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Abstract This chapter will survey approaches to person detection and pose esti-
mation with the use of part-based models. After a brief introduction/motivation for
the need for parts, the bulk of the chapter will be split into three core sections on
Representation, Inference, and Learning. We begin by describing various gradient-
based and color descriptors for parts. We will next focus on Representations for
encoding structural relations between parts, describing extensions of classic picto-
rial structures models to capture occlusion and appearance relations. We will use the
formalism of probabilistic models to unify such representations and introduce the
issues of inference and learning. We describe various efficient algorithms designed
for tree-structures, as well as focusing on discriminative formalisms for learning
model parameters. We finally end with applications of pedestrian detection, human
pose estimation, and people tracking.

1 Introduction

Part models date back to the generalized cylinder models of Binford [3] and Marr
and Nishihara [40] and the pictorial structures of Fischler and Elschlager [24] and
Felzenszwalb and Huttenlocher [19]. The basic premise is that objects can be mod-
eled as a collection of local templates that deform and articulate with respect to one
another.

Contemporary work: Part-based models have appeared in recent history under
various formalisms. Felzenszwalb and Huttenlocher [19] directly use the pictorial
structure moniker, but also notably develop efficient inference algorithms for match-
ing them to images. Constellation models [20, 7, 63] take the same approach, but use
a sparse set of parts defined at keypoint locations. Body plans [25] are another rep-

Deva Ramanan, Department of Computer Science, University of California at Irvine e-mail:
dramanan@ics.uci.edu

1

dramanan@ics.uci.edu


2 Deva Ramanan

Fig. 1 One the left, we show a pictorial structure model [24, 19] which models objects using a col-
lection of local part templates together with geometric constraints, often visualized as springs. One
the right, we show a pictorial structure for capturing an articulated human “puppet” of rectangular
limbs, where springs have been drawn in red for clarity.

resentation that encodes particular geometric rules for defining valid deformations
of local templates.

Star models: A particularly common form of geometric constraint is known as
a “star model”, which states that part placements are independent within some root
coordinate frame. Visually speaking, one think of springs connecting each part to
some root bounding box. This geometric model can be implicitly encoded in an
implicit shape model [38]. One advantage of the implicit encoding is that one can
typically deal with a large vocabulary of parts, sometimes known as a codebook of
visual words [57]. Oftentimes such codebooks are generated by clustering candidate
patches typically found in images of people. Poselets [4] are recent successful ex-
tension of such a model, where part models are trained discriminatively using fully
supervised data, eliminating the need for codebook generation through clustering.
K-fan models generalize star models [9] by modelling part placements as indepen-
dant given the location of K reference parts.

Tree models: Tree models are a generalization of star model that still allow for
efficient inference techniques [19, 28, 45, 51]. Here, the independence assumptions
correspond to child parts being independently placed in a coordinate system defined
by their parent. One common limitation of such models is the so-called “double-
counting” phenomena, where two estimated limbs cover the same image region
because their positions are estimated independently. We will discuss various im-
provements designed to compensate for this limitation.

Related approaches: Active appearance models [8, 41] are a similar object rep-
resentation that also decomposes an object into local appearance models, together
with geometric constraints on their deformation. Notably, they are defined over con-
tinuous domains rather than a discretized state space, and so rely on continuous op-
timization algorithms for matching. Alternatively, part-based representations have
also been used for video analysis be requiring similar optical flow for pixels on the
same limb [32, 5].
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2 Part models

In this section, we will overview techniques for building localized part models.
Given an image I and a pixel location li = (xi,yi), we write φ(I, li) for the local
descriptor for part i extracted from a fixed size image patch centered at li. It is help-
ful to think of part models as fixed-size templates that will be used to generate part
detections by scanning over the image and finding high-scoring patches. We will
discuss linearly-parameterized models where the local score for part i is computed
with a dot product wi ·φ(I, li). This allows one to use efficient convolution routines
to generate scores at all locations in an image. To generate detections at multiple
scales, one can search over an image pyramid. We will discuss more detailed pa-
rameterizations that include orientation and foreshortening effects in Section 3.2.

2.1 Color models

Fig. 2 One the left, show pixels used to train a color-based model for an arm. Pixels inside the
red rectangle are treated as positive examples, while pixels outside are treated as negatives. On
the left-center, we show the discriminant boundary learned by a classifier (specifically, logistic
regression defined on quadratic RGB features). On the right two images, we show a test image
and arm-pixel classification results using the given discriminant boundary.

The simplest part model is one directly based on pixel color. A head part should,
for example, contain many skin pixels. This suggests that augmenting a a head part
template with a skin detector will be beneficial. In general, such color-based models
will not work well for limbs because of intra-class variation; people can appear in a
variety of clothes with various colors and textures. Indeed, this is one of the reasons
why human pose estimation and detection is challenging. In some scenarios, one
may know the appearance of clothing a priori; for example, consider processing
sports footage with known team uniforms. We show in Section 4.2 and Section
6.3 that one can learn such color models automatically from a single image or a
video sequence. Color models can be encoded non-parametrically with a histogram
(e.g., 8 bins per RGB axis resulting in a 83 = 512 descriptor), or a parametric model
which is typically either a gaussian or a mixture of gaussians. In the case of a simple
gaussian, the corresponding color descriptor φRGB(I, li) encodes standard sufficient
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statistics computed over a local patch; the mean (µ ∈ R3) and covariance (Σ ∈ R3×3)
of the color distribution.

2.2 Oriented gradient descriptors

Fig. 3 On the left, we show an image. On the center left, we show its representation under a HOG
descriptor [10]. A common visualization technique is to render an oriented edge with intensity
equal to its histogram count, where the histogram is computed over a 8× 8 pixel neighborhood.
We can use the same technique to visualize linearly-parameterized part models; we show a “head”
part model on the right, and its associated response map for all candidate head location on the
center right. We see a high response for the true head location. Such invariant representations are
useful for defining part models when part colors are not known a priori or not discriminative.

Most recognition approaches do not work directly with pixel data, but rather
some feature representation designed to be more invariant to small changes in il-
lumination, viewpoint, local deformation, etc. One of the most successful recent
developments in object recognition is the development of engineered, invariant de-
scriptors, such as the scale-invariant feature transform (SIFT) [39] and the histogram
of oriented gradient (HOG) descriptor [10]. The basic approach is to work with nor-
malized gradient orientation histograms rather than pixel values. We will go over
HOG, as that is a particular common representation. Image gradients are computed
at each pixel by finite differencing. Gradients are then binned into one of (typi-
cally) 9 orientations over local neighborhoods of 8×8 pixel. A particularly simple
implementation of this is obtained by computing histograms over non-overlapping
neighborhoods. Finally, these orientation histograms are normalized by aggregating
orientation statistics from a local window of 16×16 pixels. Notably, in the original
definition of [10], each orientation histogram is normalized with respect to multiple
(4, to be exact) local windows, resulting in vector of 36 numbers to encoding the
local orientation statistics of a 8× 8 neighborhood “cell”. Felzenszwalb et al [18]
demonstrate that one can reduce the dimensionality of this descriptor to 13 num-
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bers by looking at marginal statistics. The final histogram descriptor for a patch of
nx×ny neighborhood cells is φ(I, li) ∈ R13nxny .

3 Structural constraints

In this section, we describe approaches for composing the part models defined in
the previous section into full body models.

3.1 Linearly-parameterized spring models

Assume we have a K-part model, and let us write the location of the kth part as lk.
Let us write z = {l1, . . . , lK} for a particular configuration of all K parts. Given an
image I, we wish to score each possible configuration z:

S(I,z) =
K

∑
i=1

wi ·φ(I, li)+ ∑
i, j∈E

wi j ·ψ(I, li, l j) (1)

We would like to maximize the above equation over z, so that for a given image,
our model can report the best-scoring configuration of parts.

Appearance term: We write φ(I, li) for the image descriptor extracted from lo-
cation li in image x, and wi for the HOG filter for part i. This local score is akin to
the linear template classifier described in the previous section.

Deformation term: Writing dx = x j− xi and dy = y j− yi, we can now define:

ψ(I, li, l j) =
[
dx dx2 dy dy2

]T (2)

which can be interpreted as the negative spring energy associated with pulling part j
from a canonical relative location with respect to part i. The parameters wi j specify
the rest location of the spring and its rigidity; some parts may be easier to shift
horiontally versus veritically. In Section 3.3, we derive these linear parameters from
a Gaussian assumption on relative location, where the rest position of the spring is
the mean of the Gaussian, and rigidity is specified by the covariance of the Gaussian.

We define E to be the (undirected) edge set for a K-vertex relational graph G =
(V,E) that denotes which parts are constrained to have particular relative locations.
Intuitively, one can think of G as the graph obtained from Figure 1 by replacing parts
with vertices and springs with edges. Felzenszwalb and Huttenlocher [19] show that
this deformation model admits particularly efficient inference algorithms when G is
a tree (as is the case for the body model in the right of Figure 1).

For greater flexibility, one could also make the deformation term depend on the
image I. For example, one might desire consistency in appearance between left and
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right body parts, and so one could augment ψ(I, li, l j) with squared difference be-
tween color histograms extracted at locations li and l j [61]. Finally, we note that the
score can be written function of the part appearance and spatial parameters:

S(I,z) = w ·Φ(I,z)

3.2 Articulation

The classic approach to modeling articulated parts is to augment part location li with
pixel position, orientation, and foreshortening

li = (xi,yi,θi,si).

This requires augmenting the spatial relational model (2) with model relative ori-
entation and relative foreshortening, as well as relative location. Notably, this en-
hanced parameterization increases the computational burden of scoring the local
model, since one must convolve an image with a family of rotated and foreshort-
ened part templates.

While [19] advocate explicitly modeling foreshortening, recent work[49, 45, 48,
1] appear to obtain good results without it, relying on the ability of the local detec-
tors to be invariant to small changes in foreshortening. [48] also demonstrate that
by formulating the above scoring function in probabilistic terms and extracting the
uncertainty in estimates of body pose (done by computing marginals), one can es-
timate foreshortening. In general, parts may also differ in appearance due to other
factors such as out-of-plane rotations (e.g., frontal versus profile faces) and semantic
part states (e.g., an open versus a closed hand).

In recent work, [64] foregoe an explicit modeling of articulation, and instead
model oriented limbs with mixtures of non-articulated part models - see Figure 10.
This has the computational advantage of sharing computation between articulations
(typically resulting in orders of magnitude speedups), while allowing mixture mod-
els to capture other appearance phenomena such as out-of-plane orientation, seman-
tic part states, etc.

3.3 Gaussian tree models

In this section, we will develop a probabilistic graphical model over part locations
and image features. We will show that the log posterior of part locations given image
features can be written in the form of (1). This provides an explicit probabilistic
motivation for our scoring function, and also allows for the direct application of
various probabilistic inference algorithms (such as sampling or belief propagation).
We will also make the simplifying assumption that the relational graph G = (V,E)
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is a tree that is (without loss of generality) rooted at part/vertex i = 1. This means
we can model G as a directed graph, further simplyifying our exposition.

Spatial prior: Let us first define a prior over a configuration of parts z. We as-
sume this prior factors into a product of local terms

P(z) = P(l1) ∏
i j∈E

P(l j|li) (3)

The first term is a prior over locations of the root part, which is typically the torso.
To maintain a translation invariant model, we will set P(z1) is to be uninformative.
The next terms specify spatial priors over the location of a part given its parent in the
directed graph G. We model them as diagonal-covariance Gaussian density defined
the relative location of part i and j:

P(z j|zi) = N(z j− zi; µ j,Σ j) where Σ j =

[
σ j,x 0

0 σ j,y

]
(4)

The ideal rest position of part j with respect to its parent is given by µ j. If part j is
more likely to deform horizontally rather an vertically, one would expect σ j,x > σ j,y.

Feature likelihood: We would like a probabilistic model that explains all fea-
tures observed at all locations in an image, including those generated by parts and
those generated by a background model. We write L for the set of all possible loca-
tions in an image. We denote the full set of observed features as

{φ(I, l′)|l′ ∈ L}

If we imagine a pre-processing step that first finds a set of candidate part detections
(e.g., candidate torsos, heads, etc.), we can intuitively think of L as the set of loca-
tions associated with all candidates. Image features at a subset of locations li ∈ L
are generated from an appearance model for part i, while all other locations from L
(not in z) generate features from a background model:

P(I|z) = ∏
i

Pi(φ(I, li)) ∏
l′∈L\z

Pbg(φ(I, l′)) (5)

= Z ∏
i

r(φ(I, li))

where r(φ(I, li)) =
Pi(φ(I, li))

Pbg(φ(I, li))
and Z = ∏

l′∈L
Pbg(φ(I, l′))

We write Pi(φ(I, li)) for the likelihood of observing feature φ(I, li) given an appear-
ance model for part i. We write Pbg(φ(I, l′) for the likelihood of observing feature
φ(I, l′) given a background appearance model. The overall likelihood is, up to a
constant, only dependent on features observed at part locations. Specifically, it de-
pends on the likelihood ratio of observing the features given a part model versus a
background model. Let us assume the image feature likelihood in (5) are Gaussian
densities with a part or background-specific mean α and a single covariance Σ :
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Pi(φ(I, li)) = N(φ(I, li);αi,Σ) and Pbg(φ(I, li)) = N(φ(I, li);αbg,Σ) (6)

Log linear posterior: The relevant quantity for inference, the posterior, can now
be written as a log-linear model:

P(z|I) ∝ P(I|z)P(z) (7)

∝ expw·Φ(I,z) (8)

where w and Φ(I,z) are equivalent to their definitions in Section 3.1. Specifically,
one can map Gaussian mean and variances to linear parameters as below, providing
a probabilistic motivation for the scoring function from (1).

wi = Σ
−1(αi−αbg), wi j =−

[
µ j,x

σ2
j,x

1
2σ2

j,x

µ j,y

σ2
j,y

1
2σ2

j,y

]T
(9)

Note that one can relax the diagonal covariance assumption in (4) and part-independant
covariance assumption in (6) and still obtain a log-linear posterior, but this requires
augmenting Φ(I,z) to include quadratic terms.

3.4 Inference

Fig. 4 Felzenszwalb and Huttenlocher [19] describe efficient dynamic programming algorithms
for computing the MAP body configuration, as well as efficient algorithms for sampling from the
posterior over body configurations. Given the image and foreground silhoette (used to construct
part models) on the left, we show two sampled body configurations on the right two images.

MAP estimation: Inference corresponds to maximizing S(x,z) from (1) over z.
When the relational graph G = (V,E) is a tree, this can be done efficiently with dy-
namic programming (DP). Let kids( j) be the set of children of j in E. We compute
the message part j passes to its parent i by the following:

score j(z j) = w j ·φ(x,z j)+ ∑
k∈kids( j)

mk(z j) (10)

m j(zi) = max
z j

score j(z j)+wi j ·ψ(x,zi,z j) (11)
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Eq. (10) computes the local score of part j, at all pixel locations z j, by collecting
messages from the children of j. Eq. (11) computes for every location of part i, the
best scoring location of its child part j. Once messages are passed to the root part
( j = 1), score1(z1) represents the best scoring configuration for each root position.
One can use these root scores to generate multiple detections in image x by thresh-
olding them and applying non-maximum suppression (NMS). By keeping track of
the argmax indices, one can backtrack to find the location and type of each part in
each maximal configuration.

Computation: The computationally taxing portion of DP is (11). Assume that
there are |L| possible discrete pixel locations in an image. One has to loop over |L|
possible parent locations, and compute a max over |L| possible child locations and
types, making the computation O(|L|2) for each part. When φ(pi− p j) is a quadratic
function and L is a set of locations on a pixel grid (as is the case for us), the inner
maximization in (11) can be efficiently computed for each combination of ti and t j in
O(|L|) with a max-convolution or distance transform [19]. Message passing reduces
to O(|L|) per part, making the overall maximization O(|L|K) for a K-part model.

Sampling: Felzenszwalb and Huttenlocher [19] also point out that tree models
allow for efficient sampling. As opposed to traditional approaches to sampling, such
as Gibbs sampling or Markov Chain Monte Carlo (MCMC) methods, sampling from
a tree-structured model requires zero burn-in time. This is because one can directly
compute the root marginal P(l1|I) and pairwise conditional marginals P(l j|li, I) for
all edges i j∈E with the sum-product algorithm (analogous to the forward-backward
algorithm for inference on discrete Hidden Markov Models). The forward pass cor-
responds to “upstream” messages, passed from part j to its parent i:

P(l j|li, I) ∝ P(l j|li)a j(l j) (12)

a j(l j) ∝ expw j ·φ(I,l j) ∏
k∈kids(j)

∑
lk

P(lk|l j, I) (13)

When part location li is parameterized by an (x,y) pixel position, one can represent
the above terms as 2D images. The image a j is obtained by multiplying together
response images from the children of part j and from the local template w j. When
P(l j|li) = f (l j− li), the summation in (13) can be computed by convolving image
ak with filter f . When using a Gaussian spatial model (4), the filter is a standard
Gaussian smoothing filter, for which many efficient implementations exist. At the
root, the image a1(l1) is the true conditional marginal P(l1|x). Given cached tables
of P(l1|I) and P(l j|li, I), one can efficiently generate samples by the following: Gen-
erate a sample from the root z′1 ∼ P(l1|I), and then generate a sample from the next
ordered part given its sampled parent: l′j ∼ P(I j|l′i , I). Each involves a table lookup,
making the overall sampling process very fast.

Marginals: It will also be convenient to directly compute singleton and pairwise
marginals P(li|I) and P(l j, li|I) for parts and part-parent pairs. This can be done by
first computing the upstream messages in (13), where the root marginal is given by
P(l1|I) = a1(l1). and then computing downstream messages from part i to its child
part j:
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Fig. 5 One can compute part marginals using the sum-product algorithm [45]. Given part
marginals, one can render a weighted rectangular mask at all image locations, where weights are
given by the marginal probability. Lower limbs are rendered in blue, upper limbs and the head are
rendered in green, and the torso is rendered in red. Regions of strong color correspond to pixels
that likely to belong to a body part, according to the model. In the center, part models are defined
using edge-based templates. On the right, part models are defined using color models.

P(l j, li|I) = P(l j|li, I)P(li|I)
P(l j|I) = ∑

li

P(l j, li|I) (14)

4 Non-tree models

In this section, we describe constraints and associated inference algorithms for non-
tree relational models.

4.1 Occlusion constraints

Tree-based models imply that left and right body limbs are localized independently
given a root torso. Since left and right limb templates look similar, they may be
attracted to the same image region. This often produces pose estimates whose left
and right arms (or legs) overlap, or the so-called “double-counting” phenomena.
Though such configurations are physically plausible, we would like to assign them
a lower score than a configuration that explains more of the image. One can do this
by introducing a constraint that an image region an only be claimed by a single part.
There has been a body of work [58, 34, 55] developing layered occlusion models
for part-based representations. Most do so by adding an additional visibility flag
vi ∈ {0,1} for part i:

P(I|z,v) = ∏
i

Pi(φ(I, li))vi ∏
l′∈L\z

Pbg(φ(I, l′)) (15)

P(v|z) ∝ ∏
C

vis(vC,zC) (16)
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Fig. 6 Sigal and Black [55] demonstrate that the “double-counting” in tree models (top row) can
be eliminated with an occlusion-aware likelihood model (bottom row).

where C is a collection of cliques of potentially overlapping parts, and vis is a bi-
nary visibility function that assigns 1 to valid configurations and visibility states
(and 0 otherwise). One common approach is to only consider pairwise cliques of
potentially overlapping parts (e.g., left/right limbs). Other extensions include mod-
eling visibility at the pixel-level rather than the part-level, allowing for parts to be
partially visible [55]. During inference, one may marginalize out the visibility state
z and simply estimate part locations z, or one simultaneously estimate both. In ei-
ther case, probabilistic dependancies between left and right limbs violate classic tree
independence assumptions - e.g., left and right limbs are no longer independently
localized for a fixed root torso.

4.2 Appearance constraints

People, and objects in general, tend to be consistent in appearance. For example,
left and right limbs often look similar in appearance because clothes tend to be
mirror symmetric [42, 46]. Upper and lower limbs often look similar in appearance,
depending on the particular types of clothing worn (shorts versus pants, long-sleeves
versus short sleeves) [61]. Constraints can even be long-scale, as the hands and face
of a person tend to have similar skin tones. Finally, an additional cue is that of
background consistency; consider an image of a person standing on a green field.
By enforcing the constraint that body parts are not green, one can essentially subtract
out the background [45, 21].

Pairwise consistency: One approach to enforcing appearance constraints is to
break them down into pairwise constraints on pairs of parts. One can do this by



12 Deva Ramanan

defining an augmented pairwise potential

ψ(I, li, l j) = ||φRBG(I, li)−φRGB(I, l j)||2 (17)

where φRBG(I, li) are color models extracted from a window centered at location
li. One would need to augment the relational graph G with connections between
pairs of parts with potential appearance constraints. The associated linear parame-
ters would learn to what degree certain parts look consistent. Tran and Forsyth show
such cues are useful [61]. Ideally, this consistency should depend on additional la-
tent factors; if the person is wearing pants, that both the upper,lower,left, and right
leg should look consistent in appearance. We see such encodings as a worthwhile
avenue of future research. Additionally, one can augment the above potentials with
additional image-specific cues. For example, the lack of a strong intervening con-
tour between a putative upper and lower arm location may be further evidence of a
correct localization. Sapp et al. explore such cues in [52, 53].

Global consistency: Some appearance constraints, such as a background model,
are non-local. To capture them, we can augment the entire model with latent appear-
ance variables a.

φ(I, li,a) =
[

φ(I, li)
f (φRGB(I, li),ai,abg)

]
(18)

where we define ai to be appearance of part i and aBG is the appearance of the back-
ground. Ramanan [45] treats these variables as latent variables that are estimated
simultaneously with part locations li. This is done with an iterative inference algo-
rithm whose steps are visualized in Figure 5. Ferrari et al. [21] learn such variables
by applying a foreground-background segmentation engine on the output of a up-
right person detector.

4.3 Inference with non-tree models

As we have seen, tree models allow for a number of efficient inference procedures.
But we have also argued that there are many cues that do not decompose into tree
constraints. We briefly discuss a number of extensions for non-tree models. Many of
them originated in the tracking literature, in which (even tree-structured) part-based
models necessarily contain loops once one imposes a motion constraint on each part
- e.g., an arm most not only lie near its parent torso, but must also lie near the arm
position in the previous frame.

Mixtures of trees: One straightforward manner of introducing complexity into
a tree model is to add a global, latent mixture model z = {l1, . . . , lK ,zglobal}. For
example, the latent variable could specify the viewpoint of the person; one may
expect different spatial locations of parts given this latent variable. Given this latent
variable, the overall model reduces to a tree. This suggests the following inference
procedure:
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max
z

S(I,z) = max
zglobal

max
{l1,...lK}

S(I,z) (19)

where the inner maximization can exploit standard tree-based DP inference algo-
rithms. Alternatively, one can compute a posterior by averaging the marginals pro-
duced by inference on each tree. Ioffe and Forsyth use such models to capture
occlusion constraints [27]. Lan and Huttenlocher use mixture models to capture
phases of a walking cycle [36], while Wang and Mori [62] use additive mixtures,
trained discriminatively in a boosted framework, to model occlusion contraints be-
tween left/right limbs. Tian and Sclaroff point out that, if spring covariances are
shared across different mixture components, one can reuse distance transform com-
putations across mixtures [60]. Johnson and Everingham [31] demonstrate that part
appearances may also depend on the mixture component (e.g., faces may appear
frontally or in profile), and define a resulting mixture tree-model that is state-of-the-
art

Generating tree-based configurations: One approach is to use tree-models as
a mechanism for generating candidate body configurations, and scoring the config-
urations using more complex non-tree constraints. Such an approach is similar to
N-best lists common in speech decoding. However, in our case, the N-best config-
urations would tend to be near-duplicates - e.g., one-pixel shifts of the best-scoring
pose estimate. Felzenszwalb and Huttenlocher [19] advocate the use of sampling to
generate multiple configurations. These samples can be re-scored to obtain an esti-
mate of the posterior over the full model, an inference technique known as impor-
tance sampling. Buehler et al. [6] argues that one obtains better samples by sampling
from max-marginals. One promising area of research is the use of branch-and-bound
algorithms for optimal matching. Tian and Sclaroff [60] point out that one can use
tree-structures to generate lower-bounds which can be used to guide search over the
space of part configurations.

Loopy belief propagation: A successful strategy for dealing with “loopy” mod-
els is to apply standard tree-based belief propagation (for computing probabilistic
or max-marginals) in an iterative fashion. Such a procedure is not guaranteed to
converge, but often does. In such situations it can be shown to minimize a varia-
tional approximation to the original probabilistic model. One can reconstruct full
joint configurations from the max-marginals, even in loopy models [65].

Continuous state-spaces: There has also been a family of techniques that di-
rectly operate on a continuous state space of li rather than discretizing to the pixel
grid. It is difficult to define probabilistic models on continuous state spaces. Because
posteriors are multi-model, simple Gaussian parameterizations will not suffice. In
the tracking literature, one common approach to adaptively discretize the search
space using a set of samples or particles. Particle filters have the capability to capture
non-Gaussian, multi-modal distributions. Sudderth et al. [59], Isard [29], and Sigal
et al. [56] develop extensions for general graphical models, demonstrating results
for the task of tracking articulated models in videos. In such approaches, samples
for a part are obtained by a combination of sampling from the spatial prior P(l j|li)
and the likelihood Pi(φ(I, li)). Techniques which focus on the latter are known as
data-driven sampling techniques [37, 26].
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5 Learning

The scoring functions and probabilistic models defined previously contain parame-
ters specifying the appearance of each part wi and parameters specifying the contex-
tual relationships between parts wi j. We would like to set these parameters so that
they reflect the statistics of the visual world. To do so, we assume are given train-
ing data with images and annotated part locations {In,zn}. We also assume that the
edge structure E is fixed and known (e.g., as shown in Figure 1). We will describe a
variety of methods for learning parameters given this data.

5.1 Generative models

The simplest method for learning is to learn parameters that maximize the joint
likelihood of the data:

wML = argmax
w

∏
n

P(In,zn|w) (20)

= argmax
w

∏
n

∏
i

P(In|li,n,wi) ∏
i j∈E

P(l j,n|li,n,wi j) (21)

Recall that the weights w are a function of Gaussian parameters {µ,σ ,α,Σ} as in
(9). We can learn each parameter by standard Gaussian maximum likelihood esti-
mation (MLE), which requires computing sample estimates of means and variances.
For example, the rest position for part i is given by the average relative location of
part i with respect to its parent from the labeled data. The appearance template for
part i is given by computing its average appearance, computing the average appear-
ance of the background, and taking the difference weighted by a sample covariance.

5.2 Conditional Random Fields

One of the limitations of a probabilistic generative approach is that assumptions of
independence and Gaussian parameterizations (typically made to ensure tractability)
are not likely to be true. Another difficulty with generative models is that they are not
tied directly to a pose estimation task. While generative models allow us to sample
and generate images and configuration, we want a model that produces accurate
pose estimates when used for inference.

Discriminative models are an attempt to accomplish the latter. One approach to
doing this, advocated by [49], is to estimate parameters that maximize the posterior
probability P(zn|In) over the training set:

argmax
w

∏
n

P(zn|In,w) (22)
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This in turn can be written as

argmin
w

LCRF(w) where LCRF(w) = λ
1
2
||w||2 +∑

n
Zw(In)−w ·Φ(In,zn)

and Zw(In) = ∑
z′

expw·Φ(In,z′) (23)

where we have taken logs to simplify the expression (while preserving the argmax)
and added an optional but common regularization term (to reduce the tendency
to overfit parmeters to training data). The second derivative of LCRF(w) is non-
negative, meaning that it is a convex function whose optimum can be found with
simple gradient descent: w := w + stepsize ∂LCRF (w)

∂w . Ramanan and Sminchisescu
[49] point out this such a model is an instance of a conditional random feild
(CRF) [35], and show that the gradient is obtained by computing expected suffi-
cient statistics, requiring access to posterior marginals P(zi|xn,w) and P(zi,z j|xn,w).
This means that each iteration of gradient descent will require the two-pass “sum-
product” inference algorithm (14) to compute the gradient for each training image.

5.3 Structured Max-Margin Models

One can generalize the objective function from (23) to other types of losses. Assume
that in addition to training images of people with annotated poses {In,zn}, we are
also given a negative set of images of backgrounds. One can use this training data
to to define a structured prediction objective function, similar to those proposed in
[16, 33]. To do so, we note that because the scoring function Sw(x,z) is linear in
model parameters w, it can be written as S(x,z) = w ·Φ(x,z).

arg min
w,ξn≥0

λ
1
2
||w||2 +∑

n
ξn (24)

s.t. ∀n ∈ pos w ·Φ(In,zn)≥ 1−ξn

∀n ∈ neg,∀z w ·Φ(In,z)≤−1+ξn

The above constraint states that positive examples should score better than 1 (the
margin), while negative examples, for all configurations of parts, should score less
than -1. The objective function penalizes violations of these constraints using slack
variables ξn. Traditional structured prediction tasks do not require an explicit neg-
ative training set, and instead generate negative constraints from positive examples
with mis-estimated labels z. This corresponds to training a model that tends to score
a ground-truth pose highly and alternate poses poorly. While this translates directly
to a pose estimation task, the above formulation also includes a “detection” compo-
nent: it trains a model that scores highly on ground-truth poses, but generates low
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scores on images without people. Recent work has shown the above to work well
for both pose estimation and person detection [64, 33].

The above optimization is a quadratic program (QP) with an exponential number
of constraints, since the space of z is |L|K . Fortunately, only a small minority of the
constraints will be active on typical problems (e.g., the support vectors), making
them solvable in practice. This form of learning problem is known as a structural
support vector machine (SVM), and there exists many well-tuned solvers such as the
cutting plane solver of SVMStruct [23] and the stochastic gradient descent (SGD)
solver in [18], and the dual decomposition method of [33].

5.4 Latent-variable structural models

Fig. 7 We show the discriminative part models of Felzenszwalb et al. [18] trained to find people.
The authors augment their latent model to include part locations and a discrete mixture component
that, in this case, finds full (left) upper versus upper-body people (right). On benchmark datasets
with occluded people, such as the well-known PASCAL Visual Object Challenge [15], such occlu-
sion aware models are crucial for obtaining good performance. Notably, these models are trained
using weakly-supervised benchmark training data that consists bounding boxes encompassing the
entire object. The part representation is learned automatically using the coordinate descent algo-
rithm described in Section [?]

In many cases, it maybe difficult to obtain “reliable” estimates of part labels.
Instead, assume every positive example comes with a domain Zn of possible latent
values. For example, limb parts are often occluded by each other or the torso, mak-
ing their precise location unknown. Because part models are defined in 2D rather
than 3D, it is difficult for them to represent out-of-plane rotations of the body. Be-
cause of this, left/right limb assignments are defined with respect to the image, and
not the coordinate system of the body (which maybe more natural when obtaining
annotated data). For this reason, it also may be advantageous to encode left/right
limb labels as latent.

Coordinate descent: In such cases, there is a natural algorithm to learn struc-
tured models with latent part locations. One begins with a guess for the part loca-
tions on positive examples. Given this guess, one can learn a w that minimizes (24)
by solving a QP using a structured SVM solver. Given the learned model w, one



Part-based models for finding people and estimating their pose 17

can re-estimate the labels on the positive examples by running the current model:
argmaxz∈Zn

w ·Φ(In,zn). Felzenszwalb et al. [16] show that both these steps can be
seen as coordinate descent on an auxiliary loss function that depends on both w and
the latent values on positive examples Zpos = {zn : n ∈ pos}.

LSV M(w,Zpos) = (25)

λ
1
2
||w||2 + ∑

n∈pos
max(0,1−w ·Φ(In,zn))+ ∑

n∈neg
max

z
(0,1+w ·Φ(In,z))

6 Applications

In this section, we briefly describe the application of part-based models for pedes-
trian detection, human pose estimation, and tracking.

6.1 Pedestrian detection

Fig. 8 On the left, we show the discriminative part model of [18] (shown in Fig. 7) applied to the
Caltech Pedestrian Benchmark [11]. The model performs well for instances with sufficient resolu-
tion to discern parts (roughly 80 pixels or higher), but does not detect small pedestrians accurately.
We show the multiresolution part model of [43] (right) which behaves as a part-model for large
instances and a rigid template for small instances. By tailoring models to specific resolutions, one
can tune part templates for larger base resolutions, allowing for superior performance in finding
both large and small people.

One important consideration with part-based representations is that object in-
stances must be large enough to resolve and distinguish parts - it is, for example,
hard to discern individual body parts on a 10 pixel-tall person. [43] describe an
extension of part-based models that allow them to behave as rigid templates when
evaluated on small instances.



18 Deva Ramanan

6.2 Pose estimation

Fig. 9 The pose estimation algorithm of [22] begins by detecting upper bodies (using the discrim-
inative part-model shown in Figure 7), performing a local foreground/background segmentation,
and using the learned foreground/background appearance models to produce the final posterior
marginal over poses shown in (g).

Popular benchmarks for pose estimation in unconstrained images include the
parse dataset of [45] and the Buffy stickman dataset [21]. The dominant approach
in the community is to use articulated models, where part locations li = (xi,yi,θi)
include both pixel position and orientation. State-of-the-art methods with such an
approach include [52, 31]. The former uses a large set of heterogenous image fea-
tures, while the latter uses the HOG descriptor described here.

Appearance constraints: Part templates by construction must be invariant to
clothing appearance. But ideally, one would like to use templates tuned for a par-
ticular person in a given image, and furthermore, tuned to discriminate that per-
son from the particular background. [45] describe an iterative approach that begins
with invariant edge-based detectors and sequentially learns color-based part mod-
els tuned to the particular image. Specifically, one can compute posterior marginals
P(zi|x,w) given clothing-invariant templates w. These posteriors provide weights
for image windows as to how likely they belong to particular body parts. One can
update templates w to include color information by taking a weighted average of
features computed from these image windows, and repeat the procedure. Ferrari
et al. [22] describe an alternate approach to learning color models by performing
foreground/background segmentations on windows found by upper-body detectors
(Figure 9).
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Fig. 10 We show pose estimation results from the flexible mixtures-of-part models from [64].
Rather than modeling parts as articulated rectangles, the authors use local mixtures of non-oriented
part models to capture rotations and foreshortening effects.

Mixtures of parts: [64] point out that one can model small rotations and fore-
shortenings of a limb template with a “local” part-based model parameterized solely
by pixel position. To model large rotations, one can use a mixture of such part mod-
els. Combining such models for different limbs, one can obtain a final part model
where each part appearance can be represented with a mixture of templates. Im-
portantly, the pairwise relational spring model must be extended to now model a
collection of springs for each mixture combination, together with a co-occurence
constraint on particular mixture combinations. For example, two parts on the same
limb should be constrained to always have consistent mixtures, while parts across
different limbs may have different mixtures because limbs can flex. Inference now
corresponds to estimating both part locations li and mixture labels ci. Inference on
such models is fast, typically taking a second per image on standard benchmarks,
while surpassing the performance of past work.

6.3 Tracking

To obtain a model for tracking, one can replicate a K-part model for T frames,
yielding a spatiotemporal part model with KT parts. However, the relational model
E must be augmented to encode dynamic as well as kinematic constraints - an arm
part must lie near its parent torso part and must lie near the arm part estimated in the
previous frame. One can arrive at such a model by assuming a first-order Markovian
model of object state:

P(z1:T , I1:T ) = ∏
t

P(zt |zt−1)P(It |zt) (26)

By introducing high-order dependancies, the motion model P(zt |zt−1) can be
augmented to incorporate physical dynamics (e.g., minimizing acceleration). If we
restrict ourselves to first-order models and redefine I = I1:T , we can use the same
scoring function as (1):
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Fig. 11 We show tracking results from the appearance-model-building tracker of [48]. The styled
pose detection (using edge-based part models invariant to clothing) is shown on the left inset.
From this detection, the algorithm learns color appearance models for individual body parts. These
models are used in a tracking-by-detection framework that tends to be robust and track for long
sequences (as evidenced by the overlaid frame numbers).

S(I,z1:T ) =
KT

∑
i=1

wi ·φ(I, li)+ ∑
i, j∈E

wi j ·ψ(I, li, l j) (27)

where the relational graph G = (V,E) consists of KT vertices with edges capturing
both spatial and temporal constraints. Temporal constraints add loops to the model,
making global inference difficult. An estimated arm must lie near its parent torso
and the estimated arm in the previous frame.

A popular approach to inference in such tracking models is the use of particle
filters [30, 54, 12]. Here, the distribution over the state of the object zt is represented
by a set of particles. These particles are propagated through the dynamic model,
and are then re-weighted by evaluating the likelihood. However, the likelihood can
be highly multi-model in cluttered scenes. For example, there maybe many image
regions that locally look like a limb, which can result in drifting particles latching
onto the wrong mode. A similar, but related difficulty is that such trackers need to
be hand-initialized in the first frame. Note that drifting and the requirement for hand
initialization seem to be related, as one way to build a robust tracker is to continually
re-initialize it. Nevertheless, particle filters have proved effective for scenarios in
which manually initialization is possible, there exist strong likelihood models (e.g.,
background-subtracted image features), or one can assume strong dynamic models
(e.g., known motion such as walking).

Tracking by detection: One surprisingly effective strategy for inference is to re-
move the temporal links from (27), in which case inference reduces to an indepen-
dent pose estimation task for each frame. Though computationally demanding, such
“tracking by detection” approaches tend to be robust because an implicit tracker is
re-initialized every frame. The resulting pose estimates will necessarily by tempo-
rally noisy, but one can apply low-pass filtering algorithms as a post-processing step
to remove such noise [48].
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Tracking by model-building: Model-based tracking should be easier with a
better model. Ramanan and Forsyth [50] argue that this observation links together
tracking and object detection; namely one should be able to track with a more accu-
rate detector. This can be accomplished with a latent variable tracking model where
object location and appearance are treated as unknown variables to be estimated.
This is analagous to the appearance constraints described in Section 4.2, where an
gradient-based part model was augmented with the latent RGB appearance.

One can apply this observation to tracking people: given an arbitrary video, part
appearance models must be initially be clothing-invariant. But when using part
model in a tracking-as-detection framework, one ideally would like part models
tuned to the appearance of particular people in the video. Furthermore, if there exist
multiple people interacting with each other, one can use such appearance-specific
models to disambiguate different people. One approach to doing this is first detect
people with a rough, but usable part model built on invariant edge-based part tem-
plates wi. By averaging together the appearance of detected body parts, one can learn
instance specific appearance models w′i. One can exploit the fact that the initial part
detection can operate at high-precision and low-recall; one can learn appearance
from a sparse set of high-scoring detections, and then later use the known appear-
ance to produce a dense track. This initial high-precision detection can be done
opportunistically by tuning the detector for stylized poses such as lateral walking
poses, where legs occupy a distinctive scissor profile [47].

7 Discussion and open questions

We have discussed part-based models for the task of detecting people, estimating
their pose, and tracking them in video sequences. Part-based models have a rich
history in vision, and currently produce state-of-the-art methods for general object
recognition (as evidenced by the popular annual PASCAL Visual Object challenge
[15]). A large part of their success is due to engineered feature representations (such
as [10]) and structured, discriminative algorithms for tuning parameters. Various
open-source codebases for part-based models include [17, 44, 14].

While detection and pose-estimation are most naturally cast as classification
(does this window contain a person or not?) and regression (predict a vector of part
locations), one would ideally like recognition systems to generate much more com-
plex reports. Complexity may arise from more detailed description of the person’s
state, as well as contextual summaries that describe the relationship of a person to
their surroundings. For example, one may wish to understand the visual attributes
of people, including body shape [2], as well as the colors and articles of clothing
being worn [37]. One may also wish to understand interactions with nearby objects
and/or nearby people [66, 13].

Such reports are also desireable because they allow us to reason about non-local
appearance constraints, which may in turn lead to better pose estimates and detec-
tion rates. For example, it is still difficult to estimate the articulation of lower arms
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in unconstrained images. Given the attribute that a person of interest is wearing a
full-hand shirt, one can learn a clothing appearance model from the torso to help aid
in localizing arms. Likewise, it is easier to parse an image of two people hugging
when one reasons jointly about the body pose of both people.

Such reasoning may require new representations. Perhaps part models provide
one framework, but to capture the rich space of such visual phenomena, one will
need a vocabulary of hundreds or even thousands of local part templates. This poses
new difficulties in learning and inference. Relational models must also be extended
beyond simple springs to include combinatorial constraints between visual attributes
(one should not instance both a tie and skirt part) and flexible relations between peo-
ple and their surroundings. To better understand clothing and body pose, inference
may require the use of bottom-up grouping constraints to estimate the spatial layout
of body parts, as well as novel appearance models for capturing material properties
beyond pixel color.
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