requires a
pose estimation algorithm to perform non-maximum
suppression (NMS).

Buffy: We give quantitative results for PCP in Table
4, PCK and APK in Fig. 10, and show example images
in Fig. 13. To compare to previous results, we evaluate
pose estimation on a subset of windows returned
by upper-body detector (provided in the evaluation
kit). Notably, all previous approaches use articulated
parts. Our algorithm is several orders of magnitude
faster than the next-best approaches of [29], [26]. As
pointed out by [23], this subset contains little pose
variation because it is biased to be responses of a
rigid template. The distributed evaluation code [7]
also allows one to compute performance on the full
test videos by multiplying PCP values with the overall
detection rate, but as we argue, this unfairly favors
methods that report back many candidate poses (be-
cause false positives are not penalized). Indeed, the
original performance we reported in [10] appears to be
inflated due to this effect. Rather, we evaluate the full
test videos using our new criteria for PCK and APK.
Our PCK score outperforms our PCP score, likely
due to foreshortened arms in the data that are scored
too stringently with PCP. Finally, we compare the
publically-available code of [48] with our new APK
criteria, and show that our method does significantly
better.

[26] take 5 minutes. We outperform or (nearly) tie
all previous results on a per-part basis. As pointed
out by [23], this subset contains little pose variation
because it is biased to be responses of a rigid template.
We present results on the full testset using our novel
criteria of PCK and APK in Fig. 10.

(a) PCK on Buffy

Head | Sho | Elb
98.6 | 98.2 | 95.3

Wri
73.9

Avg
91.6

Hip
92.0

(b) APK on Buffy

Precision

= Average 78.5%
—Head 86.8%
0.3[ | === Wrist 59.4%

0'20 0i1 0i2 0i3 0i4 Oi5 0j6 Oj7 0.8 0i9 1

Recall
Fig. 10: We present our new evaluations of probability
of correct keypoint (PCK) and average precision of
keypoints (APK) on the Buffy testset, using a model
of K = 18 parts and T' = 6 mixtures. Note that the
overall average APK (across all keypoints) is 78.5%,
indicating this testset is easier than the Parse image
benchmark.



Buffy Testset

[ Buffy [ Head | Sho [ Elb [ Wrist [ Hip [ Total |
Eich. [48] 84.5 79.9 | 70.5 43.8 69.7
Us 86.8 87.0 | 81.2 59.4 77.9 78.5

TABLE 5: We score the publically-available code of
[48] using our new APK criteria. Our method per-
forms considerable better for all keypoints.

Upper-body detection on Buffy Testset

Precision
o
~l

o
o2}

| == Qur model

0.5¢ — Part based model| : : : : :
0'40 0.1 0.2 03 04 05 0.6 0.7 0.8 09 1

Recall

Fig. 11: We plot upper-body detection on the Buffy
dataset, comparing our articulated pose detector with
the state-of-the-art deformable part model of [4]
trained on the same data as our model.

Detection accuracy: We can use our model as an
upper body detector on the Buffy dataset shown in
Table 11. We compare to the popular DPM model [4],
trained on the same training set as our model (but
without supervised part annotations). We see that we
obtain higher precision for nearly all recall values.
These results indicate the potential of our flexible
representation and supervised learning framework for
general object detection.

8 CONCLUSION

We have described a simple, but flexible extension
of part models to include local mixtures of parts.
We use local mixtures to capture the appearance
changes of parts due to articulation. We augment part
models, which reason about spatial relations between
part locations, to also reason about co-occurrence
relations between part mixtures. Our models capture
the dependence of local appearance on spatial ge-
ometry, outperforming classic articulated models in
both speed and accuracy. Our local part mixtures can
be composed to generate an exponential number of
global mixtures, greatly increasing their representa-
tional power without sacrificing computational effi-
ciency. Finally, we introduce new evaluation criteria
for pose estimation and articulated human detec-
tion which address limitations of previous scoring
methods. We demonstrate impressive results for the
challenging task of human pose estimation.
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Fig. 12: Results on the Parse dataset. We show 26 part bounding boxes reported by our algorithm along with
skeletons computed from the bounding boxes for each image. The top 3 rows show successful examples,
while the bottom 2 rows show failure cases. Examining failure cases from top left to bottom right, we find
our model is not flexible enough to model horizontal people, is confused by overlapping people, suffers from
double-counting phenomena common to tree models (both the left and right legs fire on the same image
region), and is confused when objects partially occlude people.
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Fig. 13: Results on the Buffy dataset. We visualize all skeletons (instead of boxes) reported by our algorithm
for a given image, after non-maximum suppression (NMS). Our model hence serves as both an articulated
detector and pose estimation algorithm, as evidenced by our average-precision of keypoints (APK) measure.
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