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Abstract

Datasets for training object recognition systems are steadily growing in size. This
paper investigates the question of whether existing detectors will continue to improve
as data grows, or if models are close to saturating due to limited model complexity and
the Bayes risk associated with the feature spaces in which they operate. We focus on
the popular paradigm of scanning-window templates defined on oriented gradient fea-
tures, trained with discriminative classifiers. We investigate the performance of mixtures
of templates as a function of the number of templates (complexity) and the amount of
training data. We find that additional data does help, but only with correct regularization
and treatment of noisy examples or “outliers” in the training data. Surprisingly, the per-
formance of problem domain-agnostic mixture models appears to saturate quickly (∼10
templates and ∼100 positive training examples per template). However, compositional
mixtures (implemented via composed parts) give much better performance because they
share parameters among templates, and can synthesize new templates not encountered
during training. This suggests there is still room to improve performance with linear
classifiers and the existing feature space by improved representations and learning algo-
rithms.

1 Introduction
Much of the impressive progress in object detection is built on the methodologies of statis-
tical machine learning, which makes use of large training datasets. Consider the benchmark
results of the well-known PASCAL VOC object challenge (Fig. 1). We see a clear trend
in increased performance over the years as methods have gotten better and training datasets
have become larger. In this work, we ask a meta-level question about the field: will contin-
ued progress be driven faster by increasing amounts of training data or the development of
better object detection models?

To answer this question, we collected a massive training set that is an order of magnitude
larger than existing collections such as PASCAL [6]. We follow the dominant paradigm of
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Figure 1: The best reported performance on PASCAL VOC challenge has shown marked
increases since 2006. However, it is not clear whether this is due to more sophisticated
models or simply the availability of larger training sets.

scanning-window templates trained with linear SVMs on HOG features [1, 3, 7, 10], and
evaluate detection performance as a function of the amount of training data and the model
complexity.

We found there is a surprising amount of subtlety in scaling up training data sets in
current systems. For a given model, one would expect performance to generally increase
with the amount of data, but eventually saturate. Empirically, we found the bizarre result
that off-the-shelf implementations often decrease in performance with additional data! One
would also expect that to take advantage of additional training data, it is necessary grow
the model complexity, e.g., by adding mixture components to model object sub-categories,
3D viewpoint, etc. However, we often found scenarios in which performance was relatively
static even as model complexity and training data grew.

In this paper, we offer explanations and solutions for these phenomena. First, we found it
crucial to set model regularization as a function of training dataset using cross-validation, a
standard technique not typically deployed in current object detection systems. Second, exist-
ing strategies for discovering subcategory structure, such as clustering aspect ratios [7] and
appearance features [5] may not suffice. We found this was related to the inability of classi-
fiers to deal with “polluted” data when mixture labels were improperly assigned. Increasing
model complexity is thus only useful when mixture components capture the “right” sub-
category structure. Finally, we found that is was easier to capture the “right” structure with
compositional representations; we show that one can implicitly encode an exponentially-
large set of mixtures by composing parts together, yielding substantial performance gains
over explicit mixture models. We conclude that there is currently little benefit to simply
increasing training dataset sizes. But there may be significant room to improve current rep-
resentations and learning algorithms, even when restricted to existing feature descriptors.

2 Datasets
We performed experiments using two training datasets: a newly collected dataset containing
annotated objects from 11 PASCAL categories and the CMU MultiPIE dataset containing
faces from multiple viewpoints.

PASCAL-10X: In order to study detection with large datasets, we built an order of mag-
nitude larger dataset than PASCAL for 11 categories. We collected images from Flickr and
annotated them on Mechanical Turk. We took care to ensure that we obtained high-quality
bounding box annotations and we manually verified that our larger dataset matches the distri-
bution of the original PASCAL set. Our dataset is unique for its massive number of positive
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Figure 2: We compare supervised versus automatic (k-means) approaches for clustering im-
ages of PASCAL buses. Supervised clustering produces more clear clusters, e.g. the 21
supervised clusters correspond to viewpoints and object type (single vs double-decker). Su-
pervised clusters perform better in practice, as we show in Fig. 6.

examples per category and we have made it available for further research. 1.
CMU MultiPIE: We also use 900 faces across 13 view points from CMU’s MultiPIE

dataset [8]. Each viewpoint was spaced 15◦ apart spanning 180◦. 300 of the faces are frontal,
while the remaining 600 are evenly distributed among the remaining viewpoints. For nega-
tives, we use 1218 images from the INRIAPerson database [3]. Our testset is the annotated
face in-the-wild (AFW) [15], which contains images from real-world environments and tend
to have cluttered backgrounds with large variations in both face viewpoint and appearance.

3 Mixture models
To take full advantage of additional training data, it is important to be able to grow model
complexity. We accomplish this by adding a mixture model that capture “sub-category”
structure. If the number of mixtures grows with the number of training examples, this is
similar to the non-parametric “exemplar SVM” model of [10]. We now briefly describe how
we build these mixtures throughout our experiments.

Unsupervised clustering: For our unsupervised baseline, we cluster the positive train-
ing images of each category into 16 clusters using hierarchical K-means, recursively splitting
each cluster into k = 2 subclusters. To capture both appearance and shape when clustering,
we apply PCA to reduce the dimensionality of HOG and append the aspect ratio to the fea-
ture. However, a difficulty in evaluating mixture models is that clustering has a non-convex
objective and frequently settles in local optima, which may mask variations in performance
that we wish to measure across samples of training data.

Partitioned sampling: Given a fixed training set of Nmax positive images, we want a
clustering for K = 8 to respect the cluster partitions for K = 4; similarly, we would like
to construct a smaller sampled subsets, say of N = Nmax

2 images, whose cluster partitions
respect those in the full dataset. To do this, we first hierarchically-partition the full set
of Nmax images by recursively applying K-means, as described. We then subsample half
the images from each level of the hierarchy to generate a partitioning of Nmax

2 images. We
recursively repeat this procedure, generating a dataset of Nmax

4 images by further sampling
half the data. This procedure yields a (K,N) partitioning of the data with two properties: (1)
for a fixed K, each smaller set is a subset of the larger ones, and (2) given a fixed N, new
clusters are constructed by further splitting existing ones. We compute confidence intervals

1The dataset can be downloaded from http://vision.ics.uci.edu/datasets/
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Figure 3: [left] More training data could hurt if we did not pick a proper C. We need to
cross-validate on the correct C to produce good results. [right] shows that test performance
can change drastically with C. Moreover, the optimal C depends on the amount of positive
training examples N.

by repeating this procedure multiple times to resample the dataset and produce multiple sets
of (K,N)-consistent partitions.

Supervised clustering: To examine the effect of supervision, we cluster the training
data by manually grouping visually similar samples. For CMU MultiPIE, we define clusters
using viewpoint annotations provided with the dataset. We generate a hierarchical cluster-
ing by having a human operator merge similar viewpoints, following the partitioned sam-
pling scheme above. Since PASCAL-10X does not have viewpoint labels, we generate an
“over-clustering” with K-means with a large K, and have a human operator manually merge
clusters. Fig. 2 shows an example of the average images for each cluster.

4 Experiments
We performed experiments on 11 PASCAL categories along with experiments on multiview
face detection using the CMU MultiPIE training set and the Annotated Faces in the Wild
test set [15]. For each category, we train the model with varying number of samples (N) and
mixtures (K). We train rigid HOG template models [3] for each cluster independently with
linear SVMs [2]. We calibrated SVM scores using Platt scaling [12]. To show the uncertainty
of the performance with respect to different sets of training samples, we randomly re-sample
the training data 5 times for each N and K following the partitioned sampling scheme of
Sec. 3. The best regularization parameter C for the SVM is selected by cross validation.
We adopt the PASCAL VOC precision-recall protocol for object detection (requiring 50%
overlap), and report the average precision for each run. For diagnostic analysis, we first focus
on faces and buses.

4.1 Does more data help performance?
We begin with a rather simple experiment: how does a rigid HOG template tuned for faces
perform when we give it more training data N? Fig. 3 shows the surprising result that ad-
ditional training data can decrease performance! For imbalanced object detection datasets
with many more negatives than positives, the hinge loss appears to grow linearly with the
amount of positive training data; if one doubles the number of positives, the total hinge loss
also doubles. This leads to overfitting. To address this problem, we found it crucial to cross-
validate C across different N. By doing so, we do see better performance with more data.
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Figure 4: [left] We compare the performance of a single HOG template trained with N
multiview face examples, versus a template trained with a subset of those N examples cor-
responding to frontal faces. The frontal-face template [center] looks “cleaner” and makes
fewer mistakes on both testing and training data. The fully-trained template [right] looks
noisy and performs worse, even though it produces a lower SVM objective. This suggests
that SVMs are sensitive to noise and that we must train models with “clean” data.

Figure 5: The single clean bicycle template (marked with red) alone achieves ap=29.4%,
which is almost equivalent to the performance of using all 8 mixtures (ap=29.7%). Both
models strongly outperform a single-mixture model trained on the full training set; this sug-
gests that these additional mixtures to useful to prevent “noisy” data from polluting a single
template.

While cross-validation is a somewhat standard procedure, most off-the-shelf detectors are
trained using a fixed C across object categories with large variations in the number of posi-
tives. We suspect other systems may also be suffering from suboptimal regularization [3, 7]
and might show an improvement by proper cross-validation.

4.2 Does clean training data help?
Although proper regularization parameters proved to be crucial, we still discovered scenarios
where additional training data hurt performance. Fig. 4 shows an experiment with a fixed
set of N training examples where we train two detectors: (1) All is trained with with all N
examples, while (2) Frontal is trained with a “clean” subset of N only containing frontal
faces. We cross-validate C for each model for each N. Surprisingly, Frontal outperforms All
even though it is trained with less data.

This outcome cannot be explained by a failure of the model to generalize from training
to test data. We examined the training loss for both models, evaluated on the full training
set. As expected, All has a lower SVM objective function than Frontal (1.29 vs 3.48). But in
terms of 0-1 loss, All makes nearly twice as many classification errors on the same training
images (900 vs 470). This observation suggests that the hinge loss is a poor surrogate to
the 0-1 loss because “noisy” hard examples can wildly distort the decision boundary as they
incur a large, unbounded hinge penalty. Interestingly, latent mixture models can mimic the
behavior of non-convex bounded loss functions [14] by placing noisy examples into junk
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Figure 6: We compare the human clustering and automatic k-means clustering at near-
identical K. We find that supervised clustering provides a small but noticeable improvement
of 2-5%.
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Figure 7: (a)(c) show the monotonic non-decreasing curves when we add more training data.
The performance saturates quickly at a few hundreds training samples. (b)(d) show how the
performance changes with more mixtures K. Given a fixed number of training samples N,
the performance increases at the beginning, and decreases when we split the training data
too much so that each mixture only has few samples.

clusters that simply serve to explain outliers in the training set. In some cases, a single
“clean” mixture component by itself explains most of the test performance (Fig. 5).

The importance of “clean” training data suggests it could be fruitful to correctly cluster
training data into mixture components where each component is “clean”. We evaluated
the effectiveness of providing fully supervised clustering in producing clean mixtures. In
Fig. 6, we see a small 2% to 5% increase for manual clustering. In general, we find that
unsupervised clustering can work reasonably well but depends strongly on the category and
features used. For example, the DPM implementation of [7] initializes mixtures based on
aspect ratios. Since faces in different viewpoint share similar aspect ratios, this tends to
produce “unclean” mixtures compared to our latent clustering.

4.3 Does performance asymptote as both K and N grow?
Given the right regularization and clean mixtures, we now evaluate whether performance
asymptotes as the amount of training data and the model complexity increase. Fig. 7 shows
performance as we vary K and N after cross-validating C and using supervised clustering.
Fig. 7a demonstrates that increasing the amount of training yields a clear improvement in
performance. Larger models with more mixtures tend to perform worse with fewer exam-
ples due to over fitting, but eventually win with more data. Surprisingly, improvement tends
to saturate at 100 training examples per mixture and with 13 mixtures. Fig. 7b shows perfor-
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Figure 8: We plot the best perfor-
mance at varying amount of training
data for 11 PASCAL categories. All
the curves saturate with a relatively
small amount of training data.

mance as we vary model complexity for a fixed amount of training data. Particularly at small
data regimes, we see the critical point one would expect: a more complex model performs
better up to a point, after which it overfits. We found similar behavior for the Buses category
which we manually clustered by viewpoint.

We performed similar experiments for all 11 PASCAL object categories in our PASCAL-
10X dataset shown in Fig. 8. We evaluate performance on the PASCAL 2010 trainset
since the evaluation set annotations are not public. We cluster the training data into K =
[1,2,4,8,16] mixture components, and N = [50, 100, 500, 1000, 3000, Nmax] training sam-
ples, where Nmax is the number of training samples collected for the given category. For each
N, we select the best C and K through cross-validation. Results across all categories indicate
that performance saturates as we increase the amount of training data.

4.4 Is performance saturated for HOG?
Since increasing model complexity does not improve performance, one hypothesis is that
we have saturated HOG and are now operating within the Bayes risk. To evaluate this, we
compare our model to other representations trained with the same data and feature space. We
train and test the latent deformable parts model (LDPM) of [7] as a baseline, which obtains
an AP of 80% compared to our 76%. We also compare to the recent DPM of [15] which adds
additional supervision, shared parts, and multi-view trees to define spatial constraints. This
model further improves performance to 91%, which is clearly a lower bound on the optimal
performance. These results demonstrate that mixture models have not hit the fundamental
limits of HOG. So why did additional training data not allow us to approach 91% AP?

DPMs as large-mixture models: To explain this phenomenon, it will be useful to model
a DPM as an exponentially-large mixture of rigid templates. We can then analyze under what
conditions a classic mixture model will approach the behavior of a DPM. Let the location of
part i be (xi,yi). Given an image I, we score a configuration of P parts (x,y) = {(xi,yi) : i =
1..P} as:

S(I,x,y) =
( P

∑
i=1

∑
(u,v)∈Wi

αi[u,v] ·φ(I,xi +u,yi + v)
)
+ ∑

i j∈E
ψi j(xi− x j,y j− y j) (1)

where Wi defines the spatial extent (length and width) of part i. The first term defines a local
appearance score, where αi is the appearance template for part i and φ(I,xi,yi) is the fea-
ture vector extracted from location (xi,yi). The second term defines a pairwise deformation
model that scores the relative placement of a pair of parts. When the associated relational
graph G = (V,E) is tree-structured, one can compute the best-scoring part configuration
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Figure 9: We show three rigid mixtures from a RMP model on the [left], along with their
corresponding training images. RMPs share spatially-localized regions (or “parts”) between
mixtures. Each rigid mixture is a superposition of overlapping parts. A single part is drawn
in blue. On the [right], we show a mixture component which is implicitly synthesized by a
DPM for a novel test image on-the-fly. In Fig. 10, we show that both sharing of parameters
between mixture components and implicit generation of mixture components corresponding
to unseen part configurations contribute to the strong performance of a DPM.

max(x,y)∈Ω S(I,x,y) with dynamic programming, where Ω is the space of possible part place-
ments. Given that each of P parts can be placed at one of L locations, |Ω| = LP ≈ 1020 for
our models.

By defining index variables in image coordinates u′ = xi + u and v′ = yi + v, we can
rewrite Eqn.1 as:

S(I,x,y) =
(

∑
(u′,v′)∈I

P

∑
i=1

αi[u′− xi,v′− yi] ·φ(I,u′,v′)
)
+ ∑

i j∈E
ψi j(xi− x j,y j− y j) (2)

=
(

∑
(u′,v′)∈I

wxy[u′,v′] ·φ(I,u′,v′)
)
+bxy (3)

= wxy ·φ(I)+bxy (4)

where wxy[u′,v′] = ∑
P
i=1 αi[u′−xi,v′−yi]. For notational convenience, we assume parts tem-

plates are padded with zeros outside of their default spatial extent. Therefore, a DPM is
equivalent to exponentially-large mixture model where each mixture component is indexed
by a particular configuration of parts (x,y). The template corresponding to each mixture
component wxy is constructed by adding together parts at shifted locations. The bias corre-
sponding to each mixture component bxy is equivalent to the spatial deformation score for
that configuration of parts. DPMs differ from classic mixture models in that they (1) share
parameters across a large number of mixtures or rigid templates, (2) “synthesize” new tem-
plates not encountered during training, and finally, (3) efficiently search over a large number
of templates (making use of dynamic programming).

RMPs: To consider the impact of (1) vs (2), we define a part model that limits the possi-
ble configurations of parts to those seen in the N training images, written as max(x,y)∈ΩN S(I,x,y)
where ΩN ⊆ Ω. We call such a model a Rigid Mixture of Parts (RMP), since it can also be
interpreted as set of N rigid templates with shared parameters. Indeed, RMPs are optimized
with a discrete enumeration over N templates rather than dynamic programming. RMPs
have the benefit of sharing, but cannot synthesize new templates that were not present in the
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Figure 10: We compare the performance
of mixtures models with RMPs and la-
tent/supervised DPMs. A single rigid template
(K = 1) tuned for frontal faces outperforms the
one tuned for all faces (as shown in Fig. 4).
Mixture models boost performance to 76%,
approaching the performance of a latent DPM
(79%). The RMP shares supervised part pa-
rameters across rigid templates, boosting per-
formance to 85%. The supervised DPM (91%)
shares parameters but also implicitly scores
additional templates not seen during training.

training data. We visualize example RMP mixtures in Fig. 9. In Fig. 10, RMPs outperform
our cross-validated subcategory mixture model (the green curve), increasing performance
from 76% to 85%. Subcategory mixture models learn parameters independently for each
distinct viewpoint and deformation, and so may require additional data to achieve the same
performance as the RMP model.

While RMPs outperform the latent DPM of [7], they underperform the supervised DPM
of [15], even though they are trained with the same supervised part labels of the latter. RMP
performance grows slowly with additional training data. In the limit that every configuration
is seen in training (ΩN = Ω), an RMP must behave identically to a DPM. However, this
would require a training set of at least |Ω|= LP ≈ 1020 examples, far more than the number
of images we can realistically collect. This suggests the performance gap (85% vs 91%)
stems from the ability of deformable models to synthesize configurations that are not seen
during training.

In summary, part models can be seen as a mechanism for performing intelligent param-
eter sharing across observed mixture components and extrapolation to implicit, unseen mix-
ture components. Both these aspects contribute to the strong performance of DPMs. Once
the representation for sharing and extrapolation is accurately specified, fairly little training
data is needed. Indeed, our analysis shows that one can train a state-of-the-art face detector
[15] with 50 face images.

5 Discussion and Conclusion

We have performed an extensive analysis of the current dominant paradigm for object de-
tection using HOG feature templates. We view this study as complementary to other meta-
analysis of the object recognition problem such as studies of the dependence of performance
on the number of object categories [4], dataset collection bias [13], and component-specific
analysis of recognition pipelines [11].

An emerging idea in our community is that object detection might be solved with simple
models backed with massive training sets, reminiscent of the “big-data” hypothesis [9]. Our
experiments suggest an alternative view. Given the size of existing datasets, it appears none
of the models we tested will benefit greatly from more data. Instead, the largest gains were
in enforcing richer representational structure and constraints within the model.

Another regular hypothesis is that we should focus on developing better features, not bet-
ter learning algorithms. While HOG is certainly limited, we still see substantial performance
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gains without any change in the features themselves or the class of discriminant functions.
Instead, the strategic issues appear to be parameter sharing and compositionality. Establish-
ing and using accurate, clean correspondence among training examples (e.g., that specifies
that certain examples belong to the same sub-category, or that certain spatial regions corre-
spond to the same part) and developing compositional approaches that implicitly make use
of augmented training sets appear the most promising directions.
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