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Abstract. We present a novel approach to modeling human pose, to-
gether with interacting objects, based on compositional models of lo-
cal visual interactions and their relations. Skeleton models, while flexi-
ble enough to capture large articulations, fail to accurately model self-
occlusions and interactions. Poselets and Visual Phrases address this lim-
itation, but do so at the expense of requiring a large set of templates. We
combine all three approaches with a compositional model that is flexible
enough to model detailed articulations but still captures occlusions and
object interactions. Unlike much previous work on action classification,
we do not assume test images are labeled with a person, and instead
present results for “action detection” in an unlabeled image. Notably,
for each detection, our model reports back a detailed description includ-
ing an action label, articulated human pose, object poses, and occlusion
flags. We demonstrate that modeling occlusion is crucial for recogniz-
ing human-object interactions. We present results on the PASCAL Ac-
tion Classification challenge that shows our unified model advances the
state-of-the-art for detection, action classification, and articulated pose
estimation.

Action recognition is often cast as a k-way classification task; a person is
either riding a bike, running, or talking on the phone, etc. For example, the
PASCAL Action classification challenge requires one to label a human bounding-
box (provided at test-time) with an action class. Such a formulation is limiting
for two reasons. First, it assumes manual annotation of test data. In “real-world”
unconstrained images, detection is crucial: how many people are riding a bike
in this image, and where are they? Second, one may be interested in richer
descriptions beyond a k-way class label. For instance, is this person riding a bike
or about to mount it? Is he gripping the handlebar with one or both hands?
Part of what makes this problem hard is that (1) humans can articulate and
interact with objects in a variety of ways and (2) the resulting occlusions from
those articulations and interactions are hard to model.

In this work, we present a novel approach to modeling human pose, together
with interacting objects. Our model detects possibly multiple person-object in-
stances in a single image and generates detailed spatial reports for each such
instance. See Fig. 1 for an example of the output our model generates on a test
image, without the benefit of any test annotation. Our approach unifies several
recent lines of thought with classic models of human pose.
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Fig. 1. Our model detects multiple people-objects, action class labels, human and
object pose, and occlusion flag. The above result was obtained without any manual
annotation of human bounding boxes at test-time. White edges connect human body
parts. Light-blue edges connect object parts to each other and to the human. We define
a single compositional model for each action class (in this case, RidingHorse) that is
able to capture large changes in articulation, viewpoint and occlusions. We denote
occluded parts by an open circle. For example, our model correctly predicts that a
different leg of each rider is occluded behind his horse.

Articulated skeletons have dominated contemporary approaches for hu-
man pose estimation, popularized through 2D pictorial structure models that
allow for efficient inference given tree-structured spatial relations [1]. We specif-
ically follow the flexible mixtures of parts (FMP) framework of [2], which aug-
ments a standard pictorial structure with local part mixtures. While such meth-
ods are flexible enough to capture large variations in appearance due to pose,
they still fail to accurately capture self-occlusions of limbs and occlusions due to
interacting objects.

Visual phrases implicitly model occlusions and interactions through the use
of a “composite” template that spans both a person and an interacting object
[3]. Traditional approaches use separate templates for a person and object; in
such cases, it may be difficult to model geometric and appearance constraints
that arise from their interaction. Consider a person riding a horse; the person’s
legs tend to be occluded, while visible body parts tend to take on a riding
pose. A single, global composite captures such constraints, but one may need a
large number of composites to capture all possible person-horse interactions (a
standing vs. galloping horse, an upright vs. crouched rider, etc.).

Poselets encode visual composites of parts rather than visual composites of
objects [4]. A torso-arm composite implicitly captures interactions and occlusions
that are difficult to model with separate templates for the arm and torso. By
composing together different poselets, one can generate a large number of global
composites. While such models are successful at detection, it is not clear if they
can be used for detailed spatial reasoning, such as pose estimation. One reason
is that a large number of poselets may be needed to capture all body poses.
Another is that such methods lack a relational model that forces an anatomically-
consistent arrangement of poselets to fire in a given detection.
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Our approach combines the strengths of all three approaches. We break up
global person+object composites into local patches or “phraselets,” which can
in turn be composed together to yield an exponentially-large set of composites.
Notably, we enforce anatomically-consistent relations between phraselets to gen-
erate valid composites. We do so by defining phraselets as part mixtures in a
FMP model, where local part mixture labels are obtained by “Poselet-like” clus-
tering of global configurations of pose and nearby objects. To capture occlusions,
we define separate phraselet mixtures for visible and occluded parts.

For example, we may learn different phraselets corresponding to hands grip-
ping a handlebar, hands occluding torsos, and hands pointing away from the
body. Our model includes relational constraints between phraselets; the pres-
ence of a handlebar phraselet induces a particular human body pose, as well
as the presence of leg phraselets corresponding to legs occluded by bike-frames.
Classic part models assume local appearance is independent of geometry; a hand
looks the same regardless of the geometry of the remaining body. This makes oc-
clusions and interactions difficult to model. Phraselets differ in that they encode
dependencies between geometry and appearance through relational constraints.

Our model reports action class labels, articulated pose, object part loca-
tions, and part-occlusion flags. Notably, our models do not require a bounding-
box annotation around a person at test-time. We show that our single model
outperforms state-of-the-art methods for diverse tasks including visual compos-
ite detection (c.f. Visual Phrases), articulated pose estimation (c.f. FMP), and
action classification (c.f. Poselets).

1 Related Work
Part models have a rich history in the context of pose-estimation. We refer the
reader to a recent book chapter for a contemporary review [5]. Pictorial struc-
tures [1] are the dominant approach. Similar to [6], we learn part models in a
discriminative framework. However, we follow a supervised learning framework
for learning parts and relations, as in [2, 7]. Recent works have explored inte-
grating relational part models with coarse-scale parts (rather than traditional
limb models) [8]. This can also be integrated into a hierarchical, coarse-to-fine
representation [9, 10]. Our model differs in that we consider only “fine” local rep-
resentations, but focus on representing multi-modal appearances with mixture
models. We show that one can represent an large set of coarse template by mix-
ing and matching smaller patches. Our model jointly addresses detection, action
classification, and pose estimation, similar to part-models that jointly reason
about actions and pose [8], and detection and pose [9, 11].

Poselets were introduced and developed through [4, 12, 13]. We generate phrase-
lets by clustering configurations of pose and nearby objects, unlike Poselets which
clusters only pose. We consider action recognition as in [13], but also report hu-
man pose and object locations in a unified framework. Our phraselets differ in
that they provide explicit reports of local occlusions. Perhaps most importantly,
our model reports back an explicit articulated pose, while Poselets does not.
Poselets are detected independently of each other, making it difficult to extract
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Fig. 2. We show bike handles from PASCAL 2011 RidingBike action clustered using
global configurations of pose and objects. Bike handles belonging to the same cluster
are all assigned the same mixture label ti as described in Sec. 2. Our clusters naturally
encode changes in viewpoint, as well as different semantic object types; for example,
the bottom-center and bottom-right clusters encode similar viewpoints, but different
bicycle types (road bikes versus motorbikes). This is because each type induces different
human poses, captured by our clustering algorithm.

a globally-consistent pose. Our relational model makes use of dynamic program-
ming to force phraselets to fire in a globally-consistent manner.

Many approaches jointly recognize human pose and interacting objects. [14–
16] describe contextual models for doing so, but assume that local part appear-
ances are independent of the interaction. Such approaches typically assume a
single instance of a person-object in the image. Our work differs in that we
reason about multiple person-objects and detailed part occlusions of both the
object and person. The latter allows us to better reason about occlusions arising
from interactions. Visual phrases [3] takes a “brute-force” approach to model-
ing occlusions and pose interactions by defining a global template encompassing
both the person and object. This approach may require a separate template for
each combination of constituent objects and articulated pose. We instead use
local mixtures and co-occurrence relations to reason about such interactions.

2 Phraselet clustering

We describe our approach for learning phraselets, or mixtures of local patches,
specific to a given activity such as bike riding. We assume we are given images
from an activity with keypoint labels spanning both the human body and any
interacting objects. Typical keypoint labels may include head, lt shoulder, rt
elbow, lt ankle, etc for the central figure and front wheel, rear wheel, bike handle
for the bike. More details on the parts we collect keypoint locations for are given
in Sec. 5. We assume these keypoint labels are with a visibility flag denoting if
a particular keypoint is occluded or not.
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(a) Visible elbow phraselets (b) Occluded elbow phraselets

Fig. 3. We show left-elbow phraselets learned from the Running action class in PASCAL
VOC 2011. Our occluded clusters capture changes in the appearance of elbows resulting
arising from viewpoint and occlusion.

Let i ∈ {1, 2, . . .K} be the one of the K parts of the person and/or the
object specific to an activity. Let us write pin = (x, y) and oin ∈ {0, 1} for the
pixel position and visibility flag of the ith part in training image n, respectively.
We write tin ∈ {1, 2, . . .M} for a mixture or phraselet label. For the remainder
of this section, we describe a method for obtaining mixture labels. Our intuition
is that global changes in the geometric configuration of the human body and
nearby object will produce local changes in appearance of a part i, and hence
should be captured by ti. For example, the local appearance of the hand will be
affected by the orientation and type of bicycle (e.g., different bicycles can have
different types of handlebars). We construct a feature vector associated with
each part in each image, and cluster these vectors to derive mixture labels. To
make the clustering scale invariant, we estimate a scale for each part in each
image sin = scalei ∗ headlengthn, where scalei is the canonical scale of a part
measured in human head-lengths, and head-lengthn is the length of the head in
image n. For example, we use scalei = 1 for body parts and scalei = 2 for bicycle
wheels. We now write the feature vector for part i in image n as:

xin =
[
Dist Visible

]T
(1)

where Dist = {wijdij : j = 1..K}, Visible = {wijojn : j = 1..K} (2)

and wij = e−Ti||dij ||2 , dij =
(pjn − pin)

sin

Dist is a 2K-vector of (weighted) pixel displacements of each of the K parts from
part i, normalized for scale. V isible is a K-vector of (weighted) binary occlusion
flags. All terms are Gaussian-weighted by wij such that parts closer to part i
have a larger influence in the global descriptor xin. We found it useful to vary the
variance of the gaussian (given by Ti) across each part, but use a fixed set across
all activities For a given part i, we run K-means on all such features extracted
from a training set of images.

Occlusion: Many parts are not visible in certain images. Such part instances
may pollute a cluster if both visible and occluded parts are clustered together.
Because we believe that occlusions will generate large changes in appearance,
we simply separate xin vectors into two sets, where part i is occluded or not,
and separately run K means for each set. We generate K = 6 visible clusters
and K = 4 occluded clusters for each part. This ensures that clusters/mixtures
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1-6 are visible, while mixtures 7-10 are occluded. We show examples of visible
clusters in Fig. 2. In Fig. 3, we compare visible and occluded clusters for the left
elbow across images of people Running. We pad the image so that our model
can find parts truncated by the image border; we treat truncation and occlusion
identically, so that truncated patches along the border are added to the pool of
occluded patches to be clustered.

Relationship to past work: Our clustering algorithm is closely aligned to
the Poselet clustering algorithm of [12], but with several key differences. Firstly,
we consider the global configuration of the person and interacting object, rather
than just the person. Secondly, we explicitly construct clusters corresponding
to occluded parts. This allows us to generate such occlusion labels for detected
parts at test time simply by reading off the estimated mixture label. Thirdly, and
perhaps most importantly, our clusters consist of small patches that are forced to
fire in globally-consistent arrangements, following a relational model described
in the next section. This allows us to extract globally-consistent estimates of
articulated poses. Our relational model also allows us to compose together a
small number of phraselets with small spatial support into a large number of
composites with large spatial support - we use roughly 100 template patches per
activity, while Poselets requires roughly 1000 templates. One concern may be
that phraselets are less discriminative than Poselets due to their small spatial
support. However, a collection of phraselets can learn to behave like a single,
larger Poselet by enforcing rigid relational constraints, as we show next.

3 Relational model

We now build an activity-specific model for scoring a collection of part mixtures,
or phraselets. We would like to enforce consistent relations between phraselets,
including spatial constraints on the geometric arrangement of parts, as well as
appearance constraints on which mixtures can co-occur. Crucially, these con-
straints depend on each other; mixture appearance affects the spatial geometry
and vice versa (e.g., a handlebar should be explained by an occluded phraselet
only if the hand and handlebar lie spatially near each other). To encode such
constraints, we follow the framework of [2], which describes a deformable part
model that reasons about relations between local mixtures of parts. In this sec-
tion, we review [2] and show how it can be used to build a relational model for
phraselets.

Let I be an image, pi = (x, y) is the pixel location for part i and ti is the
mixture component of part i, derived from the previously described clustering
algorithm. Suppose E is the edge structure defining relational constraints be-
tween the K parts. The score associated with a configuration of phraselets is
written as

S(I, p, t) = b(t) +

K∑
i=1

αiti · φ(I, pi) +
∑
i,j∈E

βijti,tj · ψ(pi − pj) (3)
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(a) Running (b) RidingBike (c) Walking (d) Phoning

(e) RidingHorse (f) UsingComp. (g) TakingPhoto (h) Jumping

Fig. 4. Visualizations of our learned models and tree-structured relations. Our activity-
specific tree connects part templates spanning both, the human and the object. Red
edges connect parts of the human to each other. Green edges connect parts of an
object to each other and to the human. Note that we are showing one (out of an
exponential number of) combinations of local templates for each activity. For example,
the selected phraselet mixtures in (e) correspond to a left-facing horse, but the same
model generates other views by swapping out different mixtures at different spatial
locations (as shown in Fig. 1).

Appearance relations: We write b(t) =
∑
ij∈E w

ij
titj for a “prior” over

mixture combinations, which factors into a sum of pairwise compatibility terms.
This term might encode, for example, that curved handlebars tend to co-occur
with road bicycles, while flat handlers tend to co-occur with motorbikes. Given
that φ(I, pi) is a feature vector (e.g., HOG [17]) extracted from pixel location
pi, the first sum from (3) computes the score of placing template αiti , tuned for
mixture ti for part i, at location pi.

Spatial relations: We write ψ(pi − pj) =
[
dx dy dx2 dy2

]T
for a quadratic

deformation vector computed from the relative offset of locations pi and pj . We
can interpret βijti,tj as a quadratic spring model that switches between a collection

of springs tailored for a particular pair of mixtures (ti, tj). Because the spring
depends on the mixture components, spatial constraints are dependent on local
appearance. For example, this dependency encodes the constraint that people
may be posed differently for different types of bikes. Mixture-specific springs also
encode self-occlusion constraints arising from viewpoint changes. For instance,
our model can capture the fact that the right hip of a person is more likely to be
occluded when it lies near a visible left hip, because such an spatial arrangement
and mixture assignment is consistent with a right-facing person.

4 Inference and Learning

Inference corresponds to maximizing (3) with respect to p and t. When the
relational graph is a tree, one can do this efficiently with dynamic programming,
as described in [1, 2]. We omit the equations for a lack of space, but emphasize
that our inference procedure returns back both part locations and part mixture
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labels. While the inferred mixture labels in [2] are ignored, we use them to infer
occlusion flags for each part.

Structure learning: Given a collection of K parts per activity, we would
like to learn an activity-specific tree-based edge structure E connecting these
K parts. The Chow-Liu algorithm is a well-known approach for learning tree
models by maximizing mutual information [18, 1] of a given set of variables. In
our case, we find the maximum-weight spanning tree in a fully connected graph
whose edges are labeled with the mutual information between zi = (pi, ti) and
zj = (pj , tj). Hence both spatial consistency and appearance consistency are used
when learning the relational structure.

Once we learn an activity-specific tree, we learn the templates and rela-
tions for that tree using a structured prediction objective function. Let zn =
{(p1n, t1n)...(pkn, t

k
n)} be a particular assignment of locations and types for all k

parts in image n. Note that the scoring function in (3) is linear in the parameters
θ = ({w}, {α}, {β}), and therefore can be expressed as S(In, zn) = θ · Φ(In, zn).
We learn a model of the form:

argmin
θ,ξi≥0

1

2
θT · θ + C

∑
n

ξn (4)

s.t. ∀n ∈ positive images θ · Φ(In, zn) ≥ 1− ξn
∀n ∈ negative images,∀z θ · Φ(In, z) ≤ −1 + ξn

The above constraint states that positive examples should score better than 1
(the margin), while negative examples, for all configurations of part positions and
mixtures, should score less than -1. We collect negative examples from images
consisting of people performing activities other than the one of interest. This
form of learning problem is known as a structural SVM, and there exist many
well-tuned solvers such as the cutting plane solver of SVMStruct in [19] and the
stochastic gradient descent solver in [6]. We use the dual coordinate-descent QP
solver of [2]. We show example models and their learned tree structure in Fig. 4
for 8 actions chosen from the PASCAL 2011 Action Classification competition.

5 Experiments

We consider 8 out of the 10 actions outlined in the PASCAL 2011 action classifi-
cation competition. The actions considered correspond to the 8 models shown in
Fig. 4. We train activity specific models as described in Sec. 4 for each of the 8 ac-
tions using PASCAL 2011-train data. In addition to the standard human joints,
we model bike parts (handle, front wheel, rear wheel), horse parts (nose, top-head,
butt) and computer screen (whole object) for their respective action classes. We
model the full human body for most actions, but model only the upper body
for actions with heavy occlusions and truncation (Phoning, UsingComputer, and
TakingPhoto). We evaluate multiple aspects of our model, including detection,
action classification, pose estimation, and occlusion prediction. To evaluate the
latter two, we introduce novel evaluation schemes for evaluating poses under
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Fig. 5. We show detection results obtained without any manual annotation of test
images. We follow the notational conventions of Fig. 1, including open circles to denote
occluded parts. Each row shows the N best detections for a single action model (denoted
by the row’s label). Our compositional models are able to capture large changes in
viewpoint and articulation that are present even within a single action class.
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Fig. 6. We show 2 of the top false positives for a few actions. We plot ground-truth (red
boxes) and predictions (blue boxes) belonging to only the action class denoted in each
row. Many mistakes are due to imprecise bounding-box localization (RidingHorse) or
confusion of action classes with similar poses (Walking). The latter is denoted by the
lack of a red box. Some mistakes are due to inconsistencies and ambiguities in the
ground-truth annotation. Consider the right image in the RidingBike/TakingPhoto
rows; both images are annotated with a single action even though the person appears
to be engaged in two actions (TakingPhoto and RidingBike/RidingHorse). This causes
our predictions to be marked as false positives.

occlusion. Because the web-based PASCAL evaluation server is no longer evalu-
ating entries on the 2011-test, we evaluate results on 2011-val. To do so, we have
manually annotated both the train and val set with part locations and occlusion
flags.

5.1 Action detection

For this task, our goal is to detect person-object composites in a test image. We
use our models to produce composite candidates by running them as scanning-
window detectors (without any manual annotation at test time), and applying
NMS to generate a sparse set of non-overlapping detections. We visualize high
scoring correct detections in Fig. 5 and false positives in Fig. 6. Ground truth
person-object composites are obtained by considering a tight box around parts
spanning the person and the object. To compare against groundtruth, we regress
a rectangle using the part locations of the person and the object for each person-
object detection.

We quantitatively evaluate our models using PASCAL’s standard criteria of
average precision (AP). We compare our models against a visual phrase (VP)
baseline [3], trained for each action class. For those action classes without ob-
jects, this is equivalent to a standard DPM [6]. In both cases, we use defaults of 4
global mixtures and 6 parts per mixture. From Fig. 7, we see that our model out-
performs these state-of-the-art baselines by a significant margin for most classes.
The improvement is more modest for some classes (Running,RidingBike), per-
haps because they exhibit less pose variation and so are well modeled by the
global mixtures of the DPM.
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Fig. 7. Detection results on 2011 PASCAL-val set. Our model significantly outperforms
a state-of-the-art visual phrase (VP) baseline [3].

5.2 Action classification

We compare our model against 2 other baselines apart from (VP/DPM): (1)
FMP, the flexible articulated model of [2] applied to the joint person-object
composite. (2) FMP+occ, which is obtained as follows: The FMP model es-
timates local mixtures by clustering the relative position of a part i wrt its
parent j. FMP+occ also does this, but partitions the set of training data into
visible/occluded instances of part i, and separately clusters each. This allows
the FMP model to report visibility states using estimated part mixtures, anal-
ogous to our own model. To allow comparison to past work, we evaluate results
following the protocol of PASCAL, assuming human bounding-boxes are given
at test-time. We score each bounding box with the highest-scoring overlapping
pose of each action model. For the (VP) baseline, we also give it access to a
bounding box around the person-object composite. We present results on the
2011-val in Table 1. Our model outperforms state-of-the-art baselines, includ-
ing DPM/VP on 7/8 actions. We also report numbers on 2010 test data using
PASCAL’s evaluation server, shown in Table 2 and compare to reported perfor-
mance of [13]. Our numbers are comparable, even though [13] is trained using
a large external dataset and includes additional post-processing steps (such as
contextual re-scoring). Other state-of-the-art methods for action classification
exist, but some may make intimate use of the annotated human bounding box
on the test-image (say, to define a coordinate system to extract spatial features).
We advocate action detection as a more realistic evaluation.

5.3 Person-object pose estimation

Qualitative results of our pose-estimation are shown in Fig 5. In general, our
model rather accurately estimates parts of both the person and the object. No-
tably, our model also returns occlusion labels for each part (given by its estimated
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Action classification on PASCAL 2011-val set
Run. R. Bike R. horse Phoning TakingPhoto UsingComp. Walk. Jump.

Us 69 81.7 90.3 32.9 24.3 45 40.3 49.6

FMP + occ 64.3 69.4 87.6 27.6 17.3 32.5 30.0 42.6

FMP 62.5 66.9 84.7 21.3 11.7 30.5 29.02 44.2

DPM/VP 63.2 66.4 79.7 21.2 12.1 43.5 32.1 28.8

Table 1. Class-specific AP results. In general our model strongly outperforms our base-
lines except for UsingComp. We suspect that this category exhibits less pose variation,
and so is well-modelled by a global template.

Action classification on PASCAL 2010-test set
Run. R. Bike R. horse Phoning TakingPhoto UsingComp. Walk.

Us 82.8 82.2 87.0 47.8 33.7 54.5 66.9

Poselets 85.6 83.7 89.4 49.6 31.0 59.1 67.9

Table 2. AP across various models on the PASCAL 2010 set. Our model is comparable
to Poselets, even though the later is trained with a large external dataset and uses
various post-processing steps for contextual res-coring.

mixture label). We quantitatively evaluate both aspects of pose estimation be-
low.

Occlusion-aware pose evaluation: Standard benchmarks for pose estima-
tion require an algorithm to report back the location of all parts, including those
that may be occluded. See for example, the now-standard criteria of probability
of a correct pose (PCP) [20]. We argue that a proper benchmark should only
score visible parts. This is particularly relevant for human-object interactions be-
cause occlusions are rather common. We introduce a novel scheme for evaluating
models and ground-truth poses that return a variable number of parts. Let ng be
the number of visible parts in the ground truth pose, and nh be the number of
visible parts in the hypothesized pose. Let k be the number of correctly match-
ing parts across the two that are in correspondence and sufficiently overlap. We
evaluate this pose using the fraction of correct parts k

.5(ng+nh)
. One can show

this is equivalent to the F1 score, or harmonic mean of precision (the fraction
of predicted parts that correctly match) and recall (the fraction of ground-truth
parts that are correctly matched).

Results under our F1 score are shown in Table 3. This evaluation penal-
izes algorithms for predicting an occluded part as visible; hence, it somewhat
combines pose estimation with aspect estimation. Under this setting, our model
outperforms all variants. The base FMP algorithm, like most algorithms for ar-
ticulated pose estimation, reports a fixed set of parts. One may argue that it
is artificially penalized under our F1 score. However, FMP+occ is capable of
predicting a visibility label per part, by construction, just as our model. We see
that this model performs significantly better than FMP, but is still considerably
lower than our final model.

We also score PCP in Table 4, which requires an algorithm to report locations
of all parts, regardless of their visibility. Our algorithm still outperforms the 2
baselines. This suggests our model accurately predicts the locations of even oc-
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Occlusion-aware F1 score
Run. R. Bike R. horse Phoning TakingPhoto UsingComp. Walk. Jump.

Us: 66.8 49.2 65.3 41.4 30.8 41.2 44.8 40.3

FMP+occ: 64.7 45 61.9 31.5 22.1 40.2 32.9 38.1

FMP 59.2 42.4 51.2 24.4 21.2 28.4 24.3 29.1

Table 3. Pose estimation across various models on 8 actions from PASCAL 2011,
scored using F1 score. The numbers reported are average F1 scored over all test in-
stances belonging to the action of interest. Algorithms are penalized for predicting the
location of an occluded part in a test image. Our model outperforms state-of-the-art
FMP model[2] by a significant margin, even when its augmented to encode occlusions.

PCP score
Run. R. Bike R. horse Phoning TakingPhoto UsingComp. Walk. Jump.

Us: 68.7 50.7 64.7 39.9 28.9 43.1 45.4 40.7

FMP+occ: 67.7 45.1 59.8 29.7 20.7 39.7 33.1 38.9

FMP 63.4 45.6 56.6 27.4 23.8 35.8 32.6 37.2

Table 4. Pose estimation across various models on 8 actions from PASCAL 2011,
scored using PCP. Algorithms are required to predict the location of all parts (including
occluded ones) in a test image. See text for details.

cluded parts. Interestingly, we still see a substantial improvement in performance
from FMP to FMP+occ for most actions. In retrospect, this may seem obvious.
Parts undergoing occlusions look different than when they are visible, and so
one should train separate visual mixtures for such cases. One might suspect that
these visual mixtures should have zero-weight, to ensure that no image evidence
is scored during an occlusion. We take the view that the learning algorithm
should determine this using training data. It may be that occluded parts still
generate a characteristic gradient pattern (e.g., T-junctions), which can be cap-
tured by a template. Note that FMP+occ approach, in some sense, is a partial
“phraselet” clustering since global knowledge of occluders is used to influence
local appearance modeling.

Benchmark pose estimation: One could argue our phraselet model is
directly applicable to pose estimation, without regard to interacting objects or
actions. To evaluate this, we trained and evaluated our model on the PARSE
benchmark [21]. We achieve a PCP score of 77.4%, outperforming the previous
state-of-the-art FMP model at 74.9% (reported in [2]).

6 Conclusion

We have presented a novel approach to modeling human pose, together with
interacting objects, based on compositional models of local visual interactions
and their relations. Our modeling framework captures the complex geometry,
appearance, and occlusions that arise in person-object interactions. We effec-
tively use such models to detect person-object composites, estimate action class
labels, articulated pose, object pose, and occlusion labels within a single, unified
framework. We demonstrate compelling performance on diverse tasks includ-
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ing detection, classification, and pose estimation, as evidenced by comparing to
state-of-the-art models especially tuned for those tasks.
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