
Statistical Tests for Optimization Efficiency

Levi Boyles, Anoop Korattikara, Deva Ramanan, Max Welling
Department of Computer Science
University of California, Irvine

Irvine, CA 92697-3425
{lboyles},{akoratti},{dramanan},{welling}@ics.uci.edu

Abstract

Learning problems, such as logistic regression, are typically formulated as pure
optimization problems defined on some loss function. We argue that this view
ignores the fact that the loss function depends on stochastically generated data
which in turn determines an intrinsic scale of precision forstatistical estimation.
By considering the statistical properties of the update variables used during the
optimization (e.g. gradients), we can construct frequentist hypothesis tests to
determine the reliability of these updates. We utilize subsets of the data for com-
puting updates, and use the hypothesis tests for determining when the batch-size
needs to be increased. This provides computational benefitsand avoids overfitting
by stopping when the batch-size has become equal to size of the full dataset.
Moreover, the proposed algorithms depend on a single interpretable parameter –
the probability for an update to be in the wrong direction – which is set to a single
value across all algorithms and datasets. In this paper, we illustrate these ideas
on threeL1 regularized coordinate descent algorithms:L1-regularizedL2-loss
SVMs,L1-regularized logistic regression, and the Lasso, but we emphasize that
the underlying methods are much more generally applicable.

1 Introduction

There is an increasing tendency to consider machine learning as a problem in optimization: define
a loss function, add constraints and/or regularizers and formulate it as a preferably convex program.
Then, solve this program using some of the impressive tools from the optimization literature. The
main purpose of this paper is to point out that this “reduction to optimization” ignores certain
important statistical features that are unique to statistical estimation. The most important feature
we will exploit is the fact that thestatistical properties of an estimation problem determinean
intrinsic scale of precision(that is usually much larger than machine precision). This implies
immediately that optimizing parameter-values beyond thatscale is pointless and may even have an
adverse affect on generalization when the underlying modelis complex. Besides a natural stopping
criterion it also leads to much faster optimization before we reach that scale by realizing that far
away from optimality we need much less precision to determine a parameter update than when
close to optimality. These observations can be incorporated in many off-the-shelves optimizers and
are often orthogonal to speed-up tricks in the optimizationtoolbox.

The intricate relationship between computation and estimation has been pointed out before in [1]
and [2] where asymptotic learning rates were provided. One of the important conclusions was
that a not so impressive optimization algorithm such as stochastic gradient descent (SGD) can be
nevertheless a very good learning algorithm because it can process more data per unit time. Also
in [3] (sec. 5.5) the intimate relationship between computation and model fitting is pointed out.
[4] gives bounds on the generalization risk for online algorithms, and [5] shows how additional
data can be used to reduce running time for a fixed target generalization error. Regret-minimizing
algorithms ([6], [7]) are another way to account for the interplay between learning and computation.
Hypothesis testing has been exploited for computational gains before in [8].

1

Our method exploits the fact that loss functions are random variables subject to uncertainty. In a
frequentist world we may ask how different the value of the loss would have been if we would have
sampled another dataset of the same size from a single sharedunderlying distribution. The role of
an optimization algorithm is then to propose parameter updates that will be accepted or rejected
on statistical grounds. The test we propose determines whether the direction of a parameter update
is correct with high probability. If we do not pass our tests when using all the available data-cases
then we stop learning (or alternatively we switch to sampling or bagging), because we have reached
the intrinsic scale of precision set by the statistical properties of the estimation problem.

However, we can use the same tests to speed up the optimization process itself, that is before we
reach the above stopping criterion. To see that, imagine oneis faced with an infinite dataset. In batch
mode, using the whole (infinite) dataset, one would not take asingle optimization step in finite time.
Thus, one should really be concerned with making as much progress as possibleper computational
unit. Hence, one should only use a subset of the total available dataset. Importantly, the optimal
batch-size depends on where we are in the learning process: far away from convergence we only
need a rough idea of where to move which requires very few data-cases. On the other hand, the
closer we get to the true parameter value, the more resolution we need. Thus, the computationally
optimal batch-size is a function of the residual estimationerror. Our algorithm adaptively grows a
subset of the data by requiring that we have just enough precision to confidently move in the correct
direction. Again, when we have exhausted all our data we stoplearning.

Our algorithm heavily relies on the central limit tendencies of large sums of random variables.
Fortunately, many optimization algorithms are based on averages over data-cases. For instance,
gradient descent falls in this class, as the gradient is defined by an average (or sum). Thus, with large
enough batch sizes we can use the Central Limit Theorem to claim that the average gradients are
normally distributed and estimate their variance without actually seeing more data (this assumption
is empirically verified in section 5.2). We have furthermoreimplemented methods to avoid testing
updates for parameters which are likely to fail their test. This ensures that we approximately visit
the features with their correct frequency (i.e. important features may require more updates than
unimportant ones).

In summary, the main contribution of this paper is to introduce a class of algorithms with the
following properties.

• They depend on a single interpretable parameterǫ – the probability to update parameters in the
wrong direction. Moreover, the performance of the algorithms is relatively insensitive to the
exact value we choose.

• They have a natural, inbuilt stopping criterion. The algorithms terminate when the probability to
update the parameters in the wrong direction can not be made smaller thanǫ.

• They are applicable to wide range of loss functions. The onlyrequirement is that the updates
depend on sums of random variables.

• They inherit the convergence guarantees of the optimization method under consideration. This
follows because the algorithms will eventually consider all the data.

• They achieve very significant speedups in learning models from data. Throughout the learning
process they determine the size of the data subset required to perform updates that move in the
correct direction with probability at least1− ǫ.

We emphasize that our framework is generally applicable. Inthis paper we show how these con-
siderations can be applied toL1-regularized coordinate descent algorithms:L1-regularizedL2-loss
SVMs,L1-regularized logistic regression, and Lasso [9]. Coordinate descent algorithms are conve-
nient because they do not require any tuning of hyper-parameters to be effective, and are still efficient
when training sparse models. Our methodology extends thesealgorithms to be competitive for dense
models and forN >> p. In section 2 we review the coordinate descent algorithms. Then, in section
3.2 we formulate our hypothesis testing framework, followed by a heuristic for predicting hypothesis
test failures in section 4. We report experimental results in section 5 and we end with conclusions.

2 Coordinate Descent

We consider L1-regularized learning problems where the loss is defined as a statistical average over
N datapoints:

f(β) = γ||β||1 +
1

2N

N
∑

i=1

loss(β, xi, yi) where β, xi ∈ R
p (1)

We will consider continously-differentiable loss functions (squared hinge-loss, log-loss, and
squared-loss) that allow for the use of efficient coordinate-descent optimization algorithms, where

2

each parameter is updatedβnew
j ← βj + dj with:

dj = argmin
d

f(β + dej) f(β + dej) = |βj + d|+ Lj(d;β) + const (2)

whereLj(d;β) =
1

2N

∑N
i=1 loss(β + dej , xi, yi) andej is thejth standard basis vector. To solve

the above, we perform a second-order Taylor expansion of thepartial lossLj(d;β):

f(β + dej) ≈ |βj + d|+ L′
j(0;β)d+

1

2
L′′
j (0;β)d

2 + const (3)

[10] show that the minimum of the approximate objective (3) is obtained with:

dj =















−
L′

j(0,β)+γ

L′′

j
(0,β) if L′

j(0, β) + γ ≤ L′′
j (0, β)βj

−
L′

j(0,β)−γ

L′′

j (0,β)
if L′

j(0, β)− γ ≥ L′′
j (0, β)βj

−βj otherwise

(4)

For quadratic loss functions, the approximation in (3) is exact. For general convex loss functions,
one can optimize (2) by repeatedly linearizing and applyingthe above update. We perform a single
update per parameter during the cyclic iteration over parameters. Notably, the partial derivatives
are functions of statistical averages computed overN training points. We show that one can use
frequentist hypothesis tests to elegantly manage the amount of data needed (N) to reliably compute
these quantities.

2.1 L1-regularizedL2-loss SVM

Using a squared hinge-loss function in (1), we obtain aL1-regularizedL2-loss SVM:

lossSVM = max(0, 1− yiβ
Txi)

2 (5)

Appendix F of [10] derive the corresponding partial derivatives, where the second-order statistic is
approximate because the squared hinge-loss is not twice differentiable:

L′
j(0, β) = −

1

N

∑

i∈I(β)

yixijbi(β) L′′
j (0, β) =

1

N

∑

i∈I(β)

x2
ij (6)

wherebi(β) = 1 − yiβ
Txi and I(β) = {i|bi(β) > 0}. We write xij for the jth element of

datapointxi. In [10], each parameter is updated until convergence, using a line-search for each
update, whereas we simply check thatL′′ term is not ill formed rather than performing a line search.

2.2 L1-regularized Logistic Regression

Using a log-loss function in (1), we obtain aL1-regularized logistic regression model:

losslog = log(1 + e−yiβ
T xi) (7)

Appendix G of [10] derive the corresponding partial derivatives:

L′
j(0, β) =

1

2N

N
∑

i=1

−xij

1 + eyiβT xi
L′′
j (0, β) =

1

2N

N
∑

i=1

(

xij

1 + eyiβT xi

)2

eyiβ
T xi (8)

2.3 L1-regularized Linear Regression (Lasso)

Using a quadratic loss function in (1), we obtain aL1-regularized linear regression, or LASSO,
model:

lossquad = (yi − βTxi)
2 (9)

The corresponding partial derivatives [9] are:

L′
j(0, β) = −

1

N

N
∑

i=1

(yi − βTxi)xij L′′
j (0, β) =

1

N

N
∑

i=1

xijxij (10)

3

Because the Taylor expansion is exact for quadratic loss functions, we can directly write the closed
form solution for parameterβnew

j = S(αj , γ) where

αj =
1

N

N
∑

i=1

xij(yi − ỹ
(j)
i) S(α, γ) =







α− γ α > 0, γ < |α|
α+ γ α < 0, γ < |α|
0 γ ≥ |α|

(11)

whereỹ(j)i =
∑

k 6=j xikβk is the prediction made with all parameters exceptβj andS is a “soft-
threshold” function that is zero for an interval of2γ about the origin, and shrinks the magnitude of
the inputα by γ outside of this interval. We can use this expression as an estimator forβ from a
dataset{xi, yi}. The above update rule assumes standardized data (1

N

∑

i xij = 0, 1
N

∑

i x
2
ij = 1),

but it is straightforward to extend for the general case.

3 Hypothesis Testing

Each updateβnew
j = βj + dj is computed using a statistical average over a batch ofN training

points. We wish to estimate the reliability of an update as a function ofN . To do so, we model
the currentβ vector as afixed constantand theN training points asrandom variablesdrawn
from an underlying joint densityp(x, y). This also makes the proposed updatesdj and βnew

j

random variables because they are functions of the trainingpoints. In the following we will make
an explicit distinction between random variables, e.g.βnew

j , dj , xij , yi and their instantiations,

β̂new
j , d̂j , x̂ij , ŷi. We would like to determine whether or not a particular update is statistically

justified. To this end, we use hypothesis tests where if thereis high uncertainty in the direction of
the update, we say this update is not justified and the update is not performed. For example, if our
proposed updatêβnew

j is positive, we want to ensure thatP (βnew
j < 0) is small.

3.1 Algorithm Overview

We propose a “growing batch” algorithm for handling very large or infinite datasets: first we select
a very small subsample of the data of sizeNb ≪ N , and optimize until the entire set of parameters
are failing their hypothesis tests (described in more detail below). We then query more data points
and include them in our batch, reducing the variance of our estimates and making it more likely that
they will pass their tests. We continue adding data to our batch until we are using the full dataset
of sizeN . Once all of the parameters are failing their hypothesis tests on the full batch of data,
we stop training. The reasoning behind this is, as argued in the introduction, that at this point we
do not have enough evidence for even determining the direction in which to update, which implies
that further optimization would result in overfitting. Thus, our algorithm behaves like a stochastic
online algorithm during early stages and like a batch algorithm during later stages, equipped with
a natural stopping condition.

In our experiments, we increase the batch sizeNb by a factor of 10 once all parameters fail their
hypothesis tests for a given batch. Values in the range 2-100also worked well, however, we chose
10 as it works very well for our implementation.

3.2 Lasso

For quadratic loss functions with standardized variables,we can directly analyze the densities of
dj , β

new
j . We accept an update if the sign ofdj can be estimated with sufficient probability. Central

to our analysis isαj (11), which is equivalent toβnew
j for the unregularized caseγ = 0. We rewrite

it as:

αj =
1

N

N
∑

i=1

zij(β) where zij(β) = xij(yi − ỹ
(j)
i) (12)

Becausezij(β) are given by a fixed transformation of the iid training points, they themselves are iid.
As N → ∞, we can appeal to the Central Limit Theorm and modelαj as distributed as a standard
Normal: αj ∼ N (µαj

, σαj
), whereµαj

= E[zij], ∀i andσ2
αj

= 1
N
V ar(zij) ∀i. Empirical

justification of normality of these quantities is given in section 5.2. So, for any givenαj , we can
provide estimates

E[zij] ≈ ẑj =
1

N

∑

i

ẑij V ar(zij) ≈ σ2
ẑj

=
1

N − 1

∑

i

(ẑij − ẑj)
2 (13)

4

−2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Transformed
Original

−4 −2 0 2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Q−Q Plots of Gradient Distributions

Normal Theoretic Quantiles

G
ra

di
en

t Q
ua

nt
ile

s N
b
=250,000

N
b
=60,000

N
b
=1,000,000

0 0.1 0.2 0.3 0.4 0.5
0.73

0.74

0.75

0.76

0.77

0.78

0.79

A
ve

ra
ge

 P
re

ci
si

on

ε
0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

2

2.5

3
x 10

4

T
im

e
(s

ec
on

ds
)

AP and Time responses to ε (LR on INRIA dataset)

Figure 1: (left) A Gaussian distribution and the distribution resulting from applying the transformationS,
with γ = .1. The interval that is “squashed” is shown by the dash-dotted blue lines. (middle) Q-Q plot
demonstrating the normality of the gradients on theL1-regularizedL2-loss SVM, computed at various stages
of the algorithm (i.e. at different batch-sizesNb and modelsβ). Straight lines provide evidence that the
empirical distribution is close to normality. (right) Plot showing the behavior of our algorithm with respect to
ǫ, using logistic regression on the INRIA dataset.ǫ = 0 corresponds to an algorithm which never updates, and
ǫ = 0.5 corresponds to an algorithm which always updates (with no stopping criteria), so for these experiments
ǫ was chosen in the range[.01, .49]. Error bars denote a single standard deviation.

which in turn provide estimates forµαj
andσαj

. We next apply the soft threshold functionS toαj to
obtainβnew

j , a random variable whose pdf is a Gaussian which has a sectionof width 2γ “squashed”
to zero into a single point of probability mass, with the remaining density shifted towards zero by a
magnitudeγ. This is illustrated in Figure 1. Our criterion for accepting an update is that it moves
towards the true solution with high probability. Let̂dj be the realization of the random variable
dj = βnew

j − βj , computed from the sample batch ofN training points. Ifd̂j > 0, then we want

P (dj ≤ 0) to be small, and vice versa. Specifically, ford̂j > 0, we wantP (dj ≤ 0) < ǫ, where

P (dj ≤ 0) = P (βnew
j ≤ βj) =







Φ
(

βj−(µαj
+γ)

σαj

)

if βj < 0

Φ
(

βj−(µαj
−γ)

σαj

)

if βj ≥ 0
(14)

whereΦ(·) denotes the cdf for the standard Normal. This distribution can be derived from its two
underlying Gaussians, one with meanµαj

+ γ and one with meanµαj
− γ. Similarly, one can

define an analgous test ofP (dj ≥ 0) < ǫ for d̂j < 0. These are the hypothesis test equations
for a single coordinate, so this test is performed once for each coordinate at its iteration in the
coordinate descent algorithm. If a coordinate update failsits test, then we assume that we do not
have enough evidence to perform an update on the coordinate,and do not update. Note that, since
we are potentially rejecting many updates, significant computation could be going to “waste,” as we
are computing updates without using them. Methods to address this follow in section 4.

3.3 Gradient-Based Hypothesis Tests

For general convex loss functions, it is difficult to construct a pdf fordj andβnew
j . Instead, we

accept an updateβnew
j if the sign of the partial derivative∂f(β)

∂βj
can be estimated with sufficient

reliability. Becausef(β) may be nondifferentiable, we define∂jf(β) to be the set of 1D subgra-
dients, or lower tangent planes, atβ along directionj. The minimal (in magnitude) subgradientgj ,
associated with the flatest lower tangent, is:

gj =







αj − γ if βj < 0
αj + γ if βj > 0
S(αj , γ) otherwise

where αj = L′
j(0, β) =

1

N

N
∑

i=1

zij (15)

wherezij(β) = −2yixijbi(β) for the squared hinge-loss andzij(β) =
xij

1+eyiβ
T xi

for log-loss.

Appealing to the same arguements as in Sec.3.2, one can show thatαj ∼ N (µαj
, σαj

) whereµαj
=

E[zij], ∀i andσ2
αj

= 1
N
V ar(zij) ∀i. Thus the pdf of subgradientg is a Normal shifted byγsign(βj)

in the case whereβj 6= 0, or a Normal transformed by the functionS(αj , γ) in the caseβj = 0.

To formulate our hypothesis test, we writeĝj as the realization of random variablegj , computed
from the batch ofN training points. We want to take an update only if our update is in the correct

5

10
1

10
2

10
3

10
4

0.55

0.6

0.65

0.7

0.75

0.8

time (seconds)

A
ve

ra
ge

 P
re

ci
si

on

SVM Algorithm Comparison on the INRIA dataset

CD−Full
CD−Hyp Test
vanilla CD
SGD
SGD−Regret

10
3

10
4

10
5

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32
SVM Algorithm Comparison on the VOC dataset

time (seconds)

A
ve

ra
ge

 P
re

ci
si

on

CD−Full
CD−HypTest
SGD

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Logistic Regression Algorithm Comparison on the INRIA Dataset

time (seconds)

A
ve

ra
ge

 P
re

ci
si

on

CD−Hyp. Test
vanilla CD
SGD
SGD−Regret

Figure 2:Plot comparing various algorithms for theL1-regularizedL2-loss SVM on the INRIA dataset (left)
and the VOC dataset (middle), and for theL1-regularized logistic-regression on INRIA (right) usingǫ = 0.05.
“CD-Full” denotes our method using all applicable heuristic speedups, “CD-Hyp Testing” does not use the
shrinking heuristic while “vanilla CD” simply performs coordinate descentwithout any speedup methods.
“SGD” is stochastic gradient descent with an annealing schedule. Optimization of the hyper-parameters of the
annealing schedule (on train data) was not included in the total runtime. Notethat our method achieves the
optimal precision faster than SGD and also stops learning approximately when overfitting sets in.

direction with high probability: for̂gj > 0, we wantP (gj ≤ 0) < ǫ, where

P (gj ≤ 0) =







Φ
(

0−(µαj
−γ)

σαj

)

if βj ≤ 0

Φ
(

0−(µαj
+γ)

σαj

)

if βj > 0
(16)

We can likewise define a test ofP (gj ≥ 0) < ǫ which we use to accept updates given a negative
estimated gradient̂gj < 0.

4 Additional Speedups

It often occurs that many coordinates will fail their respective hypothesis tests for several con-
secutive iterations, so predicting these consecutive failures and skipping computations on these
coordinates could potentially save computation. We employa simple heuristic towards these
matters based on a few observations (where for simplified notation we drop the subscriptj):

1. If the set of parameters that are updating remains constant between updates, then for a particular
coordinate, the change in the gradient from one iteration tothe next is roughly constant. This is
an empirical observation.

2. When close to the solution,σα remains roughly constant.

We employ a heuristic which is a complicated instance of a simple idea: if the valuea(0) of
a variable of interest is changing at a constant rater, we can predict its value at timet with
a(t) = a(0) + rt. In our case, we wish to predict when the gradient will have moved to a point
where the associated hypothesis test will pass.

First, we will consider the unregularized case (γ = 0), whereing = α. We wish to detect when
the gradient will result in the hypothesis test passing, that is, we want to find the valuesµα ≈ α̂,
whereα̂ is a realization of the random variableα, such thatP (g ≥ 0) = ǫ or P (g ≤ 0) = ǫ. For
this purpose, we need to draw the distinction between an update which was taken, and one which
is proposed but for which the hypothesis test failed. Let theset of accepted updates be indexed by
t, as inĝt, and let the set of potential updates, after an accepted update at timet, be indexed bys,
as in ĝt(s). Thus the algorithm described in the previous section will computeĝt(1)...ĝt(s∗) until
the hypothesis test passes forĝt(s

∗), and we then set̂gt+1(0) = ĝt(s
∗), and perform an update to

β usingĝt+1(0). Ideally, we would prefer not to computêgt(1)...ĝt(s∗ − 1) at all, and instead only
compute the gradient when we know the hypothesis test will pass,s∗ iterations after the last accept.

Given that we have some scheme from skippingk iterations, we estimate a “velocity” at which
ĝt(s) = α̂t(s) changes:∆e ≡

α̂t(s)−α̂t(s−k−1)
k+1 . If, for instance,∆α > 0, we can compute the value

of α̂ at which the hypothesis test will pass, assumingσα remains constant, by settingP (g ≤ 0|µα =
αpass) = ǫ, and subsequently we can approximate the number of iterations to skip next1:

αpass = −σαΦ
−1(ǫ) kskip ←

αpass − α̂t(s)

∆α

(17)

1In practice we capkskip at some maximum number of iterations (say 40).
6

0.8 0.9 0.96 0.99 0.999
0

1

2

3

4

5

6

7

8

9

10
x 10

4

λ

T
im

e
(s

ec
on

ds
)

SGD − η

0
=.5

SGD − η
0
=1

SGD − η
0
=2

SGD − η
0
=3

SGD − η
0
=5

ε=.4
ε=.2
ε=.05

0.8 0.9 0.96 0.99 0.999
0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

λ

A
ve

ra
ge

 P
re

ci
si

on

SGD − η

0
=.5

SGD − η
0
=1

SGD − η
0
=2

SGD − η
0
=3

SGD − η
0
=5

ε=.4
ε=.2
ε=.05

Figure 3: Comparison of our Lasso algorithm against SGD across various hyper-parameter settings for the
exponential annealing schedule. Our algorithm is marked by the horizontal lines, with ǫ ∈ {0.05, 0.2, 0.4}.
Note that all algorithms have very similar precision scores in the interval[0.75 − 0.76]. For values of
λ = {0.8, 0.9, 0.96, 0.99, 0.999}, SGD gives a good score, however, pickingη0 > 1 had an adverse effect on
the optimization speed. Our method converged faster then SGD with the bestannealing schedule.

The regularized case withβj > 0 is equivalent to the unregularized case whereg = α + γ, and we
solve for the value ofα that will allow the test to pass viaP (g ≤ 0|µα = αpass) = ǫ:

αpass = −σαΦ
−1(ǫ)− γ (18)

Similarly, the case withβj ≤ 0 is equivalent to the unregularized case whereg = α − γ:
αpass = −σαΦ

−1(ǫ) + γ. For the case where∆α < 0, we solve forP (g ≥ 0|µα = αpass) = ǫ.
This givesαpass = −σαΦ

−1(1 − ǫ) + γ if βj < 0 andαpass = −σαΦ
−1(1 − ǫ) − γ otherwise.

A similar heuristic for the Lasso case can also be derived.

4.1 Shrinking Strategy

It is common in SVM algorithms to employ a “shrinking” strategy in which datapoints which do
not contribute to the loss are removed from future computations. Specifically, if a data point(xi, yi)
has the property thatbi = 1 − yiβ

Txi < ǫshrink < 0, for someǫshrink, then the data point is
removed from the current batch. Data points removed from earlier batches in the optimization
are still candidates for future batches. We employ this heuristic in our SVM implementation, and
Figure 2 shows the relative performance between including this heuristic and not.

5 Experiments

5.1 Datasets

We provide experimental results for the task of visual object detection, building on recent successful
approaches that learn linear scanning-window classifiers defined on Histograms of Oriented Gradi-
ents (HOG) descriptors [11, 12]. We train and evaluate a pedestrain detector using the INRIA dataset
[11], where (N , p) = (5e6, 1100). We also train and evaluate a car detector using the 2007 PASCAL
VOC dataset [12], where (N ,p) = (6e7,1400). For both datasets, we measure performance using the
standard PASCAL evaluation protocol of average precision (with 50% overlap of predicted/ground
truth bounding boxes). On such large training sets, one would expect delicately-tuned stochastic
online algorithms (such as SGD) to outperform standard batch optimization (such as coordinate de-
scent). We show that our algorithm exhibits the speed of the former with the reliability of the latter.

5.2 Normality Tests

In this section we empirically verify the normality claims on the INRIA dataset. Because the
negative examples in this data are comprised of many overlapping windows from images, we
may expect this non-iid property to damage any normality properties of our updates. For these
experiments, we focus on the gradients of theL1-regularized,L2-loss SVM computed during
various stages of the optimization process. Figure 1 shows quantile-quantile plots of the average
gradient, computed over different subsamples of the data offixed sizeNb, versus the standard
Normal. Experiments for smallerN (≈ 100) and randomβ give similar curves. We conclude that
the presence of straight lines provide strong evidence for our assumption that the distribution of
gradients is in fact close to normally distributed.

7

5.3 Algorithm Comparisons

We compared our algorithm to the stochastic gradient methodfor L1-regularized Log-linear models
in [13], adapted for theL1-regularized methods above. We use the following decay schedule for
all curves over time labeled “SGD”:η = η0

1
t0+t

. In addition to this schedule, we also tested
against SGD using the regret-minimizing schedule of [6] on the INRIA dataset:η = η0

1√
t0+t

.
After spending a significant amount of time hand-optimizingthe hyper-parametersη0, t0, we found
that settingsη0 ≈ 1 for both rate schedules, andt0 ≈ N/10 (standard SGD) andt0 ≈ (N/10)2

(regret-minimzing SGD) have worked well on our datasets. Weran all our algorithms – Lasso,
Logistic Regression and SVM – with a value ofǫ = 0.05 for both INRIA and VOC datasets.

Figures 2 show a comparison between our method and stochastic gradient descent on the INRIA and
VOC datasets. Our method including the shrinking strategy is faster for the SVM, while methods
without a data shrinking strategy, such as logistic regression, are still competitive (see Figure 2).
In comparing our methods to the coordinate descent upon which ours are based, we see that our
framework provides a considerable speedup over standard coordinate descent. We do this with a
method which eventually uses the entire batch of data, so thetricks that enable SGD to converge in
anL1-regularized problem are not necessary. In terms of performance, our models are equivalent
or near to published state of the art results for linear models [12, 14].

We also performed a comparison against SGD with an exponential decay scheduleη = η0e
−λt on

the Lasso problem (see Fig 3). Exponential decay schedules are known to work well in practice
[13], but do not give the theoretical convergence guarantees of other schedules. For a range of
values forη0 andλ, we compare SGD against our algorithm withǫ ∈ {0.05, 0.2, 0.4}. From these
experiments we conclude that changingǫ from its standard value0.05 all the way to0.4 (recall
that ǫ < 0.5) has very little effect on accuracy and speed. This in contrast to SGD which required
hyper-parameter tuning to achieve comparable performance.

To further demonstrate the robustness of our method toǫ, we performed 5 trials of logistic regression
on the INRIA dataset with a wide range of values ofǫ, with random initializations, shown in Figure
1. All choices of ǫ give a reasonable average precision, and the algorithm begins to become
significantly slower only withǫ > .3.

6 Conclusions

We have introduced a new framework for optimization problems from a statistical, frequentist point
of view. Every phase of the learning process has its own optimal batchsize. That is to say, we
need only few data-cases early on in learning but many data-cases close to convergence. In fact, we
argue that when we are using all of our data and cannot determine with statistical confidence that
our update is in the correct direction, we should stop learning to avoid overfitting. These ideas are
absent in the usual frequentist (a.k.a. maximum likelihood) and learning-theory approaches which
formulate learning as the optimization of some loss function. A meaningful smallest length scale
based on statistical considerationsis present in Bayesian analysis through the notion of a posterior
distribution. However, the most common inference technique in that domain, MCMC sampling,
does not make use of the fact that less precision is needed during the first phases of learning (a.k.a.
“burn-in”) because any accept/reject rule requires all data-cases to be seen. Hence, our approach
can be thought of as a middle ground that borrows from both learning philosophies.

Our approach also leverages the fact that some features are more predictive than others, and may
deserve more attention during optimization. By predictingwhen updates will pass their statistical
tests, we can update each feature approximately with the correct frequency.

The proposed algorithms feature a single variable that needs to be set. However, the variable has a
clear meaning – the allowed probability that an update movesin the wrong direction. We have used
ǫ = 0.05 in all our experiments to showcase the robustness of the method.

Our method is not limited toL1 methods or linear models; our framework can be used on any
algorithm in which we take updates which are simple functions on averages over the data.

Relative to vanilla coordinate descent, our algorithms canhandle dense datasets withN >> p. Rel-
ative to SGD2 our method can be thought of as “self-annealing” in the sensethat it increases its preci-
sion by adaptively increasing the dataset size. The advantages over SGD are therefore that we avoid
tuning hyper-parameters of an annealing schedule and that we have an automated stopping criterion.

2Recent benchmarks [15] show that a properly tuned SGD solver is highly competitive for large-scale
problems [16].

8

References
[1] L. Bottou and O. Bousquet. Learning using large datasets. InMining Massive DataSets for Security,

NATO ASI Workshop Series. IOS Press, Amsterdam, 2008.
[2] L. Bottou and O. Bousquet. The tradeoffs of large scale learning.Advances in neural information

processing systems, 20:161–168, 2008.
[3] B. Yu. Embracing statistical challenges in the information technology age. Technometrics, American

Statistical Association and the American Society for Quality, 49:237–248, 2007.
[4] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning

algorithms.Information Theory, IEEE Transactions on, 50(9):2050–2057, 2004.
[5] S. Shalev-Shwartz and N. Srebro. SVM optimization: inverse dependence on training set size. In

Proceedings of the 25th international conference on Machine learning, pages 928–935. ACM, 2008.
[6] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.Twentieth

International Conference on Machine Learning, 2003.
[7] P.L. Bartlett, E. Hazan, and A. Rakhlin. Adaptive online gradient descent. Advances in Neural

Information Processing Systems, 21, 2007.
[8] A. Korattikara, L. Boyles, M. Welling, J. Kim, and H. Park. Statistical optimization of non-negative

matrix factorization. AISTATS, 2011.
[9] J. Friedman, T. Hastie, H. Ḧofling, and R. Tibshirani. Pathwise coordinate optimization.Annals of

Applied Statistics, 1(2):302–332, 2007.
[10] R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. LIBLINEAR: A library for large linear

classification.The Journal of Machine Learning Research, 9:1871–1874, 2008.
[11] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. InIEEE Computer

Society Conference on Computer Vision and Pattern Recognition, volume 1, page 886. Citeseer, 2005.
[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The

PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[13] Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia Ananiadou. Stochastic gradient descent training for
l1-regularized log-linear models with cumulative penalty. InProceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conferenceon Natural Language Pro-
cessing of the AFNLP, pages 477–485, Suntec, Singapore, August 2009. Association forComputational
Linguistics.

[14] Navneet Dalal. Finding People in Images and Video. PhD thesis, Institut National Polytechnique de
Grenoble / INRIA Grenoble, July 2006.

[15] Pascal large scale learning challenge. http://largescale.ml.tu-berlin.de/workshop/, 2008.
[16] A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Careful Quasi-Newton Stochastic Gradient Descent.

Journal of Machine Learning Research, 10:1737–1754, 2009.

9

