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Abstract
We describe novel but simple motion features for the

problem of detecting objects in video sequences. Previous
approaches either compute optical flow or temporal differ-
ences on video frame pairs with various assumptions about
stabilization. We describe a combined approach that uses
coarse-scale flow and fine-scale temporal difference fea-
tures. Our approach performs weak motion stabilization
by factoring out camera motion and coarse object motion
while preserving nonrigid motions that serve as useful cues
for recognition. We show results for pedestrian detection
and human pose estimation in video sequences, achieving
state-of-the-art results in both. In particular, given a fixed
detection rate our method achieves a five-fold reduction
in false positives over prior art on the Caltech Pedestrian
benchmark. Finally, we perform extensive diagnostic ex-
periments to reveal what aspects of our system are crucial
for good performance. Proper stabilization, long time-scale
features, and proper normalization are all critical.

1. Introduction
Object detection is a central task in vision. Most ap-

proaches have focused on the static-image setting; indeed, a
common method for detecting objects in video is to run an
image-based detector on each frame. Significant progress
has been made in static-image object detection over the past
few years, in large part due to the improvement of low-
level features coupled with classifiers such as SVMs [7] and
boosting [26]. In this work, we explore the motion counter-
part for object detection in video. We show that one can
exploit simple motion features to significantly increase de-
tection accuracy with little additional computation.

Image motion observed in videos is the result of sev-
eral sources, Figure 1. We classify image motion into three
types using a stationary world coordinate frame and a mov-
ing object coordinate frame. Camera-centric motion is the
movement of the camera with respect to the world. Object-
centric motion is the movement of the object centroid with
respect to the world. Finally, part-centric motion is the
movement of object parts with respect to the object. These
three types of motion provide different cues for recognition.

Figure 1: Illustration of various types of video stabilization:
(a) no stabilization, (b) camera motion stabilization, (c)
object-centric motion stabilization, (d) camera and object-
centric motion stabilization, and (e) full stabilization of
camera, object-centric, and part-centric motion. We posit
that for detecting articulated objects such as people the ma-
jority of useful motion information is contained in part-
centric motion. We therefore attempt to stabilize both cam-
era and object-centric motion, as in (d).

Prior work makes different assumptions about which
motion types are useful versus nuisance factors. A simple
approach is to directly compute image motion features on
raw video. In this case, the observed image motion con-
tains camera-, object-, and part-centric motion. Methods
that define motion features using optical flow or spacetime
gradients often take this route [29]. One can partly remove
camera motion by looking at differences of flow [8]. A more
direct approach is to simply compute motion features on a
stationary camera, such as [27]. Such motion features en-
code both object- and part-centric motion. The large body
of techniques that rely on background subtraction take this
approach [24]. When the camera is moving, one may try to
register frames using a homography or egomotion estima-
tion [18, 19], which removes some camera-centric motion
but can be challenging for dynamic scenes or those with
complex 3D geometry. Finally, other techniques compute
optical flow in an object-centric coordinate frame [13]; Fig-
ure 1(c) shows that such an approach actually encodes both
camera- and part-centric motion.
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In this paper, we posit (and verify by experiment) that
the majority of useful motion information for detecting ar-
ticulated objects such as people is contained in part-centric
motion. As shown in Figure 1, there are numerous types of
video stabilization. To allow the temporal features to easily
extract part-centric motion information, we attempt to sta-
bilize both camera and object-centric motion, Figure 1(d).
We accomplish this by using coarse-scale optical flow to
align a sequence of image frames. Weak stabilization using
coarse-scale flow has the benefit of aligning large objects
such as the background or a person’s body without remov-
ing detailed motion such as an object’s parts, Figure 1(d,e).
While artifacts may exists around large flow discontinuities,
we demonstrate that coarse-scale flow is robust in practice.

We use temporal difference features to capture the part-
centric motion that remains after weak stabilization. While
features based on fine-scale optical flow [13, 8] may be ex-
tracted from the stabilized frames, fine-scale flow is noto-
riously difficult to extract for small parts such as arms [4].
We demonstrate that when sampled at the proper temporal
intervals, simple temporal difference features are an effec-
tive alternative capable of achieving state-of-the-art results.

We perform a thorough evaluation of motion features for
object detection in video. We focus on detecting pedes-
trians in moving cameras [12] as well as pose estimation
from static cameras [1]. We demonstrate significant im-
provements from integrating our motion features into three
distinct approaches: rigid SVM detectors defined on HOG
features [7], articulated part models defined on HOG fea-
tures [16, 31], and boosted detectors defined on channel fea-
tures [11]. Notably, we report a five-fold reduction in false
positives at fixed detection rates on the Caltech Pedestrian
Benchmark, a significant improvement over prior art.

Finally, we perform an exhaustive sweep over various
parameter settings of our model to analyze what aspects are
important. We find it crucial to (1) compute optical-flow at
the right level of coarseness to provide camera and object-
centric stabilization, (2) compute difference features over
long time scales (because motion over pairs of successive
frames may be too subtle to measure) and (3) normalize mo-
tion features appropriately for use with linear SVMs.

2. Related Work
Optical-flow-based features: A popular strategy for

video-based recognition is to extend static image features
into the temporal domain through use of optical flow. Ex-
amples include spatially blurred flow fields [13] or his-
tograms of optical flow vectors [8, 28]. In particular, Dalal
et al. explored flow-augmented versions of their HOG de-
scriptor [8] termed histograms of flow (HOF). Although
HOF performed well for classification, Dalal’s thesis ad-
mitted that it under-performed a HOG template when eval-
uated for detection [6]. Walk et al. [28] proposed a number
of modifications to the HOF features that resulted in mod-

est gains in detection performance. Recognizing the diffi-
culty of accurate fine-scale flow estimation (aperture prob-
lem, singularities, etc.), [25] proposed directly comparing
motion fields without explicit computation of flows.

Temporal-difference features: Temporal differencing,
or temporal gradient features, date back to the early work
of [2]. Since two-frame differencing might be too weak
to produce a signal for slow-moving objects, [5, 20] de-
scribe approaches for multi-frame differencing. A related
and popular approach is histograms of spacetime gradi-
ents [32, 21]. For stationary cameras, temporal difference
features can be computed on background models, yielding
background-subtraction masks [24]. Our approach can be
seen as a combination of optical-flow and temporal differ-
encing as we compute differences on spacetime windows
that are weakly-stabilized with coarse optical flow.

Action classification: Many of the above motion fea-
tures have been explored in the context of action classifica-
tion [10, 21]. In particular, [29] performs a thorough evalu-
ation of motion descriptors, discovering that histograms of
flow perform well. For our setting of detecting low reso-
lution objects in videos, traditional flow fails because small
movements are difficult to estimate reliably. While effective
for behavior classification, space-time interest points have
not proven useful for object detection.

Tracking: An alternate use of temporal information to
improve detection reliability is to explicitly track objects.
For example, detection may be improved by tracking re-
peated detections [3]. Most trackers tend to define motion
models on static image features, although exceptions do ex-
ist [15]. Impressive results have also been shown on a sys-
tem wide integration of detectors [14, 30, 17]. Such ap-
proaches are orthogonal to ours as we aim to improve the
quality of the detections themselves through use of more
informative image features.

3. Approach
In this section, we describe our basic approach to mo-

tion feature extraction. We begin by discussing basic nota-
tion and static features. We then describe our approach to
weakly-stabilizing video frames and our resulting motion
features. Results are provided in the following section.

Notation: Let It denotes the t-th frame of a given video
and It denote an image patch from It. The spatial extent of
It in the frame is implicitly defined by the detection task.
For pedestrian detection, It is a fixed-size 32 × 64 pixel
patch. To detect people at different scales we use an effi-
ciently computed image pyramid [9].

Static features: In addition to the motion features in-
troduced below, we use one of two sets of static features
densely computed on the current frame. Our first set of
static features are the channel features described in [11].
As in [11], our channels include color (3 channels), gradi-
ent magnitude (1 channel) and gradient quantized by orien-



(a) Raw (b) σ=4 (c) σ=32

Figure 2: Stabilization using coarse-scale LK flows. We
show temporally distant 3-frame sequences stabilized onto
the last frame (bottom row). The red box in each frame is
the location of the person in the last frame. (a) In the raw
video, the person shifts from left to right due to camera and
object motion. (b) Using fine-scale LK flows, the overall
body is stabilized onto the last frame at the cost of distortion
in body parts (most visible at the heads and legs of the top
row). (c) Using coarse-scale LK flows the warped images
are aligned in terms of the overall body location while still
preserving clear motions of body parts.

tation (6 channels). Our second type of static features is the
commonly used Histogram of Oriented Gradients (HOG)
descriptor [7]. Specifically, we compute histograms of gra-
dients using 9 orientations on an 8× 16 grid of 4× 4 cells.

3.1. Stabilizing videos

Our goal is to compute motion features based on part-
centric motion, such as the movement of a person’s limbs.
This requires weakly stabilizing image frames to remove
both camera and object-centric motion while preserving the
part-centric motion. We accomplish this by using coarse-
scale optical flow to align a sequence of frames.

We estimate optical flow using the approach of Lucas-
Kanade [22] but applied in a somewhat non-standard man-
ner. Lucas-Kanade proposed a differential approach to flow

Figure 3: Example temporal frame differences using unsta-
bilized and weakly stabilized frames spaced one frame apart
(m = 1) and 8 frames apart (m = 8). When m = 1 there
exists minimal temporal information. With larger frame
spans (m = 8) temporal differences appear. However,
weak stabilization is needed to remove non-informative dif-
ferences resulting from camera and object motion.

estimation that is commonly implemented hierarchically. A
window radius σ controls the scale of the flow. Typically, σ
must be large enough to provide reliable local flow estimate
but small enough to capture fine motions. Instead, coarse
flow can be computed using a large radius σ. This offers
dual advantages: the flow estimates are both more reliable
and faster to compute.

We compute Lucas-Kanade flows with σ typically rang-
ing from 8 to 32 pixels (16 × 16 to 64 × 64 windows). We
denote the computed flow field from frame It to frame It−1

as Wt,t−1. It−1,t is frame It−1 warped to frame It using
the flow field Wt,t−1. We write an image patch from the
warped image as It−1,t. In practice, we find Wt,t−1 sta-
bilizes the majority of motion due to camera and object-
centric motion, as shown in Figure 2. Computing the coarse
flows is fast (no need to compute flow at finest scale) and
fairly robust (due to the large σ).

When stabilizing across multiple frames, we compute
the global motion Wt,t−n by progressively warping and
summing pairwise flow fields. We found this to work bet-
ter in practice than computing the potentially large flow di-
rectly between frames It and It−n.



3.2. Motion features
Given (weakly) stabilized image frames, we propose the

use of simple temporal differencing or temporal gradient
features. We now describe the numerous variants that we
experimentally evaluate. The temporal gradient is defined
as the difference between two frames,

Dσ = It − It−1,t, (1)

where σ is the scale of the computed flow. Because σ is
tuned to be roughly the size of an object, we expect the
temporal gradient to contain useful cues about nonrigid ob-
ject motion that are helpful for detection, as in Figure 3. We
denote temporal gradient on unstabilized frames as DUS :

DUS = It − It−1 (2)

Using multiple frames: We previously defined the dif-
ference features over pairs of frames. In many instances,
the amount of motion observed between subsequent frames
may be quite small, especially with slow moving objects.
Consider Figure 2; it is hard to see the difference in poses
between temporally adjacent frames. We alleviate this by
considering multiple frames, or frames spaced further apart.
Next, we define a family of multi-frame approaches.

First, we consider the simple approach of computing
multiple frame differences between the current frame and
k = n/m other frames spaced apart temporally by m
frames from t − m to t − n. We refer to m as the frame
skip and n as the frame span.

Dσ
0 (n,m) =


It − It−1m,t

It − It−2m,t

...
It − It−km,t

 (3)

Using this notation,Dσ in Equation (1) computed from only
two neighboring frames is equivalent to Dσ

0 (1, 1).
Another approach is to compute the set of differences

between neighboring frames within a multiframe set,

Dσ
1 (n,m) =


It − It−m,t

It−m,t − It−2m,t

...
It−(n−m),t − It−n,t

 (4)

Finally, we may also compute the difference between the
mean frame Mt and the neighboring frames,

Dσ
M (n,m) =


Mt − It−0m,t

Mt − It−1m,t

...
Mt − It−km,t

 , (5)

where Mt =
1
k+1

∑k
i=0 It−im,t

Rectified features: Previously, we defined our temporal
difference features using the signed temporal gradient. Sev-
eral other possibilities also exist for encoding the temporal
differences, such as using the absolute value of the tempo-
ral gradient or using rectified gradients. Rectified gradients
compute two features for each pixel’s temporal gradient dt
corresponding to max(0, dt) and max(0,−dt). The moti-
vation for this is that the sign of the gradient might provide
additional information for detection (e.g. people often have
darker hair color or clothing than the background).

Feature pooling: To add a small amount of spatial in-
variance, all of our features are pooled over a c × c sized
rectangular window. In all our experiments our pooling size
is 4× 4. The pooling is the same as for the static features.

Feature normalization: The contrast between a person
to be detected and the background may vary due to lighting,
background texture or clothing. This affects both static and
temporal difference features. Static features such as HOG
[7] account for this using feature normalization. We follow
a similar approach, but extended to spatio-temporal blocks.
After pooling our difference features over c × c neighbor-
hoods, we construct overlapping s×s×t blocks of cells with
spatial extent s = 2 and temporal extent t = 2 (analogous to
R-HOG, but extended in time). We then L1 normalize each
block feature (which we found to outperform L2 normal-
ization). To improve performance, we found it important to
clip the computed L1 norm of each block to have a maxi-
mum value of .05. Finally, following the approach of [16],
we use the average of eight normalized values (computed
from overlapping spacetime blocks) as the final feature.

4. Experimental results
In this section, we present a thorough evaluation of the

family of features described above. We evaluate our results
on two datasets, the Caltech Pedestrian dataset [12] and the
MindsEye dataset [1]. We begin by exploring the feature
parameter space on the task of pedestrian detection using a
boosting classifier [11]. For the use of linear SVM [7] clas-
sifiers we show that normalizing features is crucial. With
the optimal setting, state-of-the-art results are shown using
boosting and linear classifiers. We conclude our experimen-
tal results by showing promising results on the challenging
task of part detection using the MindsEye dataset [1].

4.1. Pedestrian detection
In this section, we explore various parameter settings on

the Caltech Pedestrian dataset [12], which consists of 10
hours of real-world video footage from a car-mounted cam-
era. The full dataset contains over 350,000 pedestrian de-
tections. As is recommended practice [12], we train and
evaluate using every 30th frame and a smaller “reasonable”
subset of bounding boxes containing pedestrians 50 pixels
or taller and with limited occlusion. For boosted classi-
fiers, we average results over 20 trials with different random
seeds to increase their statistical significance.



Figure 4: Results for various parameter sweeps on the Caltech pedestrian dataset. These include (a) adjusting the flow scale σ
vs. the frame skipm, (b) other forms of stabilization, (c) frame skipm vs. frame span n, (d) various types of reference frames
for computing D(m,n), (e) different types of rectification for utilizing the color channels, and (f) boosting vs. SVM results
with and without normalization. The best results, D16

0 (8, 4), are achieved using σ = 16, m = 4, n = 8, the current frame
as reference, and the signed temporal differences of the luminance channel. The SVM classifier outperforms the boosting
classifier when normalization is used. Normalization has no effect on the boosting classifier.

We measure accuracy using the standard log-average
miss rate for the detections [12], which is computed by aver-
aging the miss rate at nine false positives per image (FPPI)
rates evenly spaced between 10−2 to 100. A detection is
labeled as correct if the area of overlap is greater than 50%.

We implement several baselines. The result of Dollár et
al. [11], as reported in [12], is a 56% log-average miss rate
using only static features and trained on the INRIA dataset
[7]. Retraining on the Caltech training set reduced this er-
ror to 51%, which is close to the best reported results. By
shrinking the model size from 128× 64 to 64× 32 and ex-
cluding occluded pedestrians from the training set we were
able to reduce this rate to 45%. Likewise, using code from
[16] we trained a HOG-SVM detector [7]. Again exclud-
ing occluded pedestrians, using a reduced model size, and
shrinking the default HOG cell size to 4 × 4 pixels, we
achieve 46% miss rate. Our baselines slightly outperform
the best reported results on the Caltech dataset.

We now describe experiments testing each parameter.
We perform our sweeps using boosting and the 10 static
channel features described in Section 3. We explore each
parameter sequentially while holding the others constant.
For reference, we also always show the performance of our
static detector. Lastly, we combine the optimal temporal
features found for boosting with the static HOG features

for use by linear SVMs. For the sweeps in Fig. 4 we used
a slightly simplified evaluation criterion, resulting in minor
differences from our final numbers reported in Fig. 5 (gener-
ated using the official evaluation code available from [12]).

Optical flow scale vs. frame skip: We first explore the
space of two parameters; the scale of LK flows, σ, and the
skip between two frames used to compute the temporal dif-
ference, m, see Fig. 4(a). For these experiments, we only
use two frames, with the span n equal to m. We use D0,
where the first frame is the reference frame when computing
differences. Observe that there exists a coherent relation-
ship between miss rates and these two parameters. When
the pair of frames are temporally nearby, stabilization plays
a smaller role, since objects are relatively well aligned even
without stabilization. As we increase the skip m between
the pair of frames, stabilization becomes critical. We fix
σ = 16 for all remaining experiments.

Ideally, the optical flow scale should roughly cover an
object, and so would be defined relative to the size of the
candidate window being evaluated. For simplicity, we im-
plemented a fixed scale in our experiments, which still
worked well because our datasets tend to contain objects at a
single scale. Moreover, Fig. 4(a) shows stable performance
over two octaves in scale space, indicating that precise scale
selection may not be necessary in general.



Other forms of stabilization: In addition, we explored
global 2D transformations for stabilizing videos including
translation, similarity, and projective transformations. Our
stabilization outperforms these considerably, see Fig. 4(b).

Multiframe: Given a fixed scale σ = 16, we now exam-
ine the question of the optimal multiframe span n, skip m,
and reference frame. Certain combinations are not possible
(m > n) and so cannot be evaluated. We find that a large
span n = 8 and small skip value m = 1 performs best,
although a larger skip m = 4 also does well, see Fig. 4(c).
Given the reduction in computational complexity ofD(8, 4)
over D(8, 1), we fix n = 8 and m = 4. Using these set-
tings, we find using the current frame, It, as the reference
achieves the best result, see Fig. 4(d). This yields the final
multiframe motion feature of D0(n = 8,m = 4).

Rectification: We examine various strategies for fea-
ture rectification in Fig. 4(e), using three temporal differ-
ences across the LUV color channels. The “Max” scheme
uses the maximum temporal difference across the 3 chan-
nels, while the “Lum” scheme just uses the luminance (L)
channel. “Rect” refers to rectified features that are created
by appending the absolute value of the positive and nega-
tive components of the difference feature D0(8, 4). “Abs”
refers to simply taking the absolute value of the difference
feature, while “Signed” refers to keeping the original signed
feature. We see in Fig. 4(e) that the signed luminance fea-
ture outperforms all the other variants.

Normalization: We evaluate the impact of feature nor-
malization in Fig. 4(f). The normalization has minimal
effect on the performance of the boosting classifier, pre-
sumably because boosting classifiers can train more flex-
ible decision boundaries that perform implicit normaliza-
tion. However, explicit normalization appears vital for lin-
ear SVMs. Similar finding have been shown for static fea-
tures such as HOG [7].

Previous work: In Fig. 5 we compare with previous
work including ‘MultiFtr+Motion’ [28] (which uses motion
features) and ‘MultiresC’ [23] (which uses static features
trained on the same data as [12]). Our models considerably
outperform prior work, achieving a five-fold reduction in
false positives. Both boosting and SVM classifiers perform
well, each being optimal for different ranges of FPPI. Fig. 6
shows several examples of detections using our approach
compared to using static features alone. Several false de-
tections are removed around the car’s boundary as tempo-
ral features remove the ambiguities. Temporal features can
also help discover missed detections, such as the pedestrian
riding a bicycle in the second row.

4.2. Part detection

The MINDSEye video dataset [1] is a large collection
containing hundreds of hours of video capturing everyday
outdoor human interactions for military surveillance sce-
narios. It is one of the largest available datasets for multi-
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Figure 5: Comparison of log-average miss rate vs. False
Positives Per Image (FPPI) between our approaches and
previous methods on Caltech [12]. Our new temporal fea-
tures lead to a significant improvement across all FPPI rates.

person pose estimation and multi-person action recognition
(Fig. 7). Though scripted, it is a challenging testbed for
video analysis. We have annotated human poses in a collec-
tion of 7 video clips with each 30-100 seconds in duration.
The annotated frames are evenly split into training and test-
ing, and used to evaluate the ability of our motion features
to perform human pose estimation in video sequences.

Baseline articulated part model: We describe our base-
line articulated part model [31], and show how to extend it
to incorporate our motion features. Let li = (xi, yi) be the
pixel location of part i. Given an image I , we score a col-
lection of part locations l = {li}

score(I, l) =
∑
i

wi · φ(I, li) + ws · spatial(l) (6)

where φ(I, li) is a HOG descriptor extracted from pixel lo-
cation li in image I . The first term in (6) is an appear-
ance model that computes the local score of placing filter
wi at location li using an inner-product. The second term
is a shape prior that favors particular spatial arrangements
of parts over others. From our perspective, we can be ag-
nostic to its form so long as it is linearly parametrized and
there exist tractable algorithms for computing the best scor-
ing configuration max scorel(I, l). [31] describes efficient
dynamic programming algorithms for inference, as well as
efficient quadratic programming solvers for learning param-
eters {wi, ws} given labeled training data.

Motion features: For our experiments, we simply aug-
ment the appearance descriptor to include both HOG and



Figure 6: In the each row, we compare the results of two
models; one trained only with static features (left), and
the other trained with both static and our motion features
(right). Note that our motion features help detect instances
that are considered hard due to abnormal pose (biking) or
occlusion, and significantly reduce false positives.

our motion feature:

φ(I, li) =

[
HOG[I, li]
D0(8, 4)[I, li]

]
(7)

The above formulation allows us to easily incorporate our
motion features into the existing pipeline at both test-time
and train-time. Since the people in the MINDSEye dataset
are significantly larger, we increased σ to 50.

Evaluation: We augmented the publicly-available code
of [31] to use our motion features. We trained both a static-
image pose detector and motion-augmented pose detector
using the exact same training data, and present results in
Fig. 7 and Table 1. For upper body parts, we see a large im-
provement in part localization accuracy (as measured by the
fraction of times a predicted joint sufficiently overlaps the

Figure 7: Pose estimation on MINDSEye test images. We
show estimates from the pose model of [31] trained using
our motion features. It outperforms static features, espe-
cially for instances with large motion, e.g. playing with a
ball. The last row shows failure cases.

ground-truth). Overall accuracy across all joints increases
from 57% to 60%, which is a reasonable improvement given
the difficulty of the data. Multiple people often interact and
occlude each other, making pose estimation and motion ex-
traction difficult.

5. Conclusion
We described a family of temporal features utilizing

weakly stabilized video frames. Weak stabilization en-
ables our detectors to easily extract part-centric informa-
tion by removing most camera- and object-centric motion.
We experimentally show that simple temporal differences
extracted across large time-spans are capable of producing



Features HOG HOG+Motion
Head 71.50% 76.00%

Upper arms 65.00% 68.25%
Lower arms 35.25% 39.25%
Upper legs 62.50% 65.50%
Lower legs 60.75% 61.75%

Overall 57.07% 59.93%

Table 1: Augmenting an articulated part model with our
motion features produces consistently better part localiza-
tions. The gain from static features are not as dramatic as
the result on Caltech, since other challenges, such as self-
occlusion, inter-person occlusion, and a wider variety of
poses, plays a role. Each body part (e.g., upper arm) con-
tains 2 keypoints and is evaluated using standard criteria
[31]. “Overall” refers to the average across all keypoints,
making sure there is no double-counting.

state-of-the-art results on the challenging Caltech Pedes-
trian dataset. Finally, we show our features generalize to
detecting individual body parts, as well as pedestrians.
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