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Abstract

Occlusion poses a significant difficulty for object recog-
nition due to the combinatorial diversity of possible oc-
clusion patterns. We take a strongly supervised, non-
parametric approach to modeling occlusion by learning de-
formable models with many local part mixture templates
using large quantities of synthetically generated training
data. This allows the model to learn the appearance of
different occlusion patterns including figure-ground cues
such as the shapes of occluding contours as well as the
co-occurrence statistics of occlusion between neighboring
parts. The underlying part mixture-structure also allows
the model to capture coherence of object support masks be-
tween neighboring parts and make compelling predictions
of figure-ground-occluder segmentations. We test the result-
ing model on human pose estimation under heavy occlusion
and find it produces improved localization accuracy.

1. Introduction

Occlusion poses a significant barrier to good recognition
performance in complex cluttered scenes such as that shown
in Fig. 1. Even when the type of occluder is known (e.g.,
other people in a crowded street) the relative layout of oc-
cluder and object is unconstrained resulting in a huge vari-
ety of possible appearances for a partially occluded object.
Many approaches to detection and pose estimation treat oc-
cluders as outliers and simply ignore image evidence in hy-
pothesized occluded regions. However, such an approach
easily confuses occlusion with features that are simply hard
to detect due to unusual appearance or weak discriminabil-
ity.

Our goal is to develop appearance models that explain
image features generated by occlusion rather than ignoring
them, coupling pose estimation to segmentation. Figure-
ground cues such as the presence and shape of occluding
contours as well as prototypical appearances corresponding
to self-occlusion serve as positive evidence for an occlusion
event. To achieve this, we utilize part models in which local
appearances are represented by a large library of discrim-

Figure 1. The image above depicts a scene where low-level feature
descriptors are dominated by occlusions. We aim to model such
appearances by training models with large numbers of local mix-
tures that capture these occlusion statistics, yielding improvements
for the task of pose estimation and visibility prediction.

inatively trained templates and their associated segmenta-
tions. Our system predicts the presence and pose of the
object as well as detailed segmentation masks that contain
figure, background, and occluder labels.

Unfortunately, full joint training of such high-
dimensional models requires large amounts of hand-
segmented training data that are representative of the huge
variety of possible occlusion patterns. Since such training
data is not readily available, we approach this difficulty
through the extensive use of synthetically generated data.
We generate tens of thousands of images of partially
occluded objects which are then used to train deformable
human templates. Each such generated example comes
with a complete annotation of both the object and a seg-
mentation of the occluder. We use occluder segmentation
masks as a supervisory signal to group (cluster) the space
of possible occlusions and infer occlusion by enumeration
over such groups. Since we can generate an essentially
infinite supply of training data, our ability to model the
“long-tail” of rare occlusion patterns is only limited by
computation.

Inference and learning in our model is based on now-
standard approaches to discriminative training of pictorial
structures. In particular, training our model is quite similar
to flexible part model [26, 5] which also uses local mixtures.



However, to capture occlusion states requires a model with
an order of magnitude more parameters and trained with
several orders of magnitude more training data. This poses
significant computational burden during learning and infer-
ence — using the off-the-shelf code of [26] would require 2
weeks of computation. We present several improvements to
training that make such learning feasible.

Finally to demonstrate the value of modeling occlusion,
we carry out an analysis of the effect of occlusion on model
performance using images from the H3D [2] and “We are
Family” datasets [7]. In addition to evaluating joint local-
ization accuracy, we also evaluate occlusion/visibility pre-
diction. We show that by modeling the appearance of occlu-
sion, the model achieves improved accuracy over existing
pose estimation techniques.

2. Related work

We posit that a shortfall of many proposed occlusion
models for detection is that they don’t model the visual
appearance of occlusion. Instead the occluded portions of
the object are described with the same model used for all
background/non-object pixels. Algorithmically this means
that a part is assumed occluded if it scores lower than some
learned threshold. If this threshold is too high, unoccluded
objects are predicted as being occluded. If this threshold
is too low, occluded objects are easily confused with back-
ground. Instead we argue that occlusion should only be hy-
pothesized if there is image evidence to support it.

Occlusion Modeling: One popular approach is to treat
visibility as a binary variable that is inferred at test-time.
Modeling part-level occlusion is a natural fit for models
with an explicit representation of part detection. For ex-
ample, the generative constellation models of Weber et. al.
[23] and Fergus et. al. [10] exhaustively enumerated and
scored all possible occlusion hypotheses. The supervised
part models described in [1] includes templates for an oc-
cluded version of each part in the model but imposes no
pairwise constraints on visibility of different parts in the
model. The grammar-based model described by [12] also
includes explicit occlusion part templates but enforces more
structure in the pattern of occlusion, specifying a person
detector that includes a variable number of parts arrayed
in a vertical chain followed by an occluder part. While
this grammar could be implemented with a local mixture
model formally equivalent to our approach, the grammar
provides an elegant and compact description of parame-
ter sharing within the model. A major difference with our
model is that [12] requires that allowed patterns of occlu-
sion be specifically designed into the grammar. The idea
we describe here sidesteps this structure learning problem,
automatically learning valid occlusion patterns from data in
a non-parametric way.

One drawback of part-level occlusion is that it doesn’t
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Figure 2. We synthesize a large corpus of training data by com-
positing segmented objects at random locations over a base train-
ing image. The position and scale of the occluder is tied to the
occluded object by a weak ground-plane assumption. When com-
bined with keypoint annotations and segmentations from the orig-
inal dataset, this yields a limitless supply of strongly supervised
training data that includes keypoint visibility and occlusion seg-
mentation masks.

capture the fine-scale pattern of occlusion within a part.
An alternate family of techniques apply occlusion reason-
ing at the level of image feature maps or individual pixels
that make up a template [21, 11, 22]. Spatial coherence is
often enforced in such models by a Markov random field
aligned with the pixel grid. However, in natural scenes the
spatial statistics of occlusion patterns are not translation in-
variant and depend on the environment and imaging geom-
etry (see e.g., the results in [13]). Our modeling approach
describes occlusion within each part template but enforces
consistency at the level of parts rather than pixels or HOG
cells which allows the dependence structure between occlu-
sions to adapt to articulated shapes. Our model thus im-
plicitly learns the the spatial statistics of occlusion but with
the benefit of a tree-structured distribution which makes hy-
pothesis enumeration computationally efficient.

Image Parsing: An appealing alternative is to move
from single object detection to whole-image parsing. The
presence of occlusion can then be “explained away” by the
presence of an occluding object. For example, [25] de-
scribe a layered segmentation model for reasoning about
occlusions between detected objects at the pixel level. [11]
enforce mutual exclusion in the assignment of HOG cells
while [3] use competitive smoothing between shape masks
associated with detectors. Our work is also closely in-
spired by a family of approaches that build templates for
detecting the complicated appearances associated with typ-
ical object-object interactions. This includes multi-person
[24, 7, 20, 16] or other multi-object [18, 5] models that im-
plicitly capture occlusion interactions between objects.

An inherent difficulty with image parsing approaches is



that they require detecting the occluding object. In a real
world setting where the occluder could be arbitrary, this in-
volves training and scoring a huge bank of object detec-
tors on every image. Learning explicit multi-object “vi-
sual phrase” detectors may be feasible for some small set of
human-object interactions, but it seems unlikely to scale to
occlusion where interactions are far less constrained. There
are a limited number of ways one can reasonably ride a
horse but many ways to hide a horse. The complexity of our
modeling approach lies between that of single object mod-
els and multi-object models. We train a detector for a single
object category which operates independently of other de-
tections in the scene. However, we model the appearance
of occluders in a generic manner, relying on a large corpus
of synthetic training data to capture the generic statistics of
occlusion appearance.

Synthetic training data: Several papers have explored
the use of synthetic data in training systems for recogni-
tion and pose estimation. In [19] the authors use a large
set of synthetically rendered poses spanning the space of
articulations in order to perform nearest-neighbor (pose) re-
gression. [15] use green-screening to augment training data
with synthetic renderings of real objects on cluttered back-
grounds and [14] generated a 3-million frame dataset of
synthetic images of articulated models in real backgrounds.
Our work differs in using an “image-based rendering” ap-
proach, cutting and pasting existing images to yield novel
ones. This is most related to [17], who fit 3D articulated
models to real images, and generate synthetic renderings by
slightly perturbing joint angles.

3. Modeling Local Occlusion Patterns

We model the appearance of occluded people by a picto-
rial structure with local mixtures, similar to the flexible part
model of [26]. In this section we describe how the local
mixture labels for each part are derived. In the next section
we describe how the appearance templates are learned and
combined into a joint model.

Generating synthetic images: We generate a large cor-
pus of synthetic occlusion data by compositing segmented
objects over a base training data set that has been anno-
tated with part locations and figure-ground masks. This
process automatically produces examples of occluded ap-
pearance along with supervisory information including the
pixel-level support of the occluding object. In our experi-
ments we use the H3D dataset [2] which provides segmen-
tation masks as well as joint locations for ~1500 people.
We scale occluders based on object annotations in the base
image to produce realistic spatial distributions (e.g., peo-
ple’s heads are unlikely to be occluded by others feet). The
bottom of the occluder is placed below the base object and
scaled linearly as a function of relative y-offset. Fig. 2
shows examples of such synthetic training images.

Figure 3. We cluster part appearances using a factored model that
independently captures variation in pose (clustered on keypoint lo-
cation) and occlusion patterns (clustering based on segmentation).
Our model also includes separate fully-occluded and self-occluded
components. Example factored clusterings for neck and elbow are
shown on the left. Each row corresponds to a separate occlusion
pattern and each column a separate pose. Colors show the average
segmentation masks associated with each cluster. The right shows
visualizations of part templates associated with different head oc-
clusions. Relative to the unoccluded head, the partial occlusion
templates include more edges oriented along the occluding con-
tour, aiding detection.

Learning part appearances: We exploit this highly-
annotated synthetic training data to find clusters of training
examples that capture the appearance of each part under dif-
ferent pose and partial occlusion conditions. Generating a
large number of quality clusters is a surprisingly hard prob-
lem; typical approaches of clustering image patches [6],
clustering keypoint annotation [2], or even manual group-
ing [27] have shown only modest performance increases
with increasing numbers of clusters. Some of these diffi-
culties are due to insufficient data (given a finite dataset,
the amount of training data per cluster decreases with more
clusters) and poor metrics for clustering. We found sim-
ple appearance-based clustering performs poorly since the
space of occlusion patterns is high-dimensional due to the
arbitrary placement and appearance of the occluder.

Synthetic training data addresses these difficulties in two
ways. First, synthetic training data generation allows us to
increases the amount of training data per cluster. Second,
synthetic data comes with supervisory information in the
form of occluder-object-background segmentation masks
which can provide stronger metrics for clustering.
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Figure 4. Here we show co-occurrence structure between the occlusion state (visibility) of each part. The jth column contains the probabil-
ity that a part ¢ is visible conditioned on j being occluded. Panels (a) and (b) show the co-occurrence for a simple 5-part, 32-mixture model
trained to localize arms. (a) gives the ground-truth visibility statistics for test data while (b) shows the statistics of the labels produced
from running the model on test data. The discriminative SVM training produces a fairly good quantitative match with a slight bias towards
increased visibility. Panels (c) and (d) show similar statistics for the whole upper-body model. The prominent block-structure corresponds
to the head, left and right halves of the body respectively. Within each limb, occlusion at the top of the arm (e.g. shoulder) makes visibility
of the lower arm unlikely while occlusion of the wrist does not strongly constrain visibility of the upper arm.

Factored occlusion-pose clustering: We separately
cluster training patches for each keypoint. We label each
training patch ¢ using both a geometric pose feature g; and a
figure-background-occluder segmentation o,. The pose fea-
ture vector describes the spatial offset of a part relative to
its neighbors in the pictorial structure. The segmentation o;
is a collection of three binary masks in a window surround-
ing the keypoint that indicate the local segmentation of the
object (as in Fig. 2). A naive approach is to apply a stan-
dard clustering algorithm (e.g., K-means) on concatenated
descriptors with some relative weighting between the two
types of features. However, our training set is severely bi-
ased due to our synthetic training data, all of which contain
significant occlusions. We do not want this to adversely af-
fect our grouping. Furthermore, from a generative perspec-
tive, we expect that the pattern of occlusion and the object
pose are largely independent (one very important exception
being self-occlusion). For this reason, we use a factored
clustering algorithm. We generate one clustering using ge-
ometric pose features into K, clusters with K-means. By
construction, these clusters are not affected by the amount
of synthetic training data. We also generate a second inde-
pendent clustering of the occluder masks into K, clusters.
We finally assign each training example to an element of
the “cross-product” space of K, x K, clusters, or to fully
or self-occluded mixtures.

Fig. 3 shows an example of such clusterings for sev-
eral different object parts. Each row corresponds to dif-
ferent occlusion clusters while each column corresponds
to pose clusters. We also include two additional clusters,
a fully-occluded cluster and a self-occluded cluster. The
appearance of a fully-occluded part is assumed to be inde-
pendent of the pose since it only includes image features
arising from the occluder. An example is assigned to the
self-occluded cluster when the part is invisible in the image
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Figure 5. Conditional probabilities for occlusion states of the el-
bow given the shoulder in (a) the ground-truth synthetic training
data and (b) mixtures selected by the model on test data. The
model learns coherency of the segmentation. E.g., if the left side
of the shoulder is occluded (5th column) then the elbow tends to
be visible (1st row) or also occluded on the left (4th row). The 7th
row corresponds to self-occlusion.

even though there is no occluder present (e.g., hands clasped
behind the head). Self-occlusion could presumably benefit
from multiple pose clusters but this requires sufficient train-
ing data and our synthesis approach cannot automatically
generate such self-occlusions

Cluster statistics: Occlusions of parts are not indepen-
dent. If a person’s elbow is occluded by the elbow of an-
other person, then shoulder may also be occluded (by that
occluders’ shoulder). This implies that cluster labels across
neighboring joints may have very specific co-occurrence
statistics. We visualize examples of such statistics in Fig. 4
and Fig. 5.

4. Occlusion-aware Part Models

We now describe a method for training deformable pic-
torial structures with tens of thousands of images of human
poses (under heavy occlusion).



Deformable Templates: Our model consists of a set of
parts V' and pairwise relations £ which encode joint con-
straints on part locations and appearances. Let I be an im-
age, p; = (x,y) be the location for part i € V and m; be the
mixture component of part ¢. Each local mixture m; corre-
sponds to a occlusion-pose cluster learned for that part from
the synthetic training data. If part ¢ corresponds to the left
elbow, and m,; selects the coarse elbow orientation along
with a particular local pattern of occlusion (including full
and self-occlusion). Each choice of m; is associated with an
average figure-ground-occluder mask for the cluster which
can be used to predict keypoint visibility and segmentation
at test time.

Given an image, we score a collection of hypothesized
part locations and local mixture selections with the follow-
ing objective:

S(Lp.m) = |a™ - o(Lpy)| (1
eV
+ 3 (B v — )+ g™

ijEE

The first term scores the appearance evidence for placing
a template o;* for part ¢, tuned for mixture m;, at location
p;. We write ¢(1,p;) for the feature vector (e.g., HOG de-
scriptor [4]) extracted from pixel location p; in image I.
Note that we define a separate template for each mixture,
even occluded states as such templates will capture visual
features associated with occlusions.

The second term scores relational constraints be-
tween pairs of parts. The feature ¥(p, — p;) =
[dw dz? dy dyQ} is a vector of relative offsets between
part ¢ and part j and the parameters BZ “7 specify the rel-
ative rest location and quadratic spring penalty for deviat-
ing from that rest location. Both the spring and the bias,
7;? ™ depend on the local mixtures m; and m; selected
for parts ¢ and j. This allows the relational model to cap-
ture dependencies between visibility of neighboring parts in
the model (as in Fig. 4) as well as providing a much richer,
non-parametric description of pose and appearance than is
possible with a single local template and spring.

Learning and Inference: Given a test image, we seek
the maximum scoring part arrangement p and mixture as-
signments m. When FE is tree-structured, this solution can
be computed efficiently with dynamic programming [9, 26].

Let (p™, m™) be the ground-truth part locations and mix-
ture labels provided for the nth positive training example.
We learn model parameters w = («, 3,y) using a variant
on the structured SVM.

argmin

w,§; >0

st. Vnepos w-@I"p",m")>1-¢,
VYn € neg,Vp,m w-®(I",p,m) < —-1+¢&,

1
Sl +CY & )

The above quadratic program (QP) attempts to learn a low-
norm w that scores positive examples above 1 (evaluated at
ground-truth part locations and mixture labels) and scores
negative examples below —1 (for any setting of part loca-
tions and mixtures). We use a standard cutting-plane ap-
proach to incrementally add negative constraints by running
the detector on negative training images in order to find a
subset of constraints that are active at the optimum.

Mislabeled positives: In order to improve localization
and occlusion prediction, we also added incorrectly-labeled
positive images as negative examples. To do so, we include
the following negative constraints to our QP:

Vp,n € pos,m = m” w-®I" p,m)< -1+, (3)
We say that two sets of part-mixture assignments m and
m’ are in the same equivalence class iff they predict the
same set of parts are visible. We use the notation m ~ m”
to mean that the mixture assignments m are in a differ-
ent equivalence class than the ground-truth. This constraint
thus enforces that for a given positive example n, all poses
associated with incorrect mixture assignments correspond-
ing to an incorrect occlusion prediction score below —1.
These constraints are similar to those found in traditional
structured prediction (where the true label should outscore
incorrect labels by a margin), but split into positive and neg-
ative constraints. We find that this splitting speeds up opti-
mization without sacrificing performance.

Semi-latent learning: Although the part locations and
mixture labels are given in our positive training data, we
found it was useful to perform re-estimation of part lo-
cations. This is particularly important for occluded parts
where the discriminative appearance features being learned
(the presence of an occluding contour) is more dependent
on the position of the occluder than on the the part keypoint
location.

We used a standard latent learning approach [8] to al-
ternately train a model using convex optimization and then
re-estimate the locations p™ for the set of parts. For each
positive example n, let Q, = {p : |p; — pl*| < r} denote
a set of possible part locations that lie near the ground-truth
location p™. We learn a model w and update part locations
p™ with a coordinate descent algorithm:

1. Model update: Learn w with a QP (2) using the in-
ferred positive part locations p™.

2. Latent assignment: Compute p" = maxpeq, W -
o(I™, p,m") for n € pos.

Note that during this learning we do not update the mixture
assignments, instead relying on the reliable ground-truth
clustering.

Computational bottleneck: Typically, the computa-
tional bottleneck of latent SVM training[&] is Step 1, which
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Figure 6. (a) Localization and visibility prediction accuracy on synthetically occluded test data as a function of the number of mixture
model components. We found that performance saturated above 32 mixtures. (b) Evaluation of performance on H3D test images, a subset
containing heavy occlusion and a set of synthetically occluded examples. The benefits of modeling occlusion are more pronounced on the
synthetic and heavily occluded subsets. FMP6.1 is a baseline model with a single mixture representing occlusion so it can exploit synthetic

training data.

requires passing over a large set of negative images (typi-
cally on the order of a thousand) and performing “hard neg-
ative” mining. In our case, the computational bottleneck is
Step 2, since we now have hundreds of thousands of posi-
tive examples in our synthetic dataset. A standard approach
for latent updating of positive examples is to evaluate the
model w as a “detector” on each positive example. A sim-
ple but crucial observation is that in the semi-latent setting
the mixture label m™ is known and not latently updated, so
only a single filter per part need be evaluated. Modifying the
released code of [26] to allow for this efficient semi-latent
update produced an order-of-magnitude speed up, reducing
training time from over a week to under a day. We also note
the latent assignment can be trivially parallelized.

5. Experimental results

Dataset: We use H3D as our primary source of train-
ing and testing data. Since H3D contains many challeng-
ing poses with different points of view and our baseline
model [26] still struggles with non-frontal poses, we se-
lected a subset of 668 images with frontal facing people.
For our synthetic training experiments, each original train-
ing image was augmented with 100 different synthetic oc-
clusions, yielding a training set of half a million positive im-
ages. We use negative training images from the INRIAPer-
son database [4] and evaluate models using 190 test images
from H3D. Additionally, we also evaluate our model on the
”We Are Family” dataset (WAF) and benchmark provided
by [7].

To better understand model performance, we considered
variants of each test dataset which were enriched for oc-
clusion. We evaluated on 3 different variants of the H3D
dataset. The original 190 test images, a subset of 60 which
were selected as heavily occluded (many invisible ground-
truth keypoints), and an a synthetically occluded version of
the 190 original test examples. For WAF, we considered six
subsets of data based on the proportion of visible keypoints.
In the WAF dataset, there are 6 parts or sticks” (head, torso,

upper arms and right arms) labeled in the data set, each with
a visibility variable. We build six subsets according to the
number of total visible sticks.

Evaluation: For evaluation on H3D we use the percent-
age of correctly localized keypoints (PCK) criteria used by
[26]. A predicted keypoint is considered as correctly local-
ized when it lies within a scale-normalized threshold dis-
tance (half the head height) of the ground-truth keypoint lo-
cation. To extend the PCK criteria for occluded body parts,
we require that any keypoint marked invisible in the ground-
truth must correctly be predicted as occluded by the model.
To separate out errors in localization from errors in visibility
prediction, we also compute the accuracy of part visibility
prediction as a binary classification task.

For WAF we used the percentage of correctly localized
parts (PCP) criteria of [7] which is similar to PCK but mea-
sures the localization of the sticks rather than their end-
points. Similar to H3D we also measure stick occlusion pre-
diction based on stick visibility marked in the ground-truth.
We use the set of upper-body detections provided with the
WAF dataset which is based on a combined face and body
detector and achieves an 86% detection rate.

Model Complexity: In order to choose number of mix-
tures per part, we evaluated performance while varying K,
to generate models with up to 44 mixtures per part. Fig. 6
shows test localization and visibility prediction accuracy
as a function of the number of part mixtures. We chose
K, = 5 which yielded 32 mixture components and offered
a good trade-off between performance and running time. In-
creasing the amount of synthetic training data did not seem
to change the saturation point. In fact using 10z data gave
similar performance to 100z data in many cases. This sug-
gests that we may need more variety in the shapes of our
synthetic occluders in order to usefully grow the number of
part mixtures further.

Synthetic Training Data: Fig. 6 shows the performance
of our 32-mixture model (OMP32) under a variety of train-
ing and test conditions. Training the model without syn-
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Figure 7. Performance on subsets of the WeAreFamily dataset as a function of the amount of occlusion present. Our model (OMP)
achieves a better PCP score than the 1-person model baseline in [7], primarily due to better handling of occluded examples. The much
more complicated multi-person model of [7] outperforms our model for heavy occlusion (< 50% of keypoints visible) but does so at a loss
of localization accuracy relative to the 1-person baseline. Table shows overall PCP and occlusion prediction accuracy.

thetic occlusion data (OMP32) yielded better performance
on the original H3D data but including synthetic occlusions
(OMP32+syn) gave very substantial improvements on the
occlusion enriched datasets. Training the model with mis-
labeled positive examples (OMP32+syn+struct) gave sig-
nificant improvements in part localization accuracy which
boosted performance on the un-enriched original dataset.

Comparative Evaluation: Fig. 6 also compares the
proposed model (OMP32+syn+struct) to several baselines.
FMP6 is based on the code of [26]. We train a baseline
version of the FMP on the H3D dataset which always pre-
dicts all parts visible at test time. Excluding occluded data
during training produced a model which was slightly worse
(PCK=69.6). To allow the FMP to predict visibility we
also trained a version with the addition of a single occluded
mixture component for each part (FMP6.1). This model
achieved improved occlusion accuracy since it could pre-
dict occlusions at test time. With only 1 occlusion mixture,
the addition of synthetic data offered some further improve-
ment in occlusion prediction but at the expense of localiza-
tion accuracy.

Fig. 7 compares the performance of several models on
the “We are Family” dataset including the FMP baseline,
the proposed OMP model, as well as a single and multi-
person model proposed by [7]. By training the OMP model
with synthetic data, we outperform the 1-Person model de-
spite training on a completely different dataset. Including
the WAF positive examples in our training set improved
OMP performance further. We also examined performance
as a function of occlusion level. For all but the most ex-
treme occlusions, our model achieves a similar PCP to the
Multi-Person model. This is particularly surprising since
the Multi-Person detector performs joint inference over a
collection of detector outputs and incorporates other image
cues in order to find a depth ordering of detections.

6. Conclusions

We have presented a method for modeling occlusion that
is aimed at explicitly learning the appearance and statis-
tics of occlusion patterns. Our system produces models

which are more robust to heavy occlusion than existing ap-
proaches. As an added benefit, our model explicitly rep-
resents part occlusions and hence can predict not only part
locations but a local segmentation mask. The combination
of synthetic training data and flexible models with many
part appearance mixtures is in some sense ~’brute force” and
perhaps less elegant that some more parametric approach.
However, it has the distinct advantage of being amenable
to discriminative learning and, as we have shown, capable
of not only learning detailed occlusion statistics but also
achieving competitive performance at the task of human
pose estimation.
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