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Abstract

We describe a method for human pose estimation in
static images based on a novel representation of part mod-
els. Notably, we do not use articulated limb parts, but
rather capture orientation with a mixture of templates for
each part. We describe a general, flexible mixture model
for capturing contextual co-occurrence relations between
parts, augmenting standard spring models that encode spa-
tial relations. We show that such relations can capture no-
tions of local rigidity. When co-occurrence and spatial rela-
tions are tree-structured, our model can be efficiently opti-
mized with dynamic programming. We present experimental
results on standard benchmarks for pose estimation that in-
dicate our approach is the state-of-the-art system for pose
estimation, outperforming past work by 50% while being
orders of magnitude faster.

1. Introduction

We examine the task of human pose estimation in static
images. A working technology would immediately impact
many key vision tasks such as image understanding and
activity recognition. An influential approach is the picto-
rial structure framework [7, 12] which decomposes the ap-
pearance of objects into local part templates, together with
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FIGURE 8. If the recognition process of relating new shape descriptions to known shapes is to 
be useful as a source of reliable information about the shape, it must be conservative. 
This diagram illustrates an organization (or indexing) of stored shape descriptions 
according to their specificity. The top row contains the most general shape description 
which carries information about size and overall orientation only. Since no commitment 
about the shape's internal structure is made, all shapes are described equally well. 
Descriptions in the second row include information about the number and distribution 
of component axes along the principal axis, making it possible to distinguish a number 
of shape configurations (a few are shown in this example). At this point only very general 
commitments are made concerning the relative sizes of the components and the angles 
between them. These parameters are made more precise at the third level so that dis- 
tinctions can be made, for example, between the horse and cow shapes. A newly derived 
3-D model wouldl be related to a model in this catalogue by starting at the top level and 
working downw'rards as far as the information in the new description allows. 

Figure 1: On the left, we show the classic articulated limb
model of Marr and Nishihara [20]. In the middle, we show
different orientation and foreshortening states of a limb,
each of which is evaluated separately in classic articulated
body models. On the right, we approximate these trans-
formations with a mixture of non-oriented pictorial struc-
tures, in this case tuned to represent near-vertical and near-
horizontal limbs.

geometric constraints on pairs of parts, often visualized as
springs. When parts are parameterized by pixel location and
orientation, the resulting structure can model articulation.
This has been the dominant approach to human pose estima-
tion. In contrast, traditional models for object recognition
use parts parameterized solely by location, which simplifies
both inference and learning. Such models have been shown
to be very successful for object recognition [2, 9]. In this
work, we introduce a novel unified representation for both
models that produces state-of-the-art results for human pose
estimation.

Representations for articulated pose: Full-body pose
estimation is difficult because of the many degrees of free-
doms to be estimated. Moreover, limbs vary greatly in ap-
pearance due to changes in clothing and body shape, as well
as changes in viewpoint manifested in in-plane orientations
and foreshortening. These difficulties complicate inference
since one must typically search images with a large num-
ber of rotated and foreshortened templates. We address
these problems by introducing a novel but simple represen-
tation for modeling a family of affinely-warped templates:
a mixture of non-oriented pictorial structures (Fig.1). We
empirically demonstrate that such approximations can out-
perform explicitly articulated parts because mixture mod-
els can capture orientation-specific statistics of background
features (Fig.2).

Representations for objects: Current object recogni-
tion systems are built on relatively simple structures encod-
ing mixtures of star models defined over tens of parts [9], or
implicitly-defined shape models built on hundreds of parts
[19, 2]. In order to model the varied appearance of objects
(due to deformation, viewpoint,etc.), we argue that one will
need vocabularies of hundreds or thousands of parts, where
only a subset are instanced at a time. We augment clas-
sic spring models with co-occurrence constraints that favor
particular combinations of parts. Such constraints can cap-
ture notions of local rigidity – for example, two parts on the
same limb should be constrained to have the same orienta-
tion state (Fig.1). We show that one can embed such con-
straints in a tree relational graph that preserves tractability.
An open challenge is that of learning such complex repre-
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Figure 2: We plot the average HOG feature as a polar his-
togram over 18 gradient orientation channels as computed
from the entire PASCAL 2010 dataset [6]. We see that on
average, images contain more horizontal gradients than ver-
tical gradients, and much stronger horizontal gradients as
compared to diagonal gradients. This means that gradient
statistics are not orientation invariant. In practical terms,
we argue that it is easier to find diagonal limbs (as opposed
to horizontal ones) because one is less likely to be confused
by diagonal background clutter. Articulated limb models
obtained by rotating a single template cannot exploit such
orientation-specific cues. On the other hand, our mixture
models are tuned to detect parts at particular orientations,
and so can exploit such statistics.

sentations from data. As in [2], we conclude that super-
vision is a key ingredient for learning structured relational
models.

We demonstrate results on the difficult task of pose esti-
mation. We use two standard benchmark datasets [23, 10].
We outperform all published past work on both datasets, re-
ducing error by up to 50%. We do so with a novel but sim-
ple representation that is orders of magnitude faster than
previous approaches. Our model requires roughly 1 sec-
ond to process a typical benchmark image, allowing for the
possibility of real-time performance with further speedups
(such as cascaded or parallelized implementations).

2. Related Work
Pose estimation has typically been addressed in the video

domain, dating back to classic model-based approaches of
O’Rourke and Badler [22], Hogg [13], Rohr [25]. Recent
work has examined the problem for static images, assum-
ing that such techniques will be needed to initialize video-
based articulated trackers. Probabilistic formulations are
common. One area of research is the encoding of spatial
structure. Tree models are efficient and allow for efficient
inference [7], but are plagued by the well-known phenom-
ena of double-counting. Loopy models require approximate
inference strategies such as importance sampling [7, 18],
loopy belief propagation [28], or iterative approximations
[33]. Recent work has suggested that branch and bound al-
gorithms with tree-based lower bounds can globally solve
such problems [31, 29]. Another approach to tackling the
double-counting phenomena is the use of stronger pose pri-
ors, advocated by [17]. However, such approaches maybe

more susceptible to overfitting to statistics of a particular
dataset, as warned by [28, 32].

An alternate family of techniques has explored the trade-
off between generative and discriminative models trained
explicitly for pose estimation. Approaches include condi-
tional random fields [24] and margin-based or boosted de-
tectors [27, 16, 1, 29]. A final crucial issue is that of feature
descriptors. Past work has explored the use of superpixels
[21], contours [27, 26, 30], foreground/background color
models [23, 10], and gradient descriptors [1, 15].

In terms of object detection, our work is most similar
to pictorial structure models that reason about mixtures of
parts [5, 7, 9]. We show that our model generalizes such
representations in Sec.3.1. Our model, when instanced as a
tree, can be written as a recursive grammar of parts [8].

3. Model
Let us write I for an image, pi = (x, y) for the pixel

location of part i and ti for the mixture component of
part i. We write i ∈ {1, . . .K}, pi ∈ {1, . . . L} and
ti ∈ {1, . . . T}. We call ti the “type” of part i. Our moti-
vating example of types include orientations of a part (e.g.,
a vertical versus horizontally oriented hand), but types may
span semantic classes (an open versus closed hand). For no-
tational convenience, we define the lack of subscript to indi-
cate a set spanned by that subscript (e.g., t = {t1, . . . tK}).

Co-occurrence model: To score of a configuration of
parts, we first define a compatibility function for part types
that factors into a sum of local and pairwise scores:

S(t) =
∑
i∈V

btii +
∑
ij∈E

b
ti,tj
ij (1)

The parameter btii favors particular type assignments for
part i, while the pairwise parameter bti,tjij favors particular
co-occurrences of part types. For example, if part types cor-
respond to orientations and part i and j are on the same rigid
limb, then bti,tjij would favor consistent orientation assign-
ments. We write G = (V,E) for a K-node relational graph
whose edges specify which pairs of parts are constrained to
have consistent relations.

We can now write the full score associated with a con-
figuration of part types and positions:

S(I, p, t) = S(t) + (2)∑
i∈V

wtii · φ(I, pi) +
∑
ij∈E

w
ti,tj
ij · ψ(pi − pj)

where φ(I, pi) is a feature vector (e.g., HOG descriptor [3])
extracted from pixel location pi in image I . We writeψ(pi−
pj) =

[
dx dx2 dy dy2

]T
, where dx = xi − xj and

dy = yi − yj , the relative location of part i with respect to
j. Notably, this relative location is defined with respect to
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the pixel grid and not the orientation of part i (as in classic
articulated pictorial structures [7]).

Appearance model: The first sum in (2) is an appear-
ance model that computes the local score of placing a tem-
plate wtii for part i, tuned for type ti, at location pi.

Deformation model: The second term can be inter-
preted as a “switching” spring model that controls the rela-
tive placement of part i and j by switching between a col-
lection of springs. Each spring is tailored for a particular
pair of types (ti, tj), and is parameterized by its rest loca-
tion and rigidity, which are encoded by wti,tjij .

3.1. Special cases

We now describe various special cases of our model
which have appeared in the literature. One obvious case
is T = 1, in which case our model reduces to a standard
pictorial structure. More interesting cases are below.

Semantic part models: [5] argue that part appearances
should capture semantic classes and not visual classes; this
can be done with a type model. Consider a face model with
eye and mouth parts. One may want to model different
types of eyes (open and closed) and mouths (smiling and
frowning). The spatial relationship between the two does
not likely depend on their type, but open eyes may tend to
co-occur with smiling mouths. This can be obtained as a
special case of our model by using a single spring for all
types of a particular pair of parts:

w
ti,tj
ij = wij (3)

Mixtures of deformable parts: [9] define a mixture of
models, where each model is a star-based pictorial structure.
This can achieved by restricting the co-occurrence model to
allow for only globally-consistent types:

b
ti,tj
ij =

{
0 if ti = tj

−∞ otherwise (4)

Articulation: In our experiments, we explore a simpli-
fied version of (2) with a reduced set of springs:

w
ti,tj
ij = wtiij (5)

The above simplification states that the relative location of
part with respect to its parent is dependant on part-type, but
not parent-type. For example, let i be a hand part, j its par-
ent elbow part, and assume part types capture orientation.
The above relational model states that a sideways-oriented
hand should tend to lie next to the elbow, while a downward-
oriented hand should lie below the elbow, regardless of the
orientation of the upper arm.

4. Inference
Inference corresponds to maximizing S(x, p, t) from (2)

over p and t. When the relational graph G = (V,E) is

a tree, this can be done efficiently with dynamic program-
ming. Let kids(i) be the set of children of part i in G. We
compute the message part i passes to its parent j by the fol-
lowing:

scorei(ti, pi) = btii + witi · φ(I, pi) +
∑

k∈kids(i)

mk(ti, pi)

(6)

mi(tj , pj) = max
ti

b
ti,tj
ij +

max
pi

score(ti, pi) + w
ti,tj
ij · ψ(pi − pj) (7)

(6) computes the local score of part i, at all pixel locations
pi and for all possible types ti, by collecting messages from
the children of i. (7) computes for every location and pos-
sible type of part j, the best scoring location and type of
its child part i. Once messages are passed to the root part
(i = 1), score1(c1, p1) represents the best scoring config-
uration for each root position and type. One can use these
root scores to generate multiple detections in image I by
thresholding them and applying non-maximum suppression
(NMS). By keeping track of the argmax indices, one can
backtrack to find the location and type of each part in each
maximal configuration.

Computation: The computationally taxing portion of
dynamic programming is (7). One has to loop over L × T
possible parent locations and types, and compute a max
over L × T possible child locations and types, making the
computation O(L2T 2) for each part. When ψ(pi − pj) is
a quadratic function (as is the case for us), the inner max-
imization in (7) can be efficiently computed for each com-
bination of ti and tj in O(L) with a max-convolution or
distance transform [7]. Since one has to perform T 2 dis-
tance transforms, message passing reduces to O(LT 2) per
part.

Special cases: Model (3) maintains only a single spring
per part, so message passing reduces to O(L). Models (4)
and (5) maintain only T springs per part, reducing mes-
sage passing to O(LT ). It is worthwhile to note that our
articulated model is no more computationally complex than
the deformable mixtures of parts in [9], but is considerably
more flexible (as we show in our experiments). In practice,
T is small (≤ 6 in our experiments) and the distance trans-
form is quite efficient, so the computation time is dominated
by computing the local scores of each type-specific appear-
ance models wtii · φ(I, pi). Since this score is linear, it can
be efficiently computed for all positions pi by optimized
convolution routines.

5. Learning
We assume a supervised learning paradigm. Given la-

beled positive examples {In, pn, tn} and negative examples
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{In}, we will define a structured prediction objective func-
tion similar to those proposed in [9, 16]. To do so, let us
write zn = (pn, tn) and note that the scoring function (2) is
linear in model parameters β = (w, b), and so can be writ-
ten as S(I, z) = β ·Φ(I, z). We would learn a model of the
form:

arg min
w,ξi≥0

1

2
β · β + C

∑
n

ξn (8)

s.t. ∀n ∈ pos β · Φ(In, zn) ≥ 1− ξn
∀n ∈ neg,∀z β · Φ(In, z) ≤ −1 + ξn

The above constraint states that positive examples should
score better than 1 (the margin), while negative examples,
for all configurations of part positions and types, should
score less than -1. The objective function penalizes vio-
lations of these constraints using slack variables ξn.

Detection vs pose estimation: Traditional structured
prediction tasks do not require an explicit negative training
set, and instead generate negative constraints from positive
examples with mis-estimated labels z. This corresponds to
training a model that tends to score a ground-truth pose
highly and alternate poses poorly. While this translates
directly to a pose estimation task, our above formulation
also includes a “detection” component: it trains a model
that scores highly on ground-truth poses, but generates low
scores on images without people. We find the above to work
well for both pose estimation and person detection.

Optimization: The above optimization is a quadratic
program (QP) with an exponential number of constraints,
since the space of z is (LT )K . Fortunately, only a small mi-
nority of the constraints will be active on typical problems
(e.g., the support vectors), making them solvable in prac-
tice. This form of learning problem is known as a structural
SVM, and there exists many well-tuned solvers such as the
cutting plane solver of SVMStruct [11] and the stochastic
gradient descent solver in [9]. We found good results by im-
plementing our own dual coordinate-descent solver, which
we will describe in an upcoming tech report.

5.1. Learning in practice

Most human pose datasets include images with labeled
joint positions [23, 10, 2]. We define parts to be located at
joints, so these provide part position labels p, but not part
type labels t. We now describe a procedure for generating
type labels for our articulated model (5).

We first manually define the edge structure E by con-
necting joint positions based on average proximity. Because
we wish to model articulation, we can assume that part
types should correspond to different relative locations of a
part with respect to its parent in E. For example, sideways-
oriented hands occur next to elbows, while downward-
facing hands occur below elbows. This means we can use
relative location as a supervisory cue to help derive type la-
bels that capture orientation.

Deriving part type from position: Assume that our nth

training image In has labeled joint positions pn. Let pni be
the relative position of part i with respect to its parent in
image In. For each part i, we cluster its relative position
over the training set {pni : ∀n} to obtain T clusters. We use
K-means with K = T . Each cluster corresponds to a col-
lection of part instances with consistent relative locations,
and hence, consistent orientations by our arguments above.
We define the type labels for parts tni based on cluster mem-
bership. We show example results in Fig.3.

Partial supervision: Because part type is derived
heuristically above, one could treat tni as a latent variable
that is also optimized during learning. This latent SVM
problem can be solved by coordinate descent [9] or the
CCP algorithm [34]. We performed some initial experi-
ments with latent updating of part types using the coordi-
nate descent framework of [9], but we found that type labels
tend not to change over iterations. We leave such partially-
supervised learning as interesting future work.

Problem size: On our training datasets, the number of
positive examples varies from 200-1000 and the number of
negative images is roughly 1000. We treat each possible
placement of the root on a negative image as a unique nega-
tive example xn, meaning we have millions of negative con-
straints. Furthermore, we consider models with hundreds of
thousands of parameters. We found that a careful optimized
solver was necessary to manage learning at this scale.

6. Experimental Results
Datasets: We evaluate results using the Image Parse

dataset [23] and the Buffy dataset [10]. The Parse set con-
tains 305 pose-annotated images of highly-articulated full-
body images of human poses. The Buffy dataset contains
748 pose-annotated video frames over 5 episodes of a TV
show. Both datasets include a standard train/test split, and
a standardized evaluation protocol based on the probability
of a correct pose (PCP), which measures the percentage of
correctly localized body parts. Notably, Buffy is also dis-
tributed with a set of validated detection windows returned
by an upper-body person detector run on the testset. Most
previous work report results on this set, as do we. Since our
model also serves as a person detector, we can also present
PCP results on the full Buffy testset. To train our models,
we use the negative training images from the INRIAPerson
database [3] as our negative training set. These images tend
to be outdoor scenes that do not contain people.

Models: We define a full-body skeleton for the Parse
set, and a upper-body skeleton for the Buffy set. To define
a fully labeled dataset of part locations and types, we group
parts into orientations based on their relative location with
respect to their parents (as described in Sec 5.1). We show
clustering results in Fig.3. We use the derived type labels
to construct a fully supervised dataset, from which we learn
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flexible mixtures of parts. We show the full-body model
learned on the Parse dataset in Fig.5. We set all parts to
be 5 × 5 HOG cells in size. To visualize the model, we
show 4 trees generated by selecting one of the four types of
each part, and placing it at its maximum-scoring position.
Recall that each part type has its own appearance template
and spring encoding its relative location with respect to its
parent. This is because we expect part types to correspond
to orientation because of the supervised labeling shown in
Fig.3. Though we visualize 4 trees, we emphasize that there
exists an exponential number of trees that our model can
generate by composing different part types together.

Structure: We consider the effect of varying T (the
number of mixtures or types) and K (number of parts)
on the accuracy of pose estimation on the Parse dataset in
Fig.4. We experiment with a 14 part model defined at 14
joint positions (shoulder, elbow, hand, etc.) and a 27 part
model where midway points between limbs are added (mid-
upper arm, mid-lower arm, etc.) to increase coverage. Per-
formance increases with denser coverage and an increased
number of part types, presumably because additional orien-
tations are being captured. For reference, we also trained a
star model, but saw inferior performance compared to the
tree models shown in Fig.4. We saw a slight improvement
using a variable number of mixtures (5 or 6) per part, tuned
by cross validation. These are the results presented below.

Detection accuracy: We use our model as an upper
body detector on the Buffy dataset in Table 1. We correctly
detect 99.6% of the people in the testset. The dataset in-
clude two alternate detectors based on a rigid HOG tem-
plate and a mixtures-of-star models [9] which perform at
85% and 94%, respectively. The latter is widely regarded
as a state-of-the-art system for object recognition. These
results indicate the potential of our representation and su-
pervised learning framework for general object detection.

Parse: We give quantitative results for PCP in Table 2,
and show example images in Fig.6. We refer the reader to
the captions for a detailed analysis, but our method outper-
forms all previously published results by a significant mar-
gin. Notably, all previous work uses articulated parts. We
reduce error by 25%. We believe our high performance is to
due to the fact that our models leverage orientation-specific
statistics (Fig.2), and because parts and relations are simul-
taneously learned in a discriminative framework. In con-
trast, articulated models are often learned in stages (using
pre-trained, orientation-invariant part detectors) due to the
computational burden of inference.

Buffy: We give quantitative results for PCP in Table 3,
and show example images in Fig.7. We refer the reader to
the captions for a detailed analysis, but we outperform all
past approaches, when evaluated on a subset of standard-
ized windows or the entire testset. Notably, all previous
approaches use articulated parts. Our algorithm is several

Upper body detection on Buffy
Rigid HOG[10] Mixtures of Def. Parts[9] Us

85.1 93.8 99.6

Table 1: Our model clearly outperforms past approaches
for upper body detection. Notably, [9] use a star-structured
model of HOG templates trained with weakly-supervised
data. Our results suggest more complex object structure,
when learned with supervision, can yield improved results
for detection.
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Figure 4: We show the effect of model structure on pose
estimation by evaluating PCP performance on the Parse
dataset. Overall, increasing the number of parts (by instanc-
ing parts at limb midpoints in addition to joints) improves
performance. For both cases, increasing the number of mix-
ture components improves performance, likely due to the
fact that more orientations can be modeled.

orders of magnitude faster than the next-best approaches of
[26, 27]. When evaluated on the entire testset, our approach
reduces error by 54%.

Conclusion: We have described a simple, but flexible
extension of tree-based models of part mixtures. When part
mixture models correspond to part orientations, our repre-
sentation can model articulation with greater speed and ac-
curacy than classic approaches. Our representation provides
a general framework for modeling co-occurrence relations
between mixtures of parts as well as classic spatial relations
between the location of parts. We show that such relations
capture notions of local rigidity. We are applying this ap-
proach to the task of general object detection, but have al-
ready demonstrated impressive results for the challenging
task of human pose estimation.
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Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R [23] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS [1] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JEa [15] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH [29] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
JEb [14] 85.4 76.1 73.4 65.4 64.7 46.9 66.2
Our Model 97.6 93.2 83.9 75.1 72.0 48.3 74.9

Table 2: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP. Our
total performance of 74.9% compares favorably to the best previous result of 66.2%. We also outperform all previous results
on a per-part basis.

Subset of Buffy Testset Full Buffy Testset
Buffy Torso Head U. arms L. arms Total
TF [32] 62.3
ARS [1] 90.7 95.5 79.3 41.2 73.5
EFZ [4] 98.7 97.9 82.8 59.8 80.1
SJT [26] 100 100 91.1 65.7 85.9
STT [27] 100 96.2 95.3 63.0 85.5
Our Model 100 99.6 96.6 70.9 89.1

Torso Head U. arms L. arms Total
53.0

77.2 81.3 67.5 35.1 62.6
84.0 83.4 70.5 50.9 68.2
85.1 85.1 77.6 55.9 73.1
85.1 81.9 81.1 53.6 72.8
99.6 98.9 95.1 68.5 87.6

Table 3: The Buffy testset is distributed with a subset of windows detected by a rigid HOG upper-body detector. We compare
our results to all published work on this set on the left. We obtain the best overall PCP while being orders of magnitude
faster than the next-best approaches. Our total pipeline requires 1 second to process an image, while [26, 27] take 5 minutes.
We outperform or (nearly) tie all previous results on a per-part basis. As pointed out by [32], this subset contains little
pose variation because it is biased to be responses of a rigid template. The distributed evaluation protocol also allows
one to compute performance on the full test videos by multiplying PCP values with the overall detection rate. We do this
for published results on the right table. Because our model also serves as a very accurate detector (Table 1), we obtain
significantly better results than past work when evaluated on the full testset.
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Figure 6: Results on the Parse dataset. We show 27 part bounding boxes reported by our algorithm for each image. The top
3 rows show successful examples, while the bottom row shows failure cases. Examining failure cases from left to right, we
find our model is not flexible enough to model horizontal people, is confused by overlapping people, suffers from double-
counting phenomena common to tree models (both the left and right legs fire on the same image region), and is confused
when objects partially occlude people.

     

       

Figure 7: Results on the Buffy dataset. We show 17 part bounding boxes, corresponding to upper body parts, reported by our
algorithm. The left 4 columns show successful examples, while the right column show failure cases. From top to bottom,
we see that our model still has difficultly with raised arms and is confused by vertical limb-like clutter in the background.
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