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Abstract. Most current approaches to recognition aim to be scale-
invariant. However, the cues available for recognizing a 300 pixel tall
object are qualitatively different from those for recognizing a 3 pixel tall
object. We argue that for sensors with finite resolution, one should in-
stead use scale-variant, or multiresolution representations that adapt in
complexity to the size of a putative detection window. We describe a
multiresolution model that acts as a deformable part-based model when
scoring large instances and a rigid template with scoring small instances.
We also examine the interplay of resolution and context, and demon-
strate that context is most helpful for detecting low-resolution instances
when local models are limited in discriminative power. We demonstrate
impressive results on the Caltech Pedestrian benchmark, which contains
object instances at a wide range of scales. Whereas recent state-of-the-
art methods demonstrate missed detection rates of 86%-37% at 1 false-
positive-per-image, our multiresolution model reduces the rate to 29%.

1 Introduction

Objects appear at a continuous range of scales in unconstrained photographs
of the world. This constitutes a significant mode of intra-class variability in
detection problems. The dominant perspective in the recognition community
is that one should strive for scale-invariant representations, e.g., by computing

Fig. 1. An example test image in Caltech Pedestrian dataset and its ground truth
annotations. The detection results of baselines and our algorithm on this image are
shown in Fig 3. Note that people appear at a wide range of scales.
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features with respect to an appropriately adapted coordinate frame, as in SIFT
or scanning window detectors. While this is conceptually elegant, it ignores the
fact that finite sensor resolution poses an undeniable limit to scale-invariance.
Recognizing a 3-pixel tall object is fundamentally harder than recognizing a
300-pixel object or a 3000-pixel object.

This is perhaps most readily apparent in common demonstrations of the im-
portance of context in recognition (e.g., [1]). For example, the same local patch of
pixels may be identified as a car or phone depending on whether the surroundings
look like a street scene or a person in an office. However, such demonstrations
always involve a low-resolution, heavily-blurred image of the object in question.
Given enough resolution, one should be able to recognize a toy-car held up to
someone’s ear despite the improbable context. This suggests that scene context
itself should also be entered into detection in a scale-variant fashion with contex-
tual cues only being used to increase the accuracy of recognizing small instances,
where local image evidence is uninformative.

In this paper we propose that models for object detection should have a
multiresolution structure which utilizes features ranging from detailed high-
resolution parts, to whole object templates, to scene context cues. Furthermore,
we treat these features in a scale dependent manner, so that high-resolution
features are not used when detecting low-resolution instances.

We examine the interplay of resolution and context in the domain of pedes-
trian detection for autonomous vehicle navigation. Much of the recent successful
work is based on template detection. We begin by asking a simple question -
what should the size of the template be? On one hand, we want a small template
that can detect small people, important for providing time for a vehicle to react.
On the other hand, we want a large template than can exploit detailed features
(of say, faces) to increase accuracy. Such questions are complicated by the fact
a simple rigid template is not likely to accurately model both extremes, and
that contextual cues should perhaps be overridden by high-confidence, large-
scale detections. Using a well-known pedestrian benchmark [2], we demonstrate
that contextual multiresolution models provide a significant improvement over
the collective recent history of pedestrian models (as surveyed in [2]).

2 Related work

There is storied tradition of advocating scale-invariance in visual recognition,
from scale-invariant feature detectors [3–5] to scale-invariant object represen-
tations [6, 7]. Unfortunately, such scale-invariant representations don’t leverage
additional pixel resolution for detecting large-scale instances.

Another family of representations deal with multiscale models that compute
features at multiple scales. Such models are typically not multiresolution in that
they do not adapt in complexity to the size of a putative detection. Examples
include multiscale edge models [8] and object representations based on multi-
scale wavelets [9, 10]. Our approach is most similar to the multiscale part model
of [11] that defines both a low-resolution root template and high-resolution part
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filters. We extend the publically-available code to encode adaptive multiresolu-
tion models that act as rigid templates when scoring small-scale instances and
flexible part-based models when scoring large-scale instances.

There is a quite large literature on pedestrian detection, dating back to the
early scanning-window classifers of [9, 12, 13]. We refer the reader to the recent
surveys [2, 14] for an overview of contemporary approaches. Recent work has
focused on models for handling pose variation [15, 11, 16–18], reducing complex-
ity of learning [19, 20]), and multicue combination [21, 22]. To the best of our
knowledge, there has been no past work on multiresolution representations of
pedestrians.

3 Multiresolution Models

We will describe a family of multiresolution template models of increasing com-
plexity. To establish notation, we begin with a description of a simple fixed-
resolution template.

3.1 Fixed-resolution models

Let x denote an image window and Φ(x) denote its extracted features - say,
histogram of oriented gradient (HOG) features [13]. Following an established line
of work on scanning-window linear classifiers [23, 13], we label x as a pedestrian
if

f(x) > 0 where f(x) = w · Φ(x) (1)

Such representations are trained with positive and negative examples of pedes-
trian windows – formally, a set of pairs (xi, yi) where yi ∈ {−1, 1}. Popular
training algorithms include SVMs [23, 13] and boosting [24, 25]. In our work, we
will train w using a linear SVM:

w∗ = argmin
w

1

2
w · w + C

∑
i

max(0, 1− yiw · Φ(xi)) (2)

One hidden assumption in such formalisms is that both the training and test
data xi is assumed to be scaled to a canonical size. For example, in Dalal and
Triggs’ [13] well-known detector, all training and test windows are scaled to be
of size 128×64 pixels. The detector is used to find larger instances of pedestrians
by scaling down in the image, implemented through an image pyramid. Formally
speaking, the detector cannot be used to find instances smaller than 128×64. In
practice, a common heuristic is to upsample smaller windows via interpolation,
but this introduces artifacts which hurt performance [11, 2].

In this paper, we define a feature representation Φ(x) that directly processes
windows of varying size, allowing one to extract additional features (and hence
build a more accurate model) when x is a large-size window.
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3.2 Multiple fixed-resolution models

Arguably the simplest method of dealing with windows of varying sizes is to
build a separate model for each size. Assume that every window x arrives with
a bit s that specifies whether it is “small” or “large”. One can still write two
templates as a single classifier f(x, s) = w · Φ(x, s) where:

Φ(x, s) =


φ0(x)

1
0
0

if s = 0 and Φ(x, s) =


0
0

φ1(x)
1

 if s = 1 (3)

Here, φ0(x) and φ1(x) represent two different feature representations ex-
tracted at two different scale windows - say for example, 50-pixel and 100-pixel
tall people. Given training data triples (xi, si, yi) one could learn a single w that
minimizes training error in (2) where Φ(xi) is replaced by Φ(xi, si).

It is straightforward to show that (2) reduces to independent SVM prob-
lems given the above multiresolution feature. It is equivalent to partitioning the
dataset into small and large instances and training on each independently. This
poses a problem since the detector scores for small and large detections need
to be comparable. For example, one might expect that small-scale instances are
harder to detect, and so such scores would generally be weaker than their large-
scale counterparts. Comparable scores are essential to allow for proper non-max
suppression between scales, contextual reasoning [26] and for ROC benchmark
evaluation.

3.3 Multiscale multiresolution models

One mechanism of integrating two fixed-scale models is to also compute φ0(x)
for windows with s = 1. In other words, we can always resize a 100-pixel win-
dows to 50-pixels and compute the resulting small-scale feature. This allows the
large-resolution model to be multiscale in that features are computed multiple
resolutions:

Φ(x, s) =


φ0(x)

1
0
0

if s = 0 and Φ(x, s) =


φ0(x)

0
φ1(x)

1

 if s = 1 (4)

Note that because the coarse-scale features φ0(x) are shared across both
representations, the training problem no longer reduces to learning separate
SVMs. In this case, distinct bias terms make scores for large and small instances
comparable.

3.4 Multiresolution part models

One limitation of the above approach is that both small and large-scale mod-
els are encoded with a rigid template. Low-level descriptors such as HOG are
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invariant to small scale image deformation due to the local spatial binning of
gradient values. However, this binning occurs at a fixed-size neighborhood (in
our case, a neighborhood of 4×4 pixels). On the other hand, object deformations
(such as the articulation of a pedestrian) occur at a scale relative to the size of
the instance. This means that a HOG descriptor is likely invariant to the pose
deformations of a 50-pixel pedestrian, but not a 100-pixel tall pedestrian.

To model pose variations at larger scales, we augment our large-scale model
with a latent parameter capturing pose variation. Following the work of [11],
we add a latent parameter z that specifies the location of a collection of parts.
Given the z, we define φ1(x, z) to be a vector of vectorized-HOG features ex-
tracted at the given part locations, appended with the part offsets themselves.
This allows the corresponding parameters from w to encode part templates and
part deformation parameters that penalize/favor certain part deformations over
others.

Fig. 2. Finding large-scale instances. One might use a low-resolution template (shown
on the left). Alternatively, to exploit the extra resolution of large-scale instances, one
might define a high-resolution template (middle). Edges capturing the boundary of
the body and head are blurred out due to variation in the postures of pedestrians in
the training data. A more successful approach is to explicitly model the deformation
with a part model (shown on the right), which learns sharper part templates.

Φ(x, s, z) =


φ0(x)

1
0
0

if s = 0 and Φ(x, s, z) =


φ0(x)

0
φ1(x, z)

1

 if s = 1 (5)
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The final classifier searches over latent values f(x, s) = maxz w · Φ(x, s, z):

f(x, s) =

{
w0 · φ0(x) + b0 if s = 0

w0 · φo(x) + maxz w1 · φ1(x, z) + b1 if s = 1
(6)

When scoring small instances, the above reduces to a standard linear tem-
plate. When scoring large instances, the above requires a search over all part
deformations, for the configuration that yields the maximum score. As in [11],
we assume parts are independently positioned given a root location, equivalent
to the standard “star” model assumptions in part-based models. This allows us
to use dynamic programming to efficiently compute the max:

max
z
w1 · φ1(x, z) = max

z

∑
j

wj · φ(x, zj) +
∑

j,k∈E

wjk · φ(zj , zk) (7)

where zj is the location of part j, wj is the template for part j, wjk is a deforma-
tion model (spring) between part j and k, and E defines the edge structure in
the star graph. We write φ(x, zj) for the HOG feature extracted from location zj
and φ(zj , zk) for the squared relative offset between part j and k. Given training
data triples (xi, si, yi), w can be trained with a latent SVM using the coordinate
descent procedure outlined in [11] or the convex-concave procedure described in
[27]. We use the publically-available coordinate descent code [28].

3.5 Latent multiresolution part models

One limitation of the above model is that training data is still specified in terms
of a fixed, discrete size si - all instances are either 50 or 100 pixels tall. Given
a training window of arbitrary height xi, one might resize it to 50 or 100 pixels
by quantization. The correct quantization may be ambiguous for datasets such
as PASCAL where many images of people are truncated to head and shoulder
shots [29] – here a small bounding box may be better described with a truncated,
high-resolution model. When the training data xi is given as set of bounding box
coordinates, [11] shows that one can significantly improve performance by esti-
mating a latent location and scale of a “hidden” bounding box that sufficiently
overlaps the given ground-truth bounding box.

We augment this procedure to also estimate the “hidden resolution” si of
a training instance xi. Training examples that are large will not have any low-
resolution (e.g., 50-pixel tall) bounding boxes that overlap the given ground-
truth coordinates. In these cases, the resolution is fixed to si = 1 and is no
longer latent. Similarly, training instances that are very small will not have any
high-resolution bounding boxes with sufficient overlap. However, there will be a
collection of training instances of “intermediate” size that could be processed as
low or high-resolution instances. The values of si will be treated as latent and
estimated through the latent SVM framework: starting with a random initializa-
tion of latent si and zi values, (1) a model/weight-vector w is trained through
convex optimization, and (2) the model is used to relabel an example xi with a
latent resolution state si and part location zi that produces the best score.
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Relationship to mixture models: It is relevant to compare our model
to the mixture models described in [23]. One might view our multiresolution
model as a mixture of two models. However, there are a number of important
differences from [23]. Firstly, our components share many parameters, while those
in [23] do not share any. For example, we use both low and high resolution
instances to learn a low-res “root” template, while [23] only uses high-resolution
instances. Secondly, the mixture component variable si is treated differently in
our framework. At test time, this variable is not latent because we know the size
of a putative window that is being scored. At train time, the variable is treated
as latent for a subset of training instances whose resolution is ambiguous.

Extensions: Though we have described two-layer multi-resolution models,
extensions to hierarchical models of three or more layers in straightforward. For
example, the head part of a pedestrian may be composed of an eye, nose, and
mouth parts. One would expect such a model to be even more accurate. Note
that such a model is still efficient to score because the edge structure E is now a
tree rather than a star model, which is still amenable to dynamic programming.
Training a single resolution hierarchical part model poses a difficulty since it
cannot exploit the many training and testing instances where the details, e.g.,
of the eyes and nose, are not resolvable. Our multiresolution formalism provides
a framework to manage this complexity during both training and testing.

4 Multiresolution contextual models

We now augment our analysis of resolution to consider the effects of contextual
reasoning. Our hypothesis, to be borne out by experiment, is that context plays
a stronger role in detecting small-scale instances. Toward that end, we add a
simple but effective contextual feature for pedestrian detection - ground plane
estimation. Hoeim et. al. [1] clearly espouse the benefit of ground plane esti-
mation for validating the observed locations and scales of putative detections.
One approach would be to treat the ground plane as a latent variable to be
estimated for each frame or video. We take a simpler approach and assume that
the training and test data are collected in similar conditions, and so apply a
ground-plane model learned from the training data at test time. We begin with
the following assumptions:

1. The camera is aligned with the ground plane
2. Pedestrians have roughly the same height
3. Pedestrians are supported by a ground plane

Given the above and a standard perspective projection model, it is straightfor-
ward to show that there exists a linear relationship between the projected height
of a detection (h) and the y-location of the lower edge of its bounding box in
the image (y):

h = ay + b (8)
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Features: One reasonable contextual feature is to penalize the score of a detec-
tion in proportion to the squared deviation from the model:

(h− (ay + b))2 = wp · φp(x) where φp(x) =
[
h2 y2 hy h y 1

]T
(9)

where we have assumed the image features x include the location and height of
the image window, and where model parameters wp implicitly encode both the
parameters of the ground plane and the amount to penalize detections which
deviate from the ground plane model.

Our intuition says that low-resolution models should strongly penalize devi-
ations because the local template will generate false positives due to its limited
resolution. Alternately, the high-resolution model should not strongly penalize
deviations because the local template is more accurate and the assumptions
do not always hold (people are not all the same height). We investigate these
possibilities experimentally using different encodings of our contextual features,
including augmenting Φ(x, z, s) with a single set of perspective features φp(x)
used across both low and high resolution models, or a separate set of features
for each resolution (φ0p(x) and φ1p(x)).

5 Experimental results

Implementation: We implemented our final context-augmented multiresolu-
tion model through fairly straightforward modification to the online multiscale
part-based code [28]. In both the benchmark and diagnostic evaluation, we com-
pare to the original code as a baseline. The contextual model decribed in the
following results use scale-specific contextual features (φ0p(x) and φ1p(x)), which
we found slightly outperformed a single-scale contextual feature (though this is
examined further in Sec.5.2).

5.1 Benchmark results

We submitted our system for evaluation on the Caltech Pedestrian Benchmark
[2]. The benchmark curators scored our system using a battery of 11 experiments
on a held-out testset, designed to analyze performance in different regimes de-
pending on object scales, aspect ratios, and levels of occlusion (Fig. 4). The
results are impressive - our system outperforms all previously-reported methods,
across the entire range of FPPI (false positives per image) rates, in 10 out of
11 experiments. The sole experiment for which we do not win is the far-scale
experiment, in which all detectors essentially fail. Even given our multiresolu-
tion model, finding extremely small objects is a fundamentally difficult problem
because there is little information that can be extracted in such instances.

Our results are particularly impressive for the near-scale experiment, where
we halve the previous-best miss rate at 1 FPPI [30]. Previous approaches, in-
cluding the multiscale part-based model of [23], use fixed-resolution detectors
that tend to be tuned for the small-scale regime so as to correctly fire on the
set of small instances in this dataset. Our multiresolution model leverages the
additional pixels available in large instances to significantly boost performance.
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missed detections
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Low−resolution model

Multiresolution model

High−resolution model

Fig. 3. On the left, we show the result of our low-resolution rigid-template baseline.
One can see it fails to detect large instances. On the right, we show detections of
our high-resolution, part-based baseline, which fails to find small instances. On the
bottom, we show detections of our multiresolution model that is able to detect both
large and small instances. The threshold of each model is set to yield the same rate of
FPPI of 1.2.

5.2 Diagnostic experiments

To further analyze the performance of our system, we construct a set of diag-
nostic experiments by splitting up the publically-available Caltech Pedestrian
training data into a disjoint set of training and validation videos. We defined
this split pseudo-randomly, ensuring that similar numbers of people appeared in
both sets. We compare to a high-resolution baseline (equivalent to the original
part-based code [28]) and a low-resolution baseline (equivalent to a root-only
model [13]), and a version of our multiresolution model without context. We vi-
sualize our baseline models in Fig. 5. All methods are trained and evaluated on
the exact same data. To better interpret results, we threw out instances that were
very small ( < 30 pixels in height) or abnormal in aspect ratio (i.e. h/w > 5),
as we view the latter as an artifact of annotating video by interpolation.
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Fig. 4. Benchmark results. From the upper left graph in clockwise direction, we show
the results for reasonable, near, far and medium experiments, evaluated on test in-
stances with various heights (h > 30, h > 80, h < 30, and 30 < h < 80 and h < 30,
respectively). Our context-augmented multiresolution model, labeled as MultiresC,
significantly outperforms all previous systems in 10 out of the 11 benchmark experi-
ments (all but the ’far’ experiment’).

Overall: Overall, our multiresolution model outperforms baseline models.
Our contextual model provides a small but noticeable improvement, reducing
the missed detection rate from 43% to 40%. We shall see that the majority of this
improvement comes from detecting small-scale instances. Somewhat surprisingly,
we see that a simple rigid template outperform a more sophisticated part model -
52% MD compared to 59%. One can attribute this to the fact that the part-based
model has a fixed resolution of 88 pixels (selected through cross-validation),
and so cannot detect any instances which are smaller. This significantly hurts
performance as more than 80% of instances fall in this small category. However,
one may suspect that the part-model should perform better when evaluating
results on test instances that are 88 pixels or taller.

Detecting large instances: When evaluating on large instances (> 90 pix-
els in height), our multiresolution model performs similarly to the high-resolution
part-based model. Both of these models provide a stark improvement over a
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low-resolution rigid template. We also see that perspective context provides no
observable improvement. One might argue that this is due to a weak contextual
feature, but we next show that it does provide a strong improvement for small
scale detections.

Detecting small instances: When evaluating on small instances (< 90
pixels in height), we see that the part-based model performs quite poorly, as
it is unable to detect the majority of test instances which are small. Our mul-
tiresolution model performs slightly worse than a low-resolution model (61%
compared to 59%). Perspective features provide a noticeable improvement for
our multiresolution model, increasing performance from 61% MD to 58%.

Context features: To verify that our contextual features are indeed rea-
sonable, we analyze the benefit of our contextual features on a low-resolution
model. We see a noticeable reduction in the MD rate from 51% to 46%, suggest-
ing our contextual features are indeed fairly effective. Their effect is diminished
in our multiresolution model because the part-based model is able to better score
large-scale instances, reducing the need for score adjustment using context.

6 Conclusion

We describe a simple but effective framework for merging different object repre-
sentations, tuned for different scale-regimes, into a single coherent multi-resolution
model. Our model exploits the intuition that large instances should be easier to
score, implying that one should adapt representations at the instance-level. We
also demonstrate that context should be similarly adapted at the instance-level.

Low−resolution High−resolution Multiresolution

Fig. 5. On the left, we visualize our low-resolution rigid-template. In the middle, we
visualize the high-resolution part-based template of [11] trained on Caltech pedestrians.
Note the root templates look different, as only a small portion of the training data (of
high enough resolution) is used to train the part-model. On the right, we visualize
the multiresolution model. Note that the root component looks similar to the low-
resolution model. Also note that the parts overall have weaker weights. This suggests
that much of the overall score of the multiresolution model is given by the root score.
However, it is still able to detect both small and large instances as shown in our results.
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Fig. 6. Results of diagnostic experiments. We compare results to fixed resolution base-
lines, where “LR” is a low-resolution rigid template and “HR” is a high-resolution
part-based model. On the left, we show results evaluated on the full set of test in-
stances from validation data. In the middle, we show results for large-instance (> 90
pixels). On the right, we show the results on small-instances (< 90 pixels). The “LR”
template performs well on small instances, while the “HR” template performs well
on large instances. Our multiresolution “MR” model exploits the best of both, in the
appropriate regimes. Our context-augmented model “MR+C” provides a small im-
provement overall, but a noticable improvement when detecting small instances at a
higher FPPI rate.
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Fig. 7. We show the effectiveness of our perspective features on low-resolution models.
Overall performance increases from 51% MD to 46% MD. We visualize our perspective
features on the right. We plot the distribution of h and y (bounding box height and
image-y locations) in the ground truth data, and plot the score wp ·φp(x) as a function
h and y. We also display the distribution of ground truth (visualized with a point cloud)
along with its linear fit. We see that the learned contextual features penalize detections
whose heights and image-y locations are not consistent with the ground plane.
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Smaller objects are more difficult to recognize, and it is under this regime that
one should expect to see the largest gains from contextual reasoning. We demon-
strate impressive results on the difficult but practical problem of finding large
and small pedestrians from a moving vehicle.
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