
Scheduling Sensors for Monitoring Sentient Spaces using an Approximate POMDP

Policy

Ronen Vaisenberg, Alessio Della Motta, Sharad Mehrotra and Deva Ramanan

The University of California, Irvine

ronen@ics.uci.edu, alessio.dellamotta@gmail.com, sharad@ics.uci.edu, dramanan@ics.uci.edu

Abstract—We present a framework for sensor actuation
and control in sentient spaces, in which sensors are used to
observe a physical phenomena. We focus on sentient spaces that
enable pervasive computing applications, such as smart video
surveillance and situational awareness in instrumented office
environments. Our framework utilizes the spatio-temporal
statistical properties of an observed phenomena, with the goal
of maximizing an application-specified reward. Specifically, we
define an observation of a phenomena by assigning it a discrete
value (state) and we model its semantics as the transition
between these values (states). This semantic model is used to
predict the future states in which the phenomena is likely to
be at, based on partially-observed past states. To accomplish
real-time agility, we designed an approximate, adaptive-grid
solution for Partially Observable Markov Decision Processes
(POMDPs) that yields practically good results, and in some
cases, guarantees on the quality of the approximation. We use
our framework to control and actuate a large-scale camera
network so as to maximize the number and type of captured
events. To enable real-time control, we implement an action
schedule using a table lookup and make use of a factored
probability model to capture state semantics. To the best of
our knowledge, we are the first to address the problem of
actuating a large-scale sensor network based on a real-time
POMDP formulation.

I. INTRODUCTION

Recent advances in sensing technologies have enabled the

infusion of information technology into physical processes.

This offers unprecedented opportunities, the impact of which

will rival (if not exceed) that of the WWW. Such sensor-

enabled environments can realize sentient spaces that have

the potential to revolutionize almost every aspect of our

society. Sentient systems observe the state of the physical

world, analyze and act based on it. Sentient systems enable

a rich set of pervasive computing applications including

smart video surveillance, situational awareness for emer-

gency response and social interactions in instrumented office

environments to name a few. Sentient systems present new

forms of computational challenges, from modeling, control,

and scheduling perspectives. One has to balance the needs

of (possibly multiple) pervasive computing applications with

physical constraints of sensors/devices being controlled,

all while achieving situational awareness of the physical

world being monitored. In this paper, we use additional

information, namely the semantics and predictability of the

monitored world, to improve the agility of sentient systems.

We design real-time algorithms that use probabilistic seman-

tic models to schedule sensor actuation in an “optimal” way.

We evaluate our approach in an instrumented smart building,

specifically using it to dynamically control a camera network

so as to record the events of interest.

A crucial aspect of sentient spaces is that they often

provide only a partial or noisy view of the world, due to

physical constraints on the sensors themselves. In such cases,

schedulers should balance the demands of an application

with the need to better observe the world. We advocate

the use of a Partially Observable Markov Decision Process

(POMDP) to reason about sensor actuation with physically-

realized, non-ideal sensors. We explore our framework in

the context of large-scale camera networks. Specifically, we

use POMDPs to control pan-zoom-tilt (PZT) parameters of

cameras for a variety of pervasive computing applications

such as as building occupancy estimation, identity recogni-

tion, people tracking, etc. Notably, our framework schedules

actuations so as to simultaneously maximize the (possibly-

conflicting) benefits of differing end applications.

The key technical contributions of this work are as fol-

lows: first we propose a general POMDP framework for

sensor actuation problems that balances application need

and situational awareness. Second, we introduce approxi-

mations that are required to scale POMDP solvers for real-

time actuation of large-scale sensor networks. We further

extend the approximation framework to balance the need of

multiple monitoring applications. Third, we demonstrate the

effectiveness of our system, by comparing it to commonly-

used baseline scheduling algorithms, on a recording from a

large scale camera network in a campus building. Our results

suggest that sensor level challenges can be abstracted and

effectively addressed by a middleware layer.

To the best of our knowledge, we are the first to address

the problem of actuating a large-scale sensor network based

on an approximated, real-time POMDP. We accomplish

this by using a semantic model of building activities and

approximating the expected utility of scheduler actions.

We describe a semantic correlation model that is simple

enough to be implemented in real-time, yet powerful enough

to capture meaningful semantics of typical behavior. Our

action selection process is as fast as a table lookup in real-

time. Though we focus on large-scale camera networks, our

approach applies to the general problem of sensor selection

and actuation in sentient spaces. We briefly discuss such

extensions in Sec. VI. We believe that our approach will

serve as a fundamental building block for building next-

generation sentient systems.

II. PROBLEM FORMULATION

A. Abstract Problem Formulation

Phenomena

Sensor

Scheduler

Application

Semantics

Observation

Reward

Specifies

Uses

Uses

Controls/Actuates

Associated With

Associated With

Observes

Generates

Uses

Figure 1. Sentient Spaces High-Level Concepts.

Fig. 1 outlines the high-level concepts of our sensor actu-

ation framework. A pervasive application specifies a reward

that is associated with an observation of a phenomena.

The scheduler controls and actuates the sensor so as to

better observe the phenomena and maximize the application-

specific reward. To do so, the scheduler uses semantics that

are associated with the phenomena.

Environment Model: The environment model is an

abstract representation of the monitored environment. For

instance, in a monitored building the environment model is

used to refer to different regions such as “r1 = south west

hallway, second floor” and “r2 = second floor kitchen”.

Phenomena: The phenomena is any kind of feature prop-

erty whose value is amenable to observation or estimation,

including physical properties, existence and occurrence as-

sessments, etc. The phenomena happens in the instrumented

space and changes (states) over time. The phenomena has

a measurable value instance (state) at a particular time,

written as Xt. For instance, consider N spatial regions of

an instrumented building, each of which can be empty or

occupied by a person. In this case, there exist 2N possible

phenomena states.

Semantics: We make use of semantic rules that define

how the phenomena evolves over time and space. Specifi-

cally, in the context of this paper, we model these semantics

as P ({Xt+1, .., Xt+T }|{Xt, .., Xt−M}), which is a function

that returns predictions of the next T timesteps into the future

given the states from the past M timesteps.

Sensor: The sensor is the physical device that is used

to observe a phenomena. The system has access to sensors

(i.e., cameras) s1, .., sn that are controlled by a scheduler.

Scheduler: The scheduler controls the capture and pro-

cessing parameters at time t by choosing an action At ∈ A.
Observation: At any time t, given the phenomena state

and scheduler action, the system generates an observation

O(Xt, At).
Applications: We assume that multiple pervasive com-

puting applications wish to monitor phenomena of different

types. The sentient system is responsible of generating a

schedule such that sensor data captured by the system

satisfies the application needs.

Rewards: We define R(O(Xt, At)) → R as an

application-specific reward that depends on the observation,

which itself depends on the phenomena state and the selected

action. For instance, in our building monitoring setting,

an image containing entities will have a higher reward as

compared to an image with none. We account for the general

setting there may exist multiple applications with different

reward functions.

B. Instantiating the Framework for a Camera Network

We focus on a active camera network, where the set

of actions A cam be modeled with discrete PZT states of

each camera. Each camera can be zoomed out, or zoomed

into a particular region within the field of view. We denote

the collection of N regions observed throughout the entire

network as a vector Xt, where X
r
t ∈ {0, 1} indicates if there

exists a person in region r at time t. A is the actuation plan

specifying the PZT state of each camera (either zoomed-

out or the region being zoomed into). The state transition

model P captures the “motion semantics” of how people

move in the monitored space; e.g., people tend to appear

in spatially adjacent regions of cameras as they walk. In

our model, actions do not directly affect the phenomena but

the observation of it; PAt∈A(Xt+1|Xt) = P (Xt+1|Xt). We

write Or(Xt, At) for the observation at region r at time t
given world state Xt and actuation plan At. R(Xt, At) is the
reward associated with being at state Xt while taking action

At; we assume this decomposes into a sum of per-region

rewards R(Xt, At) =
∑N

r=1 R(Xr
t , At).

In this setting, we would like a system which schedules

future actuations given a partial observation of the world,

provided by the actuated camera network. It must trade-off

actions that satisfy the immediate needs of an application

versus those that maintain an accurate representation of the

world. Specifically, due to physical limitations, each camera

can be actuated to exist at a single PZT state. A zoomed in

state allows the system to collect high resolution images

at the cost of a limited field of view, which limits the

system’s knowledge of the monitored space. On the other

hand, a low resolution image, while not providing a enough

detail for face recognition, may still be used to obtain a

coarse understanding of how people are moving within the

monitored space, which in turn may help target the collection

of high-resolution images in the near future.

We define a POMDP that naturally balances both long and

short term benefits of the actuation problem. Our POMDP is

a five-tuple (S,A, P,O,R) where S is the set of states of the

physical system being monitored, A is the set of actions, P
is the state transition model of the physical system, O is the

state observation model, and R is the state-action reward

function. Given the above POMDP, the goal is to find a

policy π that specifies an action for each estimated world

state so as to maximize the total expected reward over some

finite horizon:
∑T

t=1 E[R(Xt, At)]. We refer to T as the

“look-ahead” of the system; if T = 1, the system is myopic

and will always actuate sensors to maximize its immediate

reward. With larger T , an optimal policy will realize that

it is better sometimes take actions to reduce uncertainty, as

this will produce a more accurate estimate of world state

which can help increase future rewards.

While discrete-state MDPs are solvable with dynamic

programming, POMDPs are intractable [11]. One attractive

approach is to cast a POMDP as a MDP whose state

space becomes a “belief state”, or the set of all probability

distributions over world states. Unfortunately, one needs a

exponentially-large number of gridded or quantized belief

states. One of our primary contributions in this work is an

adaptive gridding strategy that dynamically adds discrete

states to an underlying belief-state MDP, so as to obtain

a provably good approximation of the value (or expected

reward) of each belief state and action.

III. APPROACH

The table below summarizes the different challenges and

our approach to address each one:

* N regions, M past states, T seconds lookahead)

Challenge Approach Subsec.

Transition model is exponen-
tial O(2NM).

Assume that people move independently

and use Noisy OR model which is linear

O(N2
M) (as in [14]).

III-A

Scheduler belief state re-
quires 2N dimensions.

Assume that the scheduler belief state can be

factored into a belief state for each individual

region which reduces the belief state to N

dimensions.

III-B

Looking ahead by growing a
search tree is exponential in
time O(Nt)

Represent only certain scheduler states and

use dynamic programming (value iteration)

O(NT).

III-C

Hard to select which sched-
uler states to represent apri-
ori.

Based on the properties of our reward func-

tion we bound the error and dynamically add

points to the representation if the error is not

acceptable.

III-E

Scheduling decisions must
be made at real-time.

Partitioning the space by cameras so that only

regions that are in direct competition be in the

same partition. Pre - compute an approximated

state action grid for each camera with constant

space requirements.

III-G

The rest of the section discusses in details each of the above

challenges.

A. State transition model

Our monitored space is divided into N disjoint regions.

At (discrete) time t the observed phenomena is assumed to

be in some state Xt. Xt is represented as a binary vector of

length N (for example, Xi
t ∈ {0, 1} can be used to encode

the presence of a person in region i at time t or lack of

thereof.

Figure 2. Illustrating the conditional probability transition model.

Fig. 2 illustrates the conditional transition probabilities of

the face appearing in each of the regions in that camera

given its current location. The number of possible world

states is 2N , meaning that naive state transition models will

not scale. We adopt the factored transition model of [14]

which assumes that entities will move independently in a

monitored environment:

P (Xj
t |X

1:N
(t−M):(t−1)) = 1−

M
∏

o=1

N
∏

i=1

(1− αo
ijX

i
t−o) (1)

where αo
ij is the probability that a person moves to region

j o-seconds later, given that they are currently at region i.
The above model can be derived from a noisy-OR as-

sumption on spatio-temporal correlation. While simplistic,

it captures many natural semantics about object movement

(people tend to walk down hallways, wait at elevators, etc.)

without explicit multi-object tracking, which can be difficult

in unconstrained scenarios. [14] show that the factored-

frontier algorithm [8], or one-pass belief-propagation, suf-

fices for inference with such a model. The final algorithm

can be intuitively thought of as a prediction filter (that

predicts future states given the semantic model) followed

by a correction stage (that re-weights predictions using new

observations).

B. Approximating the POMDP Belief States

POMDP solvers maintain an internal belief state about

the external world. Because the number of distinct world

states is exponentially large (2N), representing distributions

over such spaces would require a vector of (2N) dimensions.

Fortunately, the factored inference algorithm of the previous

section suggests that one can approximate the probability

over states as a product of marginal probabilities for each

of the N regions. Hence we represent a belief state X̂t as a

N dimensional vector where each entry
ˆ
Xj

t is the probability

of an event taking place in region Rj at time t.
Scheduling based on the Estimated State X̂t - Given our

best estimate of the state of the world - X̂t we face a

difficult problem: What should the course of action be for

the next time step? One might suggest zooming in to the

most likely region in terms of the computed probability. In

this case, the scheduler will always be zoomed in, as there

will always be a region which has the highest probability.

Furthermore, by following this approach, the probabilities

will be computed based on a partial view of the space,

as each camera is limited to viewing only the region it is

zoomed in to. In a camera network of 6 cameras where

each camera has 7 regions, there will constantly be 6*6=36

regions out of the 42 for which the scheduler has high

uncertainty. Optimally we should choose the action with

the highest expected utility in the “long run”, taking into

account both the indirect reward associated with reduced

uncertainty and the direct reward associated with satisfying

the application requirements.

C. Value Iteration

In this section, we temporarily make the simplifying

assumption that approximated belief states X̂t can be rep-

resented as discrete elements s ∈ S such that |S| = n.
In this case, our POMDP can be written as a MDP with

discrete states, and the optimal policy π can be represented

as a table with O(n) entries whose entries can be computed

in O(nT |A|) with dynamic programming (where T is the

horizon and A is the set of possible actions). The full

algorithm, described in Alg. 1, is known as value iteration.

We refer the reader to [3], [12] for complete details, but we

briefly review it here as our solution builds upon it.

Algorithm 1: Dynamic Programming Value Iteration

Data: follow(s,a)- Returns the set of states reachable from state s
taking action a.

1 begin
2 /* Initialization */
3 for s ∈ S do
4 for t ∈ 1..T do

5 opt[s, t]←− 0

6 for s ∈ S do
7 for t ∈ (T − 1)..1 do
8 for a ∈ actions do
9 /* Compute the expected reward for a at state s

when t seconds remain. */
10 aR ← 0
11 for st+1 ∈ follow(s, a) do
12 aR ← aR +

p(st+1|s) ∗ (R(st+1|a) + opt[st+1, t+ 1])

13 opt[s, t]← max(opt[s, t], aR)

Alg. 1 computes the maximal expected reward by per-

forming a “backward walk” in time. At time T, the time

has already ended (we started from 0, and performed a look

ahead of T seconds). Thus the maximal expected utility is

zero. At time t ≤ T − 1 the process computes the expected

reward of state s for each action a ∈ A by taking into ac-

count all possible scheduler belief states st+1 that can follow

from s when action a is taken and looking up their expected

reward in the dynamic programming table. The immediate

reward of being in state state st+1 while taking action a is

R(st+1|a). The value stored in the table is that of the action

with the highest expected utility Emax[R(s)] = opt(s). The
following subsections until III-G present our approach to

discretize S, and find an approximate solution with quality

guarantees.

D. Grid Creation

In order to apply the above approach using a discretized

set of beliefs states S, we start by including the zero and

unity vectors and creating an equally spaced grid points

along probability vectors. However, future belief states st+1

in line 11 in Alg. 1 will likely not be present in the finite set

S. One can use the closest element in S, but this introduces
errors that are compounded over time. To address this, we

describe an adaptive strategy for iteratively adding discrete

states to keep the error within some tolerance.

E. Adaptive Discretization with Bounded Error

We describe an algorithm for adaptively discretizing the

state space S during Value Iteration such that the expected

utility opt is computed within some user-provided tolerance.

This bound is possible due to the additive and monotonic

nature of the reward function in sensor actuation problems,

which in turn lets us compute upper and lower bounds on

opt during dynamic programming. We begin by defining two

marginal belief state sets which will help us bound the error

with a given state s:

FloorSet(s) = {sf |∀jsf
j ≤ sj and s ∈ S}

CeilingSet(s) = {sc|∀jsc
j ≥ sj and s ∈ S}

The ceiling set of a state s contains all the approximated

marginal belief states that have a higher or equal probability

of an event across all regions. Similarly the floor set has

lower or equal probabilities.

Lemma: ∀sf∈FloorSet(s)Emax[R(sf)] ≤ Emax[R(s)]
Proof (sketch): We model the space as a vector Xt where

the goal is to actuate sensors to observe as many Xi
t =

1 as possible. Our approximate belief state is represented

as marginal probabilities, each element in si represents the

probability of an activity taking place in region ri. Thus,
reducing the probabilities in s to those in sf reduces the

probability of transitioning to any state which contains Xi
t =

1 due to the additive nature of our model (see eq. 1).

We compute the maximal expected utility of s based on

the utility of ŝ ∈ follow(s, a) which we repeatedly replace

either with a state ŝ ∈ FloorSet(s) if ŝ is not present in

the grid, or the exact value if ŝ is present. In any case, the

expected utility that will be computed will be a lower limit

on the true expected utility:

∀sf∈FloorSet(s)Emax[R(sf)] ≤ Emax[R(s)]

�

Similar argument can be used to show that increasing the

probabilities, results in an upper bound on the true expected

utility:

∀sc∈CeilingSet(s)Emax[R(sc)] ≥ Emax[R(s)]

This property allows us to bound the true utility:

opt[sf, k] ≤ opt[s, k] ≤ opt[sc, k]

Whenever we need to approximate state st+1 we take

the closest state in FloorSet(s) − sf and the one in

CeilingSet(s) − sc. Each entry in the dynamic program-

ming table maintains four values: the expected utility when

consistently approximating states using their floor set as well

as the ceiling set and the actions that were used to achieve

the highest utility for the floor and ceiling states.

Before the dynamic programming routine processes the

entries for the next time step (as part of the for loop in line

7 of Alg. 1) we verify that the error rates in the entries

we just computed meet the desired error level. This allows

us to upper bound the error by the following expression:

ǫ ≤ opt[sc, k] − opt[sf, k] If the upper limit on the error

rate is below the desired error, the process terminates and

returns the computed table. In the case where the error is

above the user specified threshold, we must add states to our

approximation of the state space - S and restart the process.

F. Adding States to the Grid

If the error is above the desired threshold, we use the

current grid to generate a new, finer grid by adding states

based on their expected contribution to reducing the error.

To accomplish this, we keep track of the states that were

missing from the current grid and had to be approximated

when st+1 was computed (line 11 of Alg. 1). We maintain a

priority queue with the top k states (in our experiments we

used k = 5000) ordered based on their Euclidean distance

from the closest state currently in S or the priority queue.

The reason we want to limit the number of states that are

added in each iteration is to ensure that we don’t increase

the state space unnecessarily. Although there might be more

than k states that were needed, once we add the top k
states we might meet the ǫ required error bound. This allows

us to control the growth rate of the state space such that

it is within k states of the minimal size needed. Without

this iterative selection process the state space explodes with

states which are very close to each other and cause the

process to exceed memory limits. The prioritization routine

allows the process to find solutions for much smaller ǫ
values. Moreover this allows the user to specify a timeout

condition or grid size limit (as well as ǫ) which will return

the best solution (perhaps exceeding ǫ error) that could

be found within the time and space constraints. Fig. 4(a)

illustrates the number of states that are needed for different

ǫ values to compute a policy for a single camera with four

regions. As the tolerated error rate decreases the number of

states increases. The problem of finding an optimal scheduler

remains not tractable, as a small ǫ will require an unbounded

sized state space but solutions are iteratively improving and

the processing duration and required state space can be

controlled by changing ǫ. Furthermore, in real settings, the

number of states that are actually needed in order to get a

relatively low error rates is manageable as illustrated by Fig.

4(a).

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

w
e
ig

h
te

d
re

s
u
lt

0 .2 .4 .6 .8 1
Beta

RR Zoom Only RR Zoom and UP

Always UP Oracle

Most Likely Lookahead 2

Tree t=2

Figure 3. Total reward for different alternatives, 7 zoom regions.

An improved initial grid - We applied an approach which

allows us to gauge the need in states so that ones that

are more likely to be accessed are included in the grid as

follows: we first perform an offline execution of a tree based

approach, with lookahead of 2 seconds, computing the exact

utility by growing a tree of all possible states and actions

from a given scheduler state, for each camera. While the tree

based approach is in execution we added points to the initial

grid based on the same technique that we used to prioritize

which states to add so that the error rates are within bounds.

In this case, we used a priority queue to decide on which

states to keep in the initial grid based on the states that

are more likely to be accessed by the real-time scheduler.

Saving all the states that could possibly be encountered is

exponential, thus the priority queue approach allows us to

effectively allocate our memory resources to where they are

most needed. Note that the error bound guarantees are for

points that are in the grid, thus, creating an initial grid this

way reduces the errors introduced when points are looked

up by the algorithm while at execution.

0000
15000
30000
45000
60000

0 0.1 0.2 0.3 0.4

ǫ

|S|

bbbbbbb

bb
b
b

(a) Size of the State Grid
as a function of ǫ

0%
25%
50%
75%

100%

0 0.25 0.50 0.75 1.00

β

%UP

b b b

b

b b b b b b b

(b) % of states going “UP” as a
function of β (when α = 1)

0ms

10ms

20ms

30ms

0 25 50 75 100
K

Latency(ms)

b b b
b b

b
b b

b
b

(c) Latency of Scheduling
as a function of number of cameras

0%
25%
50%
75%
100%

0 25 50 75 100
K

%Faces

b b b b b b b b b b

(d) % of faces collected at high
resolution as a function of the
number of cameras

0
1

0
0

0
L

a
te

n
c
y

10 20 30 40
Number of Regions

Tree t=2 Our Approach < 2ms

(e) “optimal solution” vs “approximate solution”.

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

T
o
ta

l
R

e
w

a
rd

0 .2 .4 .6 .8 1
Beta

Multiple Applications Lookahead 2 (average beta)

(f) Evaluation of our approach to address multiple
concurrent pervasive computing applications.

0
.2

.4
.6

.8
1

Z
o
o
m

 m
is

s
 R

a
te

0 .2 .4 .6 .8 1
Beta

RR Zoom Only RR Zoom and UP

Always UP Oracle

Most Likely Lookahead 2

Tree t=2

(g) Rate of actuations not resulting in a facial image.

Figure 4. Illustrating the different aspects of the suggested approximated POMDP approach.

Efficiently Approximating st+1 - Whenever a state is

approximated we find its nearest neighbor in its floor and

ceiling sets. This is done efficiently by using a range query

over a KD-Tree[2], [7]. We start with S containing an

equally spaced grid across all dimensions. For example, if

we space each dimension according to G = {0, 0.5, 1} of

a four dimensional state space then S = G × G × G × G.

Whenever a state st+1 is approximated we issue a range

query between two points in the d-dimensional space -

st+1 and Ceiling(st+1). Where Ceiling(st+1) is the closest
point to st+1 that is also in CeilingSet(st+1). Such a point

can be found efficiently by a binary search across each

dimension. Since Ceiling(st+1) ∈ S we are guaranteed a

non empty result set in our range query, from which we

select the nearest neighbor - sc. Similarly we select the

closest point on the grid which is in st+1’s floor set sf .
The closest of sc and sf is used to approximate st+1 and

ǫ ≤ opt[sc, k] − opt[sf, k] is used to approximate the error

associated with this approximation. This process is used to

perform a lookup of a value in the grid both for the dynamic

programming routine as well when an action is selected for

a given state. KD-Range queries have time complexity of

O(
√

|S|) and thus the process of approximating a given state

to an existing grid point is extremely efficient. We report

latency results as we increase the number of regions in each

camera in Fig. 4(e) (discussed in details in the experiments

section).

G. Distributed Real-Time Scheduling

At run-time, our scheduler updates its beliefs about

the world using the global transition model - X̂t =
P (Xj

t |X
1:N
(t−M):(t−1)). Beliefs are updated by standard pre-

diction/correction equations (see Sec. III-A) for temporal

models. Notably, this model is global in that correlations

across cameras are taken into account. However, approxi-

mating the optimal policy table (π) based on the estimated

state X̂t with small ǫ is still intractable for networks with a

large number of cameras. This is because n, the number of

discretized states required to achieve a low error, empirically

tends to grow exponentially in T (expected, as solving

POMDP optimally is not tractable). To address this limita-

tion, we adopted a factored scheduling approach, where the

global scheduling table is partitioned into non-overlapping

local scheduling tables. In our implemented system, cameras

observe non-overlapping regions, and so it is natural to build

a local policy table (or local scheduler) for each camera1.

Overall, real-time scheduling proceeds as follows: region-

specific beliefs X̂r
t are updated using prediction/corection

filtering, which require (ON2M) multiplications. The up-

dated beliefs are then used to query a camera-specific policy

table to return a scheduled action state for each camera.

This query requires a single table lookup per camera O(N),
making the overall scheduler extremely lightweight and fast.

1Further approximations for overlapping regions are discussed in p.109
[13]

H. Multiple Pervasive Computing Applications

Consider the scenario where multiple applications make

use of different reward functions that may even change over

time. For example, one may be interested in high and low-

resolution during the day time, but interested in only high-

resolution images at night (because low-resolution images

under low light will be noisy). Assume we are given Q
different applications. For any subset of active applications,

one can compute the optimal policy using a reward function

equal to the sum of each application-specific rewards. A

naive approach would pre-compute an exponential (2Q)
number of policies corresponding to all possible subsets of

active applications. We now describe an efficient algorithm

for representing this set, making use of the additive property

of our reward function. Let us augment our policy table

from Alg.1 to store the expected utility of all actions for

each state, and not just the best action. We then compute

Q application-specific augmented policy tables. Given these

Q tables, we compute policies for any subset of active

applications by adding together “on-the-fly” the expected

utility for each action-state, as described by Alg. 2.

Algorithm 2: Approximate approach to actuate sensors

for concurrent applications

Data: Eapp[s, t, a]- Returns the expected reward for app taking
action a from state s when t seconds remaining.

1 begin

2 best action← null
3 best action reward← 0
4 for a ∈ actions do
5 action reward← 0
6 for app ∈ applications do
7 /* Compute the expected utility for a at state s when

app applications executing. */
8 action reward += Eapp[s, t, a]

9 /* Save the action with maximal total reward. */
10 if best action reward < action reward then
11 best action reward← action reward

best action← a

12 return best action

IV. EXPERIMENTATION

The main parameters of the our approach are space-

partitions (the number of regions in a camera and number

of cameras), the reward function, and the error tolerance ǫ
for our POMDP solver. In terms of evaluation, there are

three important metrics (1) total reward after running the

scheduler (2) latency of discovering events, and (3) number

of events of interest detected versus missed (i.e., precision

and recall). We split our experimental results in those that

(a) compare to standard scheduling baselines (Fig. 3) and

(2) diagnose the impact of various parameters (Fig. 4).

Baseline comparisons: We have implemented different

baseline alternatives for comparison: 1) Consider a scheduler

that for each camera, cycles between a zoomed out configu-

ration and zooming into the regions covered by it, one by one

in Round Robin. 2) Cycles in Round Robin between zoomed

in configurations only in Round Robin. 3) Stays “UP” in

all cameras at all times. 4) Select an action that has the

highest expected utility based on the predicted probabilities.

5) Our approximated proposed approach with look ahead of

two seconds. 6) A Tree based approach computing the exact

utility by growing a tree of all possible states and actions

from a given scheduler state, for each camera. This brute-

force solution requires searching over an exponentially large

space, and so is useful for analysis though not practice. 7) An

“Oracle” approach which selects the best camera actuation

taking into account events taking place in the future. Note

that the performance of the ”Oracle” approach might not

even be achievable since we don’t have access to future

events.

Source code for all experiments in this section is available

online 2 Our evaluation dataset contains recordings of two

full days of unscripted human activity3. The data was

recorded by a network of 6 cameras covering a single

floor in the computer science building. For each algorithm

we evaluated, the data recorded was replayed exactly as it

happened in real-life, and the scheduler was given access

only to data that it scheduled to collect and was evaluated

based on its performance. We have divided each camera to

k = 7 zoom regions. The more regions each camera has,

the harder it is for the scheduler to select the right region to

zoom in. The smaller the number of regions, the easier it is

to “guess” a region that will contain a person. The reward

for each region is defined as follows:

R(Xr
t , At) =

α High-res face, Xr
t = 1, r ∈ At

β Low-res face, Xr
t = 1, r /∈ At

0 Otherwise

This representation expresses a large family of reward

functions, intuitively presenting the utility of a high res-

olution image vs. a low resolution one. The evaluation

was done by replaying the events that took place in the

observed environment and computing the total reward that

each alternative was able to achieve. For example, a single

point in our evaluation graphs would be the total reward by

Round Robin, for k = 7, α = 1, β = 0. Varying β gives

us a way to see how RR performs with different reward

functions, and doing the same for the “Tree” approach allows

us to compare the two scheduling alternatives.

The choice of α and β defines the application utility

associated with each observation. Consider the case where

β = 0 and α = 1. Collecting low resolution images serves

no purpose to the application. However, low resolution

2https://code.google.com/p/sensoractuation/
3One day was used for training the model, and the other for evaluating

the different schedulers.

images provide information about the state of the system.

This, in turn, increases the likelihood of the scheduler to

make the right call and satisfy the application needs. In

Fig. 3 we compare different scheduling alternatives in our

camera network where each camera has seven possible zoom

regions. For different application utility functions in which

we increase the utility of a low resolution image. When the

utility of a low resolution image is relatively high (over

0.3) the alternatives which are sensitive to the value of

β are equivalent, basically reducing to a simple scheduler

which constantly actuates all cameras to zoom out. For the

“hard” cases, where the utility of a low resolution image

is low, looking ahead for 2 seconds out performs all other

alternatives and accomplishes the highest total utility. Notice

that our approximated approach performs very closely to the

exact approach, but with real-time latencies4.

Diagnostic experiments: To illustrate the action selection

process for different values of β where α = 1, consider Fig.
4(b). We consider a single camera with 4 regions and solve

the look ahead problem for 10 seconds (ǫ = 0.3). We plot

the fraction of states for which the best action is to zoom

out (go “UP”) as a function of β, the utility of a zoomed out

event, where the utility of a zoomed in event is 1 (α=1). This
table illustrates how the scheduler changes its behavior based

on the characteristics of the reward function. The higher

the utility of a low resolution image, the more likely the

scheduler is to zoom out. The scheduler automatically selects

the best action to take based on the specific α, β ∈ R
+ taking

both long and short term benefits.

To illustrate the impact of computing the exact utility

value on the latency of the scheduler, consider Fig. 4(e).

We plot the latency in milliseconds of the total time that

it takes the scheduler to actuate all cameras, when the

decision process is performed by our approach and by a tree

based approach (alternative 6 above). We vary the number

of regions in each camera from 2 to 7 and thus the total

number of regions in the camera network varies from 12 to

42. The latency of the tree based approach, even for a modest

lookahead of 2 seconds, is not real-time and significantly

higher than our approximated approach which takes less than

2 milliseconds for the largest case of 42 regions.

In Fig. 4(g) we plot the rate at which a high resolution

image was collected but there was no entity in the region.

We compute the ratio of high resolution images with a face

over the total number of high resolution images collected.

We have defined the rate to be 1 if no high resolution images

were collected. This experiment captures the need for a low

rate of “false-positives”. Since the captured observations are

later processed by a heavy operator (e.g., face recognition),

we would like to minimize the number of frames that it

has to process. The lookahead approach both collects a

4In expectation tree lookahead should be optimal for all values of β.
However, we evaluate our scheduler on a large but finite set of data. This
causes small fluctuations.

larger total of observations of interest to the application and

reduces the number of false positives as compared to the

other alternatives. Our approximated approach is comparable

to the tree based approach and both lookahead alternatives

vastly dominate other alternatives. As opposed to the tree

based approach, our proposed approach is suitable for a

sensor actuation setting, in which decision making has to

be done in real-time latencies.

Multiple pervasive computing applications: To evaluate

performance in the presence of multiple applications, we

have created 11 scenarios in which there are 10 applications

running in parallel each with a different reward function,

as follows: 1) 10 apps with (α=1, β=0). 2) 9 apps (α=1,
β=0) and 1 with (α=1, β=1). and so on until scenario 11) in

which we have 10 apps with (α=1, β=1). The 11 cases are

optimally solved by the following policies: 1) α=1, β=0. 2)
α=1, β=0.1. and so on until 11) α=1, β=1. This enables us to
compare two alternatives: Alternative 1: solve using a single

optimal lookahead table for all apps (e.g., 9 apps with α=1,
β=0 and 1 app with α=1, β=1 solved optimally with α=1,
β=0.1). Alternative 2: as described by Alg. 2, approximate

the solution by using the individual lookahead tables of

each app (e.g., 9 tables with α=1, β=0 and 1 table with

α=1, β=1) and choose the action with the maximal expected

utility. These 11 application reward values have selected so

that we could easily compare our approximation to a single

optimal solution, in this case, alternative 1. In Fig. 4(f) we

present our results. The results show that our approach is

very close to the optimal solution, and thus validates that

an approximated approach can be used to schedule multiple

applications at the same time. Notice, that in the general

case of the problem, simply reducing to a single lookahead

table may not be possible and thus a principled approach to

combine multiple applications is required.

Scalability in a large network: To examine performance

as a function of network size, we have simulated a network

ofK = 10 to 100 cameras, monitoring a (very) long hallway.

The figure below illustrates the case for K = 2 cameras.

Camera1 Camera2

Regions: 1 2 3 4 5 6

Each camera has 3 zoom regions and people walk in a single

direction from left to right. We have simulated the walk

trajectories generated by 10 people who arrive at the entry

point of the pipeline according to a Gaussian distribution

with mean of 100 seconds and standard deviation of 25

seconds. Each person walks all the way to the end of the

hallway at their own walk speed, specified as the time it takes

the person to walk from region to region, which is also a

Gaussian with mean of 4 seconds and variance of 2 seconds.

Our scheduling algorithm automatically learnt the transition

probabilities from a generated script used as training data.

We have experimented with an application utility interested

in high resolution facial images (β = 0, α = 1). We plot

the latency of reaching a scheduling decision as a function

of K in Fig. 4(c) and the percentage of recalled faces in

Fig. 4(d). The latency for a network of K = 100 cameras

is less than 30 ms and linearly increasing with the size of

the camera network, which makes the scheduler good fit for

real-time applications. The recall of the faces remains high

as the number of cameras increases. In the simulated results

the recall of events is around 70% due to the fact that in

about 1 of 3 cases the person will start moving and the

scheduler will miss a single frame until it catches up in one

of the following zoom regions.

V. RELATED WORK

To the best of our knowledge, we are the first to address

the problem of actuating a large scale camera network based

on unscripted human activities. We accomplish this by using

a semantic model of building activities and approximating

the expected utility of actions. As opposed to problem

formulation in which sensors are selected given processing

and resource constraints[14] we focused on sensor actuation

wherein the physical constraints of the sensor prevents cap-

ture and propose a general framework for sensor actuation.

Sensor actuation has been previously studied in specific

settings. E.g., in the context of people and object tracking

there exists a large body of work, we point the interested

reader to the following surveys [18], [5]. The most relevant

work to our is by [17] who suggests a POMDP approxi-

mation approach to address a single target tracking using a

sensor network, where the goal is to conserve sensor battery

life by querying only sensors that are likely to improve the

location estimate of the target. Although the problem domain

and formulation are similar, our approach differs from theirs

in several key aspects: first, the scale of the problem in our

case is different. [17] assumes that there is a single target

in the system which makes the state space linear with the

number of regions. In our case we track multiple targets

not just one and address the exponential nature of the state

of system as well as the state transition function. Second,

[17] assumes that people walk according to a linear Gaussian

model, while our formulation learns it directly. Third, in our

case the policy is computed offline and actions are selected

by an efficient lookup in a state-action map. In their case,

the utility of action needs to be computed at real time which

makes the scheduler less agile and less likely to meet real-

time deadlines, even for a single target. In the context of

sensor networks other ways for modeling the problem were

proposed, for example for energy efficient data collection

from sensor networks, recent work by [4] applies a Q-

learning [16] technique to allow each sensor to self schedule

its tasks an allocate its resources by learning their utility in

any given state. The main advantage of Q-learning is that it

does not require a model of the environment. In our case,

we would like to utilize the motion characteristics of our

monitored space. Furthermore, due to the size of the state

space we are prevented from learning the utility of different

states individually.

Unlike these previous papers, this paper takes a different

view. Specifically, it addresses partially observability of the

phenomena. POMDP has been also studied extensively in

the literature, but the scale of the problems that it can solve

is orders of magnitude smaller than the problem we have at

hand.

The most relevant theory to our work is on the tractability

of POMDP solutions. A number of exact value iteration

algorithms have been proposed [3], [10]. None of these

alternatives can be used in our context since they are limited

to a very small state space. For our needs we are not

interested in finding the exact solution. Our approach avoids

the exponential graph in state space by approximating the

scheduler belief space using a single probability value for

each region of the space, instead of a probability value

for each state of the world. The difference is linear (in

our case) vs exponential. Second, policy search methods

have also been used to optimize POMDP solutions [9],

[1], Their strength lies in the fact that they restrict their

optimization to reachable beliefs[10]. Much like the value

iteration techniques, policy search methods require the belief

state to be fully represented and for any reasonably-sized

camera network the belief state space is too large. Third, ap-

proximate value iteration algorithms were presented. These

techniques consist mainly of grid-based methods[6]. They

can solve larger problems (90 states[10]) by updating only

values at discrete grid points. Our approach is different in

the way that it takes into account the specific characteristics

of the monitored environment and the reward function that

makes our approach practical for this problem setting.

A significant body of relevant work has recently emerged

under the term “Network Distributed POMDP” [15]. ND-

POMDP literature addresses the challenges that arise when

two agents need to work in coordination. As an example,

consider an application which is only interested in two

frontal images of the same person from two different views

at the same time (e.g., to reconstruct a 3D image). ND-

POMDP can be used to find an optimal solution for this

case. The state of the system as well as the system transition

function is represented explicitly which renders DP-POMDP

not tractable for the size of the problems that our approach

addresses. As part of future work we are interested in ad-

dressing cameras with overlapping regions and joint camera

reward functions. Applying techniques from ND-POMDP

together with our approximation techniques seems like a

promising direction.

VI. CONCLUSIONS AND FUTURE WORK

We have developed a POMDP based framework to actuate

sensors in a large scale sensor network. POMDP provides

an elegant way of representing and reasoning about the par-

tial knowledge about the environment. However, modeling

the scheduling problem in sensor networks using POMDP

introduces a scalability challenge as the state space of the

environment is significantly larger than typical problems

with similar formulations. The heuristics and approximations

that we followed made our scheduler tractable. The real

time component is extremely lightweight and fast. And,

most importantly there was significant improvement over

alternative approaches. While our approach was evaluated

in the context of camera based systems, the models that we

have developed and the way that we use these models is

much more general. For example, a very different type of

sensor enabled application wherein loop sensors are used

to measure traffic flows on various freeways/road network,

and the data captured is used to build applications such

as route planning, traffic jam determination, etc. We can

apply the techniques described in this paper as follows: The

phenomena that we monitor would be the traffic flow at each

sensor discretized to a finite set of flow states, e.g., average

speed rounded to the nearest value in 10 miles per hour

intervals. The phenomena semantics capture the nature in

which traffic flows are correlated between different locations.

The techniques that we have developed apply to this setting

and can be used in order to schedule the data collection

from the different sensors in order to detect an event of

interest - slow traffic flow (i.e., speed of less than 10 miles

per hour). The data collection process would increase the

number of slow traffic flow events collected. Furthermore,

we can reason about the expected effects of actions such as

controlling the delay in traffic light signals located at entry

points to highways and actuate the traffic light to reduce the

chance of a traffic jam.

As part of future work we would also like to consider

a hybrid push/pull approach that will benefit from the

advantages of computation at the sensors while meeting the

deadlines of a real-time system and supporting the dynamic

nature of a surveillance task.

REFERENCES

[1] J. Baxter, P.L. Bartlett, and L. Weaver. Experiments with
infinite-horizon, policy-gradient estimation. Journal of Arti-
ficial Intelligence Research, 15(1):351–381, 2001.

[2] J.L. Bentley. K-d trees for semidynamic point sets. In
Proceedings of the sixth annual symposium on Computational
geometry, pages 187–197. ACM, 1990.

[3] A.R. Cassandra, L.P. Kaelbling, and M.L. Littman. Acting
optimally in partially observable stochastic domains. In Pro-
ceedings of the National Conference on Artificial Intelligence,
pages 1023–1023, 1995.

[4] M. Di Francesco, K. Shah, M. Kumar, and G. Anastasi. An
adaptive strategy for energy-efficient data collection in sparse
wireless sensor networks. Wireless Sensor Networks, pages
322–337, 2010.

[5] D.A. Forsyth, O. Arikan, L. Ikemoto, J. O’Brien, and D. Ra-
manan. Computational studies of human motion: part 1,
tracking and motion synthesis. Foundations and Trends R©
in Computer Graphics and Vision, 1(2-3):77–254, 2005.

[6] W.S. Lovejoy. Computationally feasible bounds for partially
observed markov decision processes. Operations research,
pages 162–175, 1991.

[7] A.W. Moore. An intoductory tutorial on kd-trees. Extract
from Andrew Moore’s PhD Thesis: Effcient Memory based
Learning for Robot Control, 1991.

[8] Kevin P. Murphy and Yair Weiss. The factored frontier
algorithm for approximate inference in dbns. In UAI ’01,
pages 378–385, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[9] A.Y. Ng and M. Jordan. Pegasus: A policy search method
for large mdps and pomdps. In Proceedings of the 16th
Conference on Uncertainty in Artificial Intelligence, pages
406–415, 2000.

[10] J. Pineau, G. Gordon, and S. Thrun. Point-based value
iteration: An anytime algorithm for pomdps. In International
joint conference on artificial intelligence, volume 18, pages
1025–1032, 2003.

[11] M.L. Puterman. Markov decision processes: discrete stochas-
tic dynamic programming. John Wiley & Sons, Inc., 1994.

[12] Lawrence R. Rabiner. A tutorial on hidden markov models
and selected applications in speech recognition. Proceedings
of the IEEE, 77(2):257–286, 1989.

[13] R. Vaisenberg. Towards adaptation in sentient spaces. PhD
Thesis, 2012.

[14] R. Vaisenberg, S. Mehrotra, and D. Ramanan. Exploiting
semantics for scheduling data collection from sensors on real-
time to maximize event detection. In Proceedings of SPIE.
SPIE, 2009.

[15] P. Varakantham, J. Marecki, Y. Yabu, M. Tambe, and
M. Yokoo. Letting loose a spider on a network of pomdps:
Generating quality guaranteed policies. In Proceedings of the
6th international joint conference on Autonomous agents and
multiagent systems, pages 1–8. ACM, 2007.

[16] C.J.C.H. Watkins and P. Dayan. Q-learning. Machine
learning, 8(3):279–292, 1992.

[17] J.L. Williams, J.W. Fisher, and A.S. Willsky. Approximate
dynamic programming for communication-constrained sensor
network management. Signal Processing, IEEE Transactions
on, 55(8):4300–4311, 2007.

[18] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey.
Acm Computing Surveys (CSUR), 38(4):13, 2006.

