Statistical Tests for Optimization Efficiency

Levi Boyles, Anoop Korattikara, Deva Ramanan, Max Welling
Department of Computer Science
University of California, Irvine
Irvine, CA 92697-3425
{I boyl es}, {akoratti }, {dramanan}, {wel | i ng}@cs. uci . edu

Abstract

Learning problems, such as logistic regression, are tilpif@mulated as pure
optimization problems defined on some loss function. We arhat this view
ignores the fact that the loss function depends on stodadigtigenerated data
which in turn determines an intrinsic scale of precisiondtatistical estimation.
By considering the statistical properties of the updatéatdes used during the
optimization (e.g. gradients), we can construct frequértypothesis tests to
determine the reliability of these updates. We utilize sttbsf the data for com-
puting updates, and use the hypothesis tests for detemgniviiien the batch-size
needs to be increased. This provides computational beaafitavoids overfitting
by stopping when the batch-size has become equal to sizeediuthdataset.
Moreover, the proposed algorithms depend on a single irgtiple parameter —
the probability for an update to be in the wrong direction -iclihis set to a single
value across all algorithms and datasets. In this paper]lugtrate these ideas
on threeL, regularized coordinate descent algorithnis;-regularizedL,-loss
SVMs, L;-regularized logistic regression, and the Lasso, but wehasipe that
the underlying methods are much more generally applicable.

1 Introduction

There is an increasing tendency to consider machine legasira problem in optimization: define
a loss function, add constraints and/or regularizers amddtate it as a preferably convex program.
Then, solve this program using some of the impressive t@ota the optimization literature. The
main purpose of this paper is to point out that this “reduttio optimization” ignores certain
important statistical features that are unique to statibéstimation. The most important feature
we will exploit is the fact that thestatistical properties of an estimation problem determame
intrinsic scale of precisior(that is usually much larger than machine precision). Thiplies
immediately that optimizing parameter-values beyond sleate is pointless and may even have an
adverse affect on generalization when the underlying misd®mplex. Besides a natural stopping
criterion it also leads to much faster optimization before neach that scale by realizing that far
away from optimality we need much less precision to deteengirparameter update than when
close to optimality. These observations can be incorpdratenany off-the-shelves optimizers and
are often orthogonal to speed-up tricks in the optimizattmibox.

The intricate relationship between computation and esiiméaas been pointed out before in [1]
and [2] where asymptotic learning rates were provided. Oh#he important conclusions was
that a not so impressive optimization algorithm such ashstsiic gradient descent (SGD) can be
nevertheless a very good learning algorithm because it tareps more data per unit time. Also
in [3] (sec. 5.5) the intimate relationship between compioiiaand model fitting is pointed out.
[4] gives bounds on the generalization risk for online aiipons, and [5] shows how additional
data can be used to reduce running time for a fixed target gkzedion error. Regret-minimizing
algorithms ([6], [7]) are another way to account for the iptay between learning and computation.
Hypothesis testing has been exploited for confputatiorialsgaefore in [8].

Our method exploits the fact that loss functions are randaraliles subject to uncertainty. In a
frequentist world we may ask how different the value of theslavould have been if we would have
sampled another dataset of the same size from a single stnadedying distribution. The role of
an optimization algorithm is then to propose parameter tgsdenat will be accepted or rejected
on statistical grounds. The test we propose determinesheh#te direction of a parameter update
is correct with high probability. If we do not pass our testsaw using all the available data-cases
then we stop learning (or alternatively we switch to samgpbnbagging), because we have reached
the intrinsic scale of precision set by the statistical prtips of the estimation problem.

However, we can use the same tests to speed up the optimizaticess itself, that is before we
reach the above stopping criterion. To see that, imaginésdaeed with an infinite dataset. In batch
mode, using the whole (infinite) dataset, one would not tasiegle optimization step in finite time.
Thus, one should really be concerned with making as muchr@ssds possiblger computational
unit. Hence, one should only use a subset of the total availabéseta Importantly, the optimal
batch-size depends on where we are in the learning procaisawhy from convergence we only
need a rough idea of where to move which requires very few-ciadas. On the other hand, the
closer we get to the true parameter value, the more respluttoneed. Thus, the computationally
optimal batch-size is a function of the residual estimagar. Our algorithm adaptively grows a
subset of the data by requiring that we have just enoughgpoecio confidently move in the correct
direction. Again, when we have exhausted all our data welsteoping.

Our algorithm heavily relies on the central limit tendescef large sums of random variables.

Fortunately, many optimization algorithms are based omames over data-cases. For instance,
gradient descent falls in this class, as the gradient iselgfiy an average (or sum). Thus, with large
enough batch sizes we can use the Central Limit Theorem tm ¢keat the average gradients are

normally distributed and estimate their variance withaitially seeing more data (this assumption
is empirically verified in section 5.2). We have furthermarglemented methods to avoid testing

updates for parameters which are likely to fail their testisTensures that we approximately visit

the features with their correct frequency (i.e. importaedtfires may require more updates than
unimportant ones).

In summary, the main contribution of this paper is to introgla class of algorithms with the
following properties.

e They depend on a single interpretable parametethe probability to update parameters in the
wrong direction. Moreover, the performance of the algonihis relatively insensitive to the
exact value we choose.

e They have a natural, inbuilt stopping criterion. The altforis terminate when the probability to
update the parameters in the wrong direction can not be nmadkes thare.

e They are applicable to wide range of loss functions. The oetjuirement is that the updates
depend on sums of random variables.

e They inherit the convergence guarantees of the optimizatiethod under consideration. This
follows because the algorithms will eventually considéttad data.

e They achieve very significant speedups in learning models flata. Throughout the learning
process they determine the size of the data subset reqoingelform updates that move in the
correct direction with probability at least— e.

We emphasize that our framework is generally applicablethih paper we show how these con-
siderations can be applied Iq -regularized coordinate descent algorithms:regularizedlLs-loss
SVMs, L-regularized logistic regression, and Lasso [9]. Coongirgescent algorithms are conve-
nient because they do not require any tuning of hyper-paems®o be effective, and are still efficient
when training sparse models. Our methodology extends tigeathms to be competitive for dense
models and foiV >> p. In section 2 we review the coordinate descent algorithrhenTin section
3.2 we formulate our hypothesis testing framework, folldwg a heuristic for predicting hypothesis
test failures in section 4. We report experimental resalteiction 5 and we end with conclusions.

2 Coordinate Descent

We consider L1-regularized learning problems where the ikdefined as a statistical average over
N datapoints:

N
FO) =Bl + gy D los(5 i) whee . € B @

We will consider continously-differentiable loss funet® (squared hinge-loss, log-loss, and
squared-loss) that allow for the use of eﬁiciegt coordirg®ecent optimization algorithms, where

each parameter is updatgf®” « j3; + d; with:

d; = argmin f (3 + de;) f(B+de;) =1|8; +d| + L;(d; B) + const @)
d

whereL;(d; 8) = 5% SN loss(3 + dej, x;,y;) ande; is the j* standard basis vector. To solve
the above, we perform a second-order Taylor expansion qfahéal lossL; (d; B):

(B +de;) =~ |B; +d| +L;(o;5)d+ L”(O B)d* + const (3)

[10] show that the minimum of the approximate objective dltained with:

L5(0,8)+y

—r T L5(0,8) +v < LF(0, 5)3;
L= L%(0,8 .
4= =500 it 1 0,8) — v > 1(0.8)8, (4)
—B; otherwise

For quadratic loss functions, the approximation in (3) iaax For general convex loss functions,
one can optimize (2) by repeatedly linearizing and applyiregabove update. We perform a single
update per parameter during the cyclic iteration over patars. Notably, the partial derivatives
are functions of statistical averages computed dveraining points. We show that one can use
frequentist hypothesis tests to elegantly manage the anobdata neededY) to reliably compute
these quantities.

2.1 L,-regularized Ly-loss SVM
Using a squared hinge-loss function in (1), we obtai eregularizedL,-loss SVM:
losssy v = max(0, 1 — ;87 z;)? ®)

Appendix F of [10] derive the corresponding partial deiivas, where the second-order statistic is
approximate because the squared hinge-loss is not twisetditiable:

L0 =-5 Z YiTijbi L7(0 Z 1 (6)

zeI(,ﬁ) zel(ﬁ)

whereb;(8) = 1 — y;Tx; and I(8) = {i|b;(B) > 0}. We write z;; for the ;" element of
datapointz;. In [10], each parameter is updated until convergence guaitine-search for each
update, whereas we simply check ti4tterm is not ill formed rather than performing a line search.

2.2 Ly-regularized Logistic Regression
Using a log-loss function in (1), we obtain/a-regularized logistic regression model:

105509 = log(1 + 47" ()
Appendix G of [10] derive the corresponding partial derived:
L'(0,8) = 1 i — iy L7(0,8) = 1 i Lij ’ Vil @i 8)
A 2N — 1+ eviBTwi AN 2 — 1+ eviBTmi

2.3 L,-regularized Linear Regression (Lasso)

Using a quadratic loss function in (1), we obtain.gregularized linear regression, or LASSO,

model: o
l0SSyuaa = (yi — B ;) C))
The corresponding partial derivatives [9] are:
L’ = Z — BTz)Tij L” Zz”zu (10)

3

Because the Taylor expansion is exact for quadratic losgtifurs, we can directly write the closed
form solution for parametes? < = S(a;, v) where

a—vy a>0,v<|a

o = NZSC” —g}f]) Sla,y)=qa+y a<0,y<|of (11)
0 72> o
Whereyl Zk ;1,05 is the prediction made with all parameters excéptind S is a “soft-

threshold” funct|on that is zero for an interval & about the origin, and shrinks the magnitude of
the inputa by v outside of this interval. We can use this expression as amaistr for 3 from a

datasef{x;, y; }. The above update rule assumes standardized gda}8 (xi; = 0, 1 >, 27; = 1)
but it is straightforward to extend for the general case.

3 Hypothesis Testing

Each updated?“” = 3; + d; is computed using a statistical average over a batcN dfaining
points. We wish to estimate the reliability of an update aaracfion of N. To do so, we model
the currentg vector as afixed constanend theN training points agandom variablesdrawn
from an underlying joint density(z,y). This also makes the proposed updafgsand 57
random variables because they are functions of the tra'mn':ilgs In the following we will make
an explicit distinction between random variables, e, dj, wij, yi and their instantiations,

ﬁ”ew dw:r”,yz We would like to determine whether or not a particular updat statistically

JUStIerd To this end, we use hypothesis tests where if tisehégh uncertainty in the direction of
the update, we say this update is not justified and the updatetiperformed. For example, if our

proposed updaf,é}ww is positive, we want to ensure thB(7<* < 0) is small.

3.1 Algorithm Overview

We propose a “growing batch” algorithm for handling venglaior infinite datasets: first we select
a very small subsample of the data of si¥g < N, and optimize until the entire set of parameters
are failing their hypothesis tests (described in more tdbt&ow). We then query more data points
and include them in our batch, reducing the variance of aimeses and making it more likely that
they will pass their tests. We continue adding data to ouctbantil we are using the full dataset
of size N. Once all of the parameters are failing their hypothesitsten the full batch of data,
we stop training. The reasoning behind this is, as argueldrirttroduction, that at this point we
do not have enough evidence for even determining the direati which to update, which implies
that further optimization would result in overfitting. Thusur algorithm behaves like a stochastic
online algorithm during early stages and like a batch atgoriduring later stages, equipped with
a natural stopping condition.

In our experiments, we increase the batch 9izeby a factor of 10 once all parameters fail their
hypothesis tests for a given batch. Values in the range 2alstOworked well, however, we chose
10 as it works very well for our implementation.

3.2 Lasso

For quadratic loss functions with standardized variabhes,can directly analyze the densities of
dj, B;¢. We accept an update if the sign@fcan be estimated with sufficient probability. Central

to our analysis ig; (11), which is equivalent tg'“* for the unregularized case= 0. We rewrite
it as:

1 :
o = N Z Zij (ﬁ) where Zij (ﬁ) = Tjj (yL — gl('])) (12)
i=1

Because;; (5) are given by a fixed transformation of the iid training pojritey themselves are iid.
As N — oo, we can appeal to the Central Limit Theorm and madgés distributed as a standard

Normal: a; ~ N(pa;,0aq,), Wherep,, = Elzj], Vi ando? = lVar(z”) Vi. Empirical

justification of normality of these quantities is given ircgen 5 2 So, for any given;, we can
provide estimates

l\l>

1 R
Elzij] =~ ZZ” Var(zj) = az?j “N_12 (2i5 — %5)? (13)
4 1

Q-Q Plots of Gradient Distributions AP and Time responses to € (LR on INRIA dataset) 10°
7

073W25

0.7 : : —— Transformed|
1 [- = = Original
i\

: |
|

Gradient Quantiles
Average Precision
o
S
>
=
o
Time (seconds)

)
Y
o
=

-2 0 2 0 0.1 0.2 0.3 0.4 0.!
Normal Theoretic Quantiles €

Figure 1: (left) A Gaussian distribution and the distribution resulting from applying the toameftion S,

with v = .1. The interval that is “squashed” is shown by the dash-dotted blue limagdie) Q-Q plot
demonstrating the normality of the gradients on theregularizedL,-loss SVM, computed at various stages
of the algorithm (i.e. at different batch-sizé§ and models3). Straight lines provide evidence that the
empirical distribution is close to normalitytight) Plot showing the behavior of our algorithm with respect to
€, using logistic regression on the INRIA dataset= 0 corresponds to an algorithm which never updates, and
e = 0.5 corresponds to an algorithm which always updates (with no stoppingi&)jteo for these experiments

e was chosen in the rang®1, .49]. Error bars denote a single standard deviation.

which in turn provide estimates far,, ando,, ;. We next apply the soft threshold functisito o ; to
obtaing}“*”, a random variable whose pdf is a Gaussian which has a seftiadth 2 “squashed”

to zero into a single point of probability mass, with the rémray density shifted towards zero by a
magnitudey. This is illustrated in Figure 1. Our criterion for accepgtian update is that it moves

towards the true solution with high probability. Lé; be the realization of the random variable
dj = 87" — B;, computed from the sample batch &ftraining points. Ifa?j > 0, then we want
P(d; < 0) to be small, and vice versa. Specifically, fjr> 0, we wantP(d; < 0) < ¢, where

(- | ® M if 8; <0 "
P(d; < 0) = P(8™" < 8;) = o 14
’ 7 U e (A (o ”)) if 8; >0

)

where®(-) denotes the cdf for the standard Normal. This distributian be derived from its two
underlying Gaussians, one with mean, + v and one with meam,, — ~. Similarly, one can

define an analgous test ¢f(d;, > 0) < e for d; < 0. These are the hypothesis test equations
for a single coordinate, so this test is performed once feheaordinate at its iteration in the
coordinate descent algorithm. If a coordinate update felgest, then we assume that we do not
have enough evidence to perform an update on the coordaradejo not update. Note that, since
we are potentially rejecting many updates, significant astatiion could be going to “waste,” as we
are computing updates without using them. Methods to addhésfollow in section 4.

3.3 Gradient-Based Hypothesis Tests

For general convex loss functions, it is difficult to constra pdf ford; and 87*. Instead, we
accept an updatg;<* if the sign of the partial derivativ g[(f) can be estimated with sufficient
J

reliability. Becausef(8) may be nondifferentiable, we defi@fﬁﬁ) to be the set of 1D subgra-
dients, or lower tangent planes,@along directionj. The minimal (in magnitude) subgradiegt,
associated with the flatest lower tangent, is:

o — if 3; <0

N
. 1
gi=Ra;+y ifB;>0 where ;= L)(0,) = ¥ >z (15)
S(aj,v) otherwise i=1
wherez;;(3) = —2y;x,;b;(8) for the squared hinge-loss ang;(3) = ﬁ for log-loss.

Appealing to the same arguements as in Sec.3.2, one canlsatw t~ N (i, , 0o,) Wherep,, =
Elzj], Vi andaij = +Var(z;) Vi. Thus the pdf of subgradients a Normal shifted by/sign(s;)
in the case wherg; # 0, or a Normal transformed by the functidiia;, v) in the cases; = 0.

To formulate our hypothesis test, we wrije as the realization of random variabje, computed
from the batch ofV training points. We want tso take an update only if our updata ithe correct

SVM Algorithm Comparison on the INRIA dataset SVM Algorithm Comparison on the VOC dataset Logistic Regression Algorithm Comparison on the INRIA Dataset
03 0.

0.8

0.75]

0.7

e o o
N
N

e o o
=

0.65]

Average Precision
Average Precision
Average Precision

—— CD-Hyp. Tes|

—— vanilla CD

---SGD
SGD-Regret

— CD-Full
——CD-HypTest 01
---SGD

0.6 ——vanilla CD
-=-=-SGD 0.18|

SGD-Regret
10* 10°

——CD-Full
—— CD-Hyp Test 0.2

10' 10° 10° 10*

10° 10° 10°
time (seconds) time (seconds) time (seconds)
Figure 2:Plot comparing various algorithms for ttig -regularizedZz-loss SVM on the INRIA datasels(t)
and the VOC datasetr(iddle), and for theL; -regularized logistic-regression on INRIAdht) usinge = 0.05.
“CD-Full” denotes our method using all applicable heuristic speedupB:Hgp Testing” does not use the
shrinking heuristic while “vanilla CD” simply performs coordinate descerthout any speedup methods.
“SGD” is stochastic gradient descent with an annealing schedule. Optiiomzs# the hyper-parameters of the
annealing schedule (on train data) was not included in the total runtime. thetteur method achieves the
optimal precision faster than SGD and also stops learning approximately @erfitting sets in.

direction with high probability: fog; > 0, we wantP(g; < 0) < ¢, where

b (M) if 8, <0

Ploi=0=144 0— (e 47) i8>0
() it g >

Uaj

(16)

We can likewise define a test ¢f(g; > 0) < e which we use to accept updates given a negative
estimated gradient; < 0.

4 Additional Speedups

It often occurs that many coordinates will fail their resipex hypothesis tests for several con-
secutive iterations, so predicting these consecutiveirfssl and skipping computations on these
coordinates could potentially save computation. We empogimple heuristic towards these
matters based on a few observations (where for simplifiegtioot we drop the subscrip):

1. If the set of parameters that are updating remains caris¢édveen updates, then for a particular
coordinate, the change in the gradient from one iteratidheémext is roughly constant. This is
an empirical observation.

2. When close to the solution,, remains roughly constant.

We employ a heuristic which is a complicated instance of gplnidea: if the valuex(0) of

a variable of interest is changing at a constant rqteve can predict its value at timewith

a(t) = a(0) 4+ rt. In our case, we wish to predict when the gradient will havevedoto a point
where the associated hypothesis test will pass.

First, we will consider the unregularized case= 0), whereing = «. We wish to detect when
the gradient will result in the hypothesis test passingt iave want to find the values, ~ &,
whered is a realization of the random variahle such thatP(¢g > 0) = e or P(g < 0) = ¢. For
this purpose, we need to draw the distinction between antepdaich was taken, and one which
is proposed but for which the hypothesis test failed. Letsieof accepted updates be indexed by
t, as ing;, and let the set of potential updates, after an acceptedeiptidmet, be indexed by,

as ing;(s). Thus the algorithm described in the previous section vaithputeg;(1)...g:(s*) until

the hypothesis test passes fgfs*), and we then se};11(0) = §;:(s*), and perform an update to
B usingg:+1(0). ldeally, we would prefer not to compuig(1)...g:(s* — 1) at all, and instead only
compute the gradient when we know the hypothesis test wskt ga iterations after the last accept.
Given that we have some scheme from skippingerations, we estimate a “velocity” at which
J:(s) = éy(s) changesA, = % If, for instance A, > 0, we can compute the value
of & at which the hypothesis test will pass, assumingemains constant, by settiffg < 0|u =
Qpass) = €, and subsequently we can approximate the number of itesat@skip next

apass - &t(s)

—1
Qpass = —0,P (6) kSkiP — A
«

7

YIn practice we caf;r:, at SOme maximum numé)er of iterations (say 40).

-
S
o
2
8

Time (seconds)

o kN w & 0 o N ® ©
u

|
- e - R - -
08 09 0.96 0.99 0.999 08 0.9 0.96 099 0.999
S by

Figure 3: Comparison of our Lasso algorithm against SGD across various ipgsameter settings for the
exponential annealing schedule. Our algorithm is marked by the horidoms, withe € {0.05,0.2,0.4}.
Note that all algorithms have very similar precision scores in the intgfu@ — 0.76]. For values of
A ={0.8,0.9,0.96,0.99,0.999}, SGD gives a good score, however, pickipg> 1 had an adverse effect on
the optimization speed. Our method converged faster then SGD with therbesdling schedule.

The regularized case with; > 0 is equivalent to the unregularized case whgee o + v, and we
solve for the value of. that will allow the test to pass VIB(g < 0|pq = Qpass) = €

Upass = —an)_l(e) - (18)
Similarly, the case with3; < 0 is equivalent to the unregularized case whgre= o — ~:
Qpass = —0oP71(e) + . For the case wherd,, < 0, we solve forP(g > 0|pta = Qpass) = €.

This givesaygss = —0, @1 (1 —€) + v if B; < 0 andayess = —0, @71 (1 — €) — v otherwise.
A similar heuristic for the Lasso case can also be derived.

4.1 Shrinking Strategy

It is common in SVM algorithms to employ a “shrinking” strgjein which datapoints which do
not contribute to the loss are removed from future compurtati Specifically, if a data poifit;, y;)

has the property that; = 1 — 1,87 2; < €sprink < 0, fOr somee,y,,.ink, then the data point is
removed from the current batch. Data points removed frorfieedratches in the optimization
are still candidates for future batches. We employ thisisgarin our SVM implementation, and
Figure 2 shows the relative performance between includiiggteuristic and not.

5 Experiments

5.1 Datasets

We provide experimental results for the task of visual ohjetection, building on recent successful
approaches that learn linear scanning-window classifiefiseld on Histograms of Oriented Gradi-
ents (HOG) descriptors [11, 12]. We train and evaluate agtesia detector using the INRIA dataset
[11], where (V, p) = (5€6, 1100). We also train and evaluate a car detectog tisé12007 PASCAL
VOC dataset [12], where\,p) = (6e7,1400). For both datasets, we measure performamuptas
standard PASCAL evaluation protocol of average precisiath(50% overlap of predicted/ground
truth bounding boxes). On such large training sets, one dvexpect delicately-tuned stochastic
online algorithms (such as SGD) to outperform standardhbaptimization (such as coordinate de-
scent). We show that our algorithm exhibits the speed ofdhadr with the reliability of the latter.

5.2 Normality Tests

In this section we empirically verify the normality claim# ¢he INRIA dataset. Because the
negative examples in this data are comprised of many ov@rngpwindows from images, we
may expect this non-iid property to damage any normalitypproes of our updates. For these
experiments, we focus on the gradients of theregularized, L,-loss SVM computed during
various stages of the optimization process. Figure 1 shawastie-quantile plots of the average
gradient, computed over different subsamples of the datixedl size V,, versus the standard
Normal. Experiments for smallé¥ (~ 100) and randonp give similar curves. We conclude that
the presence of straight lines provide strong evidence @iorassumption that the distribution of
gradients is in fact close to normally distribute?d.

5.3 Algorithm Comparisons

We compared our algorithm to the stochastic gradient mefivod, -regularized Log-linear models
in [13], adapted for thd.;-regularized methods above. We use the following decaydadador

all curves over time labeled “SGD*% = noﬁ- In addition to this schedule, we also tested
against SGD using the regret-minimizing schedule of [6] loa INRIA dataset:n = Tloﬁ-

After spending a significant amount of time hand-optimizing hyper-parameterg, t,, we found
that settingsy, ~ 1 for both rate schedules, argl ~ N/10 (standard SGD) ant} ~ (N/10)?
(regret-minimzing SGD) have worked well on our datasets. reveall our algorithms — Lasso,
Logistic Regression and SVM — with a valueeof 0.05 for both INRIA and VOC datasets.

Figures 2 show a comparison between our method and stacheatient descent on the INRIA and
VOC datasets. Our method including the shrinking strategwster for the SVM, while methods
without a data shrinking strategy, such as logistic regoessare still competitive (see Figure 2).
In comparing our methods to the coordinate descent uponhwaiics are based, we see that our
framework provides a considerable speedup over standamdlioate descent. We do this with a
method which eventually uses the entire batch of data, stitiks that enable SGD to converge in
an L;-regularized problem are not necessary. In terms of pedoo®, our models are equivalent
or near to published state of the art results for linear moddl, 14].

We also performed a comparison against SGD with an expaiefgcay schedulg = nye =t on
the Lasso problem (see Fig 3). Exponential decay schedtdeknawn to work well in practice
[13], but do not give the theoretical convergence guarantdeother schedules. For a range of
values forn, and\, we compare SGD against our algorithm witke {0.05,0.2,0.4}. From these
experiments we conclude that changinérom its standard valué.05 all the way t00.4 (recall
thate < 0.5) has very little effect on accuracy and speed. This in ceht@SGD which required
hyper-parameter tuning to achieve comparable performance

To further demonstrate the robustness of our methegwe performed 5 trials of logistic regression
on the INRIA dataset with a wide range of values pivith random initializations, shown in Figure
1. All choices ofe give a reasonable average precision, and the algorithrmbegi become
significantly slower only withe > .3.

6 Conclusions

We have introduced a new framework for optimization prolddrom a statistical, frequentist point
of view. Every phase of the learning process has its own @btlmatchsize. That is to say, we
need only few data-cases early on in learning but many deascclose to convergence. In fact, we
argue that when we are using all of our data and cannot deterwith statistical confidence that
our update is in the correct direction, we should stop le&rd avoid overfitting. These ideas are
absent in the usual frequentist (a.k.a. maximum likelilcot learning-theory approaches which
formulate learning as the optimization of some loss fumctié meaningful smallest length scale
based on statistical consideratiaapresent in Bayesian analysis through the notion of a pasteri
distribution. However, the most common inference techmiguthat domain, MCMC sampling,
does not make use of the fact that less precision is needetydhe first phases of learning (a.k.a.
“burn-in”) because any accept/reject rule requires alhgatses to be seen. Hence, our approach
can be thought of as a middle ground that borrows from bottmieg philosophies.

Our approach also leverages the fact that some featuresaeepredictive than others, and may
deserve more attention during optimization. By predictiviten updates will pass their statistical
tests, we can update each feature approximately with thheadrequency.

The proposed algorithms feature a single variable thatsyeeHe set. However, the variable has a
clear meaning — the allowed probability that an update movése wrong direction. We have used
€ = 0.05 in all our experiments to showcase the robustness of theadeth

Our method is not limited td.; methods or linear models; our framework can be used on any
algorithm in which we take updates which are simple fundtion averages over the data.

Relative to vanilla coordinate descent, our algorithmsleamdle dense datasets with>> p. Rel-
ative to SGI3 our method can be thought of as “self-annealing” in the streatdt increases its preci-
sion by adaptively increasing the dataset size. The adgaestaver SGD are therefore that we avoid
tuning hyper-parameters of an annealing schedule and thaawe an automated stopping criterion.

2Recent benchmarks [15] show that a properly tuned SGD solver isyhigimpetitive for large-scale
problems [16]. 8

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
9]
[10]
[11]
[12]

[13]

[14]

[15]
[16]

L. Bottou and O. Bousquet. Learning using large datasetdMifring Massive DataSets for Security,
NATO ASI Workshop Series. I0OS Press, Amster@ao8.

L. Bottou and O. Bousquet. The tradeoffs of large scale learniAdvances in neural information
processing system20:161-168, 2008.

B. Yu. Embracing statistical challenges in the information technology dagchnometrics, American
Statistical Association and the American Society for Quadi®y237—-248, 2007.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalizatiglityabf on-line learning
algorithms.Information Theory, IEEE Transactions ds0(9):2050-2057, 2004.

S. Shalev-Shwartz and N. Srebro. SVM optimization: inverse digece on training set size. In
Proceedings of the 25th international conference on Machine learpiages 928-935. ACM, 2008.

M. Zinkevich. Online convex programming and generalized infinit@sigradient ascent.Twentieth
International Conference on Machine Learnjr&03.

P.L. Bartlett, E. Hazan, and A. Rakhlin. Adaptive online gradienscgat. Advances in Neural
Information Processing Systen&i, 2007.

A. Korattikara, L. Boyles, M. Welling, J. Kim, and H. Park. Statisticgtionization of non-negative
matrix factorization. AISTATS, 2011.

J. Friedman, T. Hastie, H. #fling, and R. Tibshirani. Pathwise coordinate optimizatiohnnals of
Applied Statistics1(2):302—-332, 2007.

R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. LilBLINEAR: A library for large linear
classification.The Journal of Machine Learning Researéhl1871-1874, 2008.

N. Dalal and B. Triggs. Histograms of oriented gradients for hurdatection. INIEEE Computer
Society Conference on Computer Vision and Pattern Recognitidmme 1, page 886. Citeseer, 2005.
M. Everingham, L. Van Gool, C. K. I. Willams, J. Winn, and A. Ziss&n. The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. httypw/pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia Ananiadou.cl&tstic gradient descent training for
I11-regularized log-linear models with cumulative penalty.Pioceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conferemcatural Language Pro-
cessing of the AFNLPpages 477-485, Suntec, Singapore, August 2009. Associati@ofoputational
Linguistics.

Navneet Dalal. Finding People in Images and Vided®hD thesis, Institut National Polytechnique de
Grenoble / INRIA Grenoble, July 2006.

Pascal large scale learning challenge. http://largescale.ml.tu-bdeAivorkshop/, 2008.

A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Careful Quasiatbn Stochastic Gradient Descent.
Journal of Machine Learning ResearctD:1737-1754, 2009.

