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Abstract—We formulate a layered model for object detection and image segmentation. We describe a generative probabilistic
model that composites the output of a bank of object detectors in order to define shape masks and explain the appearance, depth
ordering, and labels of all pixels in an image. Notably, our system estimates both class labels and object instance labels. Building
on previous benchmark criteria for object detection and image segmentation, we define a novel score that evaluates both class
and instance segmentation. We evaluate our system on the PASCAL 2009 and 2010 segmentation challenge datasets and show
good test results with state of the art performance in several categories including segmenting humans.
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1 INTRODUCTION

OOBJECT detection and semantic image segmen-
tation are both fundamental tasks in computer

vision. However, these two problems have typically
been tackled using substantially different techniques
and evaluated using very different criteria, as evi-
denced by the separate detection and segmentation
challenges in the popular PASCAL Visual Object
Recognition Challenge (VOC) [1]. Candidate bound-
ing boxes are often generated using a scanning win-
dow approach and scored using a classifier trained on
positive and negative examples [2], [3], [4]. In contrast,
semantic segmentation models have largely been built
on top of Markov Random Field (MRF) models which
enforce smoothness across pixel labels [5], [6], [7], [8],
[9].

We posit that these two problems should be ad-
dressed jointly. Per-pixel labels in semantic seg-
mentation should benefit from highly discriminative
template-based object detectors. Similarly, object de-
tections should be consistent with some underlying
segmentation of the image. Our approach works by
processing a set of object detections, represented as a
collection of object and part shape masks. We describe
an algorithm for compositing these shape masks into
a layered model that produces a consistent labeling of
each pixel. The algorithm works by integrating top-
down shape information from the part masks with
bottom-up cues such as object color and boundary
information. When compared to previous approaches,
our primary contributions are two-fold:

Layered models: We describe a simple probabilis-
tic model that captures the shape, appearance and
depth ordering of a collection of detections within
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an image. It explicitly represents the shapes of a
collection of detected object in terms of a layered,
per-pixel segmentation. This shape estimate is driven
by a novel deformable spatial prior for object shape
that adapts to particular instances based on the re-
sponse of deformable part-based detectors. Given an
ordering of layers, these object detections are com-
posited to yield a complete generative explanation of
pixel colors, their semantic class labels, and object
instance labels. Explicitly representing detections with
a layered model not only captures depth ordering but
can also be advantageous in guiding more precise
segmentation. Layering allows for one to link disjoint
object segments separated by an occluder (Figure 1)
based on estimating the layer appearance (e.g. color
and texture).

Benchmark evaluation: We introduce novel scoring
criteria for evaluating the accuracy with which indi-
vidual object instances are segmented. Previous cri-
teria for scoring object detection or segmentation are
limited in some respects. Object detectors are typically
scored using a ranked list of bounding box detections,
which are clearly poor approximations of objects with
complex shapes. Furthermore, ranked lists are not
internally consistent as boxes of different classes may
overlap the same pixel regions. Semantic image seg-
mentations are typically evaluated using pixel-level
class labels, which address both limitations. However,
such labels ignore the fundamental notion of object
instances, necessary for such basic analysis as count-
ing the number of objects in a scene. We propose a
novel and simple instance-based segmentation score
that address both these shortcomings. We provide
extensive experimental evaluation of our model on
benchmark datasets for semantic image segmentation,
achieving or surpassing state-of-the-art results.

After a brief discussion of related work, we describe
our layered representation in detail in Section 3, dis-
cuss how to perform inference in Section 4 and how
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Fig. 1. Multi-class object detections algorithms typi-
cally predict bounding box locations and class labels
(left) but this only provides coarse information about
object localization. We propose to use object detector
outputs to guide multi-class segmentation algorithms
that provide class labels for every pixel (center). To
do so, we introduce layered representations (right)
that reason about relative depth orderings of detected
objects and can link disconnected object segments
separated by an occluder (e.g., the feet and head of
the center person occluded by the horse).

parameters are learned from training data in Section
5. We then show experimental results on the PASCAL
Segmentation challenge in Section 6, demonstrating
state-of-the art results across many categories using
both standard class segmentation scoring criteria and
our novel instance-based criteria.

2 RELATED WORK

The reconciliation of recognition and segmentation
has been an active area of research. Early approaches
bias a segmentation engine using the output of object
models [10], [11], while others attempt to directly
fuse bottom-up and top-down cues during detection
[12], [13], [14], [15], [16]. In terms of prior art, our
approach is most similar to the ObjCut framework
[10] which uses a part-based model to bias a bottom-
up grouping process. However, our work differs from
previous efforts in that we focus on segmenting im-
ages containing multiple instances drawn from mul-
tiple object categories. Our approach is also similar
to the recent works of [17] and [18], [19]. The former
biases a hierarchical CRF model using object detection
windows across multiple categories, while the lat-
ter generates segmentations using part-specific shape
models. Our work combines the multi-category model
of the former with the multi-part model of the latter,
using a layered representation to construct a globally
consistent pixel-level model of the image.

Our work is also inspired by image representations
that reason about occlusion through the use of “2.1D”
or layered models. Such approaches are typically
applied in the video domain and include examples
such as layered motion models [20], video sprites [21],
and layered pictorial structures [22]. Such layered ap-
proaches are less commonly applied to static images
but have been explored in e.g., [23], [24], [25].

As the name suggests, 2.1D models live on a con-
tinuum between 2D and full 3D representations of
scene geometry. At one extreme, minimal ordinal

information about depth is described by the figure-
ground assignment along each occlusion boundary.
This boundary labeling problem has been tackled
using various computational frameworks (see e.g.,
[26], [27], [28], [29]). At the other extreme, one can
attempt to estimate the three-dimensional geometry
of all visible surfaces from a single images as in [30],
[31]. The layered 2.1D model we explore here is an
intermediate between these two which specifies a total
depth order on object segmentations in an image but
stops short of representing metric depth.

A preliminary version of this work appeared in
[32]. The system described here differs in a number of
ways. We now use a significantly richer order model.
We also introduce novel instance-based segmenta-
tion scores, and use them to evaluate our model for
both class and object segmentation. We also provide
additional experimental results on new datasets as
well as additional diagnostic analysis of our system
components.

3 LAYERED MODEL

We now describe our layered generative model for
object segmentation.

Detections: For a particular image, let dn encode
the class, score, and bounding box coordinates of the
nth detection, where 1 ≤ n ≤ N . We assume that the
detectors have been calibrated on training data so that
detections across classes have comparable scores and
thresholding scores at 0 yields an appropriate number
of detections on average (we describe details of this
calibration in the experimental results section).

Importantly, we model each detection in 2.1D and
order them from back to front with some permutation
π so that dπ(N) is the front-most detection, dπ(N−1)
is the second, etc. We define dπ(0) to be a default
background detection associated with a background
layer that is included for all images. Let θn be the
parameters of the appearance model associated with
the π(n)th detection. We will model appearance with
a color histogram.

Pixel Labels: Let xi be the feature value associated
with the ith pixel. Because there is a one-to-one corre-
spondence between a detection and a layer, we write
zi ∈ {0 . . . N} for a label that simultaneously specify
both the layer and detection associated with pixel i.
Each layer also has its own binary segmentation mask
denoted by bin ∈ {0, 1}, where we define bi0 = 1. Note
that a pixel i may belong to multiple segmentation
masks but can only have one final object label (e.g.,
both bin and bim are 1 but due to occlusion, either
zi = n or zi = m)

Joint Model: By convention, we use the lack of
subscript to denote the set obtained by including
all instances of the omitted subscript - e.g., bi =
{bi0 . . . biN}. Our first assumption is that, given the
set of ordered detections d and appearance models θ,
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Fig. 2. Examples of class-specific shape priors α represented as soft segmentation masks. We show priors
derived from a mixture model of deformable parts including both “root” and “part” templates. Note that the
mixture models capture shapes corresponding to different aspects, and part shape models tend to be more
tightly localized than the root shape. For example, the horse’s legs are blurred out in the first mixture component,
but are visible in the composited part model. This is because part models are learned from deformable part
annotations, while root shape models are learned from rigid bounding boxes.

the joint probability of pixel features x and labels z
factors into a product over pixels:

P (z, x|θ, dπ) =
∏
i

P (zi, xi|θ, dπ), (1)

The model for each pixel can be further factored:

P (zi = n, xi|θ, dπ) = P (zi = n|dπ)P (xi|θn), (2)

where n ∈ {0 . . . N} is a constant that indicates what
layer we are considering. The second term on the
right-hand side is a standard “likelihood” model that
scores pixel xi under the appearance model for this
particular layer which has parameters θn. The first
term is a distribution over labels induced by the
ordered detections.

3.1 Layered Label Distributions

We obtain the distribution over labels by integrating
over all layered binary segmentations:

P (zi = m|dπ) =
∑
bi

P (zi = m|bi)p(bi|dπ) (3)

where P (zi = m|bi) = bim

N∏
n=m+1

(1− bin), (4)

and P (bi|dπ) =

N∏
n=0

P (bin|dπ(n)). (5)

We define bi0 = 1 since the background segment
spans the whole image. Thus all pixels are labeled
as background by default unless they are explicitly
covered by a detection. We combine the previous three
equations into a single expression:

P (zi = m|dπ) =
∑
bi

bim

N∏
n=m+1

(1− bin)

N∏
n=0

P (bin|dπ(n))

(6)

=
(∑
bim

bimP (bim|dπ(m))
) N∏
n=m+1

∑
bin

(1− bin)P (bin|dπ(n))

(7)

One can derive (7) from (6) by distributing the sum-
mation over bi inside the remaining terms. Notably,
the summation over bin for layers n < m evaluates to
1 and so disappears from the expression. Intuitively,
we only need integrate (3) over binary segmentations
in layers in front of m. The above can be simplified
by recalling that bin are binary random variables pa-
rameterized by a scalar value βin = P (bin = 1|dπ(n)):

P (zi = m|dπ) = βim

N∏
n=m+1

(1− βin) (8)

3.2 Shape model
In this section, we consider different models for de-
riving the parameter βin, which captures the proba-
bility that a given pixel belongs to a detected object.
Arguably the simplest model is to associate a shape
prior with each class that specifies a “soft” mask or
alpha-matte that records the probability of a pixel at
some location relative to the center of the detection
belonging to the object.

Let cn as the class label of the nth layer and
i′ = Tn(i) be the index of a pixel i which has
been mapped by some transformation Tn into the
coordinate system of the corresponding detection. In
our experiments, this transformation is a translation
and scaling corresponding to the location and scale
at which a detector fired. We can then specify a per-
detection shape distribution by:

βin = αi′,cn (9)

We visualize examples of such shape priors α in
Figure 2.

Object Pose: Local detectors based on mixture
models return a mixture component label ln for each
detection. This label often captures the pose of an
object - e.g., side versus frontal cars. It is natural to
define a shape model for each discrete pose as:

βin = αi′,cn,ln (10)

Part Pose: Finally, part-based detectors also return a
vector of part locations {p1 . . . pT } for each detection.
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We assume each part carries with it a localized alpha
matte (as described above) which captures the proba-
bility that a nearby pixels belongs to the part. Because
parts may overlap, we assume that they are layered in
depth and derive a model similar to Section 3.1 that
composites their contributions. Part t will contribute
the labeling of a pixel so long as the T − t parts in
front do not account for that pixel:

βin =

T∑
t=1

αi′,cn,ptn

T∏
s=t+1

(1− αi′,cn,psn) (11)

where i′ = Ttn(i), the location of pixel i in the
coordinate system of the tth part of the detection
at layer n. One can also define a shape prior from
a mixture of part models by adding an additional
mixture index ln to Equation (11).

3.3 Order distribution
The previous model is conditioned on the ordering
π. To examine different orderings, it will be useful to
model π as a random variable by writing:

P (x, z, π|d, θ) = P (x, z|π, d, θ)P (π|d) (12)
= P (x, z|dπ, θ)P (π|d) (13)

The first term is on the right equivalent to Equation
(1). The second term is a distribution over orderings
of detections.

One choice for P (π|d) would be an uninformative
prior that doesn’t favor one depth ordering over an-
other. However, there are a variety of cues that may be
useful to improve estimates of ordering. First, it is rea-
sonable to assume that most local object models pro-
duce higher scores on unoccluded instances compared
to occluded instances. This assumption suggests that
one should favor depth orderings that place high
scoring objects in front of lower scoring objects. A
second feature which is useful in ordering detections
is that when multiple objects rest on a ground-plane,
the object whose bottom edge is lower in the image
is typically closer to the camera. A third feature is
that objects with smaller image projections tend to
be further from the camera. This size cue naturally
depends on the size of the object in question. If an
airplane and person detection are equal in image area,
then the person should be closer to the camera.

Let us write fn = (sn, yn, hn, h̄n) for the feature
vector containing the score, lower-y coordinate, height
and relative height of a given detection n. Assuming
that objects of class c are a fixed height Hc, when
viewed in perspective the relative height h̄n = hn

Hcn
gives an additional cue to depth. To integrate these
local cues into a global model of ordering, we define a
conditional Markov Random Field (MRF) distribution
on permutations by:

P (π|d) =
1

Z(d)

∏
m<n

e−w
T (fπ(m)−fπ(n)) (14)

Fig. 4. An example superpixel grouping from [33]
tuned to return roughly 200 superpixels. We use this
bottom-up information in our probabilistic model by
constraining all pixels within a superpixel to share the
same label.

where w is a vector of model parameters and Z(d) is
a normalizing constant. We use our model to produce
a relative ordering rather than an absolute ordering
As such, it is natural to use difference features to
construct a probability distribution over orderings. By
symmetry, if we swap the features of the objects, the
probabilities of the corresponding orderings will also
be swapped.

3.4 Exploiting Bottom-up Grouping
The model as described makes no use direct use of
bottom-up grouping constraints such as the presence
of contours separating object boundaries. A simple
way to incorporate such information is to utilize a
segmentation engine which generates superpixels (we
use [33]) and assign superpixels to layers instead of
pixels (see Figure 4). In this case, we can use the
same notation but let i index a superpixel instead
of a pixel. For example, zi will indicate the label
of superpixel i and xi a feature vector (e.g. color
distribution) extracted from i. Since superpixels are
image dependent, we still maintain a per-pixel alpha-
matte which we use to define a distribution over zi:

P (zi = m|dπ) ∝
∏
j∈Si

βjm

N∏
n=m+1

(1− βjn) (15)

The superpixel-constrained label distribution is
equivalent to the label distribution from Section 3.1
conditioned on the fact that groups of pixels in the
same superpixel must share the same label. This
conditioning requires the use of a proportionality sign
in (15) to ensure that the left-hand side is a proper
probability distribution.

4 INFERENCE

Given an image and a set of detections, we would
like to infer the class labels for each pixel zi. Ideally,
one would like to estimate the labels z by marginal-
izing out over the color models θ. Marginalization is
difficult because color models are typically continu-
ous (e.g., the probabilities associated with each bin
of a color histogram) and the induced joint poten-
tial between θ and z is non-Gaussian. Furthermore,
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Fig. 3. Examples of an order-dependent layered label distribution P (z|dπ). The original image with overlaid
candidate detections is shown on the left. In the top row, we show the composited layered distribution iteratively
built from detections ordered back to front. For visualization purposes, we color distributions according to the
object type although each detection maintains its own instance layer. In the bottom row, we show the distribution
built from part-based detections which deform to better match the shape of the detected instance. In general the
part composites are more accurate. For example, the front car wheel is better modeled with parts. One notable
exception is the mislocalized head in the first instanced person.

marginalizing over θ must be done jointly where
multiple detections overlap. Instead, it is natural to
approximate the distribution over θ by its maxi-
mum likelihood value using coordinate descent or the
Expectation-Maximization (EM) algorithm. We first
consider inference for the simpler case of a fixed
ordering of detections.

4.1 Coordinate ascent
We outline here a coordinate ascent algorithm for
maximizing Equation (1) by iterating between updates
for z and θ:

1. zt = arg max
z
P (x, z|θt−1, dπ)

2. θt = arg max
θ
P (x, zt|θ, dπ) (16)

Step 1 requires computing P (zi = n, xi|θt−1, dπ) for
each pixel i and possible label n. Step 2 corresponds
to standard maximum likelihood estimation (MLE)
which can be solved for each color model indepen-
dently by computing

arg max
θn

∏
i:zt
i
=n

P (xi|θn)

In our case, we use color histogram models so θn can
be estimated using empirical counts.

4.2 EM
As an alternative to coordinate ascent, one could
also define an EM algorithm that learns histograms
using weighted MLE, where the weight of pixel i for
histogram θn is given by P (zi = n|x, θ, dπ). Let us
write the expected complete log-likelihood, treating θ
as the model parameter to be maximized and z and
the hidden variables to the marginalized:

L(q, θ) = Eq(z)[logP (x, z|θ, dπ)] (17)

The E and M steps, which perform coordinate ascent
on a lower-bounding auxiliary function, are:

1. E step qt(zi) = P (zi|x, θt−1, dπ) ∀i (18)
2. M step θt = argmax

θ
Eqt(z)[logP (x, z|θ, dπ)] (19)

Step 1 is performed by computing P (zi =
m,xi|θt−1, dπ) for each pixel i and label m as before
and then normalizing to yield a probability distribu-
tion over zi. Step 2 corresponds to weighted MLE. In
the case of histograms this amounts to using weighted
frequency counts where the contribution of pixel i to
θm is given by q(zi = m).

We have not implemented the above algorithm, but
include it for completeness as it gives a probabilistic
motivation for our coordinate descent algorithm.

4.3 Orderings
The previous sections assumed that the ordering was
fixed. We would now also like to optimize over the
ordering as well:

max
z,θ,π

P (x, z|θ, d, π)P (π|d)

= max
π

P (π|d) max
z,θ

P (x, z|θ, d, π) (20)

For each ordering π, we can compute the inner maxi-
mization by coordinate ascent as previously described
(or alternately replace the inner maximization with a
maximization of the expected complete log-likelihood
using EM).

Because the number of detections in an image is
usually small, it is often practical to perform a brute
force search over orderings. The search space for
the maximization over π can be further restricted
by noting it is only necessary to enumerate those
orderings that generate distinct label priors P (z|d). If
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an image only contains two detections that do not
overlap, then either order generates the same label
prior. A simple method for exploiting this observation
is to construct a N×N adjacency graph of overlapping
detections, and ignore the relative ordering between
different connected components.

It is also worth noting that if the ordering distri-
bution is sharply peaked around a single ordering, it
can dominate the color-shape likelihood term in the
maximization in Equation (20). In this case, one can
avoid the search over ordering and simply use the
most probable ordering under the distribution term.
This has the advantage of substantially speeding up
the model inference.

5 LEARNING

We now describe a MLE procedure for learning the
shape priors α (defined in Section 3.2) from labeled
training data. For simplicity, we include equations
for estimating αi′k from a single training image but
the extension to multiple images and pose/part-based
shape priors are straightforward.

Bernoulli models: First consider the fully observed
case in which layered segmentation masks bin are
given. Let cn denote the class of the nth layer. Learning
corresponds to standard Bernoulli MLE:

αi′,k = argmax
γ

∏
n:cn=k

P (bin|γ) where i = T−1n (i′)

= argmax
γ

∑
n:cn=k

bin log γ + (1− bin) log(1− γ)

where we write i = T−1n (i′) for the inverse transforma-
tion that warps a pixel from shape mask coordinates
i′ to image coordinates i. In our case, this transfor-
mation is a translation and scaling corresponding to
the location and scale of the nth training instance. The
above equations indicate that αi′,k is set to the fraction
of times the ith pixel for class k is ‘on’.

Layered Bernoulli models: In practice, it is easier
to label z rather than b because one does not need
to estimate the spatial extent of occluded objects.
Fortunately, one can still compute MLE estimate of
α by marginalizing out labels for occluded regions:

αi′,k = argmax
γ

∏
n:cn=k

P (zi|γ) where i = T−1n (i′)

= argmax
γ

∑
n:cn=k

1[zi=n] log γ + 1[zi<n] log(1− γ)

The above formulation is very similar to standard
Bernoulli MLE except that occluded pixels are ig-
nored.

Order model: Learning the parameters of our order-
model (14) is more difficult since one requires iterative
algorithms or approximations for learning MRFs [34].
Since we have a small number of weights, we experi-
mented with both manually tuning them and learning

them with a local logistic regression model (trained
to predict the order of pairs of detections given the
relative pairwise features fn = (sn, yn, hn, h̄n) from
(14)).

Learned ordering: We use weights learned using
logistic regression in our final experiments, using a
subset of features selected through cross validation.
When learning the regression model using detection
windows produced by our detectors, we find that
simply using the detection score sn produces the best
result. For further diagnostic evaluation, we also eval-
uate our model on ground-truth object windows, as
described in Sec.6.5. When trained using such ground-
truth data, we find that all features are useful, with the
lower-y coordinate yn being the most informative by
far. Interestingly, the regression model learns a neg-
ative weight for the height and relative height hn, h̄n
features. We initially hypothesized that smaller objects
should be placed further from the camera, but doing
so may produce poor segmentations because small
detections can be fully occluded by larger detections.

6 EXPERIMENTAL RESULTS
In this section, we present results on the PASCAL
VOC segmentation competition [35], [1]. PASCAL is
widely-acknowledged as a difficult available testbed
for both object detection and multi-class segmen-
tation. The competition contains 2000 training and
validation images along with ground-truth labelings
which give per-pixel labelings for 4200 instances of
20 object categories. Test annotations for the dataset
are not released. Instead, benchmarking algorithm
performance is done on a held-back test set through
a web interface.

6.1 Implementation
Given an image x and a set of calibrated detections d,
our final algorithm is as follows:

For each ordering π, iterate until convergence:

1. zSi := argmax
m

∏
j∈Si

P (zj = m|dπ)P (xj |θm)P (π|d)

2. θm(j) :=

∑
1[xi=j,zi=m]∑
1[zi=m]

Output superpixel labels zSi with most probable
ordering π

Our algorithm repeats the above for every ordering
π, and returns the ordering and segmentation with the
highest probability. In Step 1, we label each superpixel
Si with a label m that maximizes the joint model. In
Step 2, we re-estimate a color histogram model for the
mth detection by counting the fraction of pixels with
a bin value of j.

To generate detections, we used the part-based
detector of [4] which was trained using the PAS-
CAL VOC training dataset. We show results for both
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version-3 and version-4 of the publicly available de-
tection code [36]. We used version-3 as the input for
the 2009 data, and version-4 as the input for the
2010 data (corresponding to the timetable at which
both releases were available). Version-3 models objects
using two pose-specific mixture components, while
version-4 uses six pose-specific mixture components.
We demonstrate that our segmentation system can
greatly benefit from this refinement because our shape
models are now more accurate.

Computation: The bottleneck of our system is the
initial object detection and segmentation. Segmenta-
tion using the GPU implementation of gPb [37] takes
5s, running the 20 object detectors from [36] takes 30s.
Given the superpixels and detections, our inference
algorithm takes 3-5s to estimate the segmentation
conditioned on the ordering. There is a wide variation
in the number of distinct orderings per image, with
the median number being 2. This means that the
median running time is close to a minute per image.

6.2 Calibration

We use detectors which are trained independently
for each object class using a support vector machine
(SVM), producing scores which are not directly com-
parable. In order to calibrate the detectors with respect
to segmentation, we estimated an optimal threshold
for each detector by evaluating the segmentation
benchmark at different threshold settings. We inde-
pendently select a threshold for each class by scoring
the following simple segmentation model:

1) Select all detections of a given class above the
threshold

2) Label all pixels inside those detection windows
as belonging to the given class.

Figure 5 shows the resulting average segmentation
benchmark score as a function of threshold for the
20 classes on a validation set.

It is clear from the figure that the optimal threshold
varies widely across different classes (as does the
maximal detector performance). The inability of the
SVM to learn consistent bias terms for each detector
presumably relates to the disconnect between the seg-
mentation benchmark and the detection benchmark.
We utilized the per class threshold by simply subtract-
ing the optimal threshold from the detector score and
only utilizing detections which scored greater than 0.
The offset detector scores were also used in the layer
order model.

6.3 Benchmark Results

Figure 6 shows the quantitative performance of our
system on the 2009 and 2010 PASCAL segmentation
challenge. We compare our results to other top results
reported at the both workshops [35], [1], ignoring our
own previous entry that was a preliminary version

Fig. 5. In order to calibrate the detectors with respect
to segmentation, we found a threshold for each de-
tector that optimized independent segmentation per-
formance. The segmentation performance was quan-
tified using the overlap between the set of above-
threshold detector bounding boxes and the ground-
truth segments for the given class on validation images
not used in training the detectors. The graphs show
this bounding-box segmentation accuracy as a function
of the detector threshold for each of the 20 classes.
We observe the optimal threshold varies widely across
different classes.

of the system described here. Our system performs
quite well compared to the average performance
across entries into the competition. Specifically, in
2009, our system ranks first over all other entries in
the “person”, “bicycle”, and “car” categories. Because
people are the overwhelmingly common object in
the PASCAL dataset, our system tends to produce
quite reasonable segmentations for many images. We
present example image segmentation results in Figure
12.

Overall, we rank 7 among all entries for both years.
We also see a noticeable improvement in average
performance of 23% in 2009 to 30% in 2010. This
improvement is likely due to two factors. Firstly,
the local detectors themselves are more accurate due
to the additional mixture components. Secondly, our
system also learns more accurate shape masks since
each root and part mask is tuned to capture a smaller
range of poses.

It is useful to compare our approach with“‘ other
methods that performed better. Many are based on
conditional random field (CRF) models, where class-
specific appearance models (typically based on HOG
and color) are smoothed using models of label con-
sistency. Often the local potentials are biased to re-
spect the output of object detectors (Brookes, CVC-
Barcelona, and Stanford entries). This suggests that
our approach may also be improved by incorporating
additional label consistently constraints. Most simi-
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PASCAL Segmentation Challenge
2009 2010

Mean Max Us Our rank Mean Max Us Our rank
background 41.2 83.5 78.0 8 38.6 84.2 81.5 3
aeroplane 18.8 56.3 32.8 7 27.4 58.3 45.6 6

bicycle 10.4 26.6 29.4 1 14.5 27.4 23.9 3
bird 11.0 40.6 3.2 17 13.4 39 10.4 11
boat 11.5 36.1 5.0 16 14.6 37.8 22.1 7

bottle 18.2 46.1 33.1 3 24.6 47.4 35.2 6
bus 25.5 50.5 43.4 3 46.2 63.2 54 6
car 20.6 42.3 43.8 1 33.4 62.4 53.5 3
cat 12.6 35.3 8.3 12 21.2 42.6 14.3 15

chair 4.2 9.1 5.1 9 5.2 9.6 9.6 1
cow 11.7 33.1 11.9 9 18.8 36.8 19.8 9

diningtable 9.1 27.0 8.2 11 11.5 25.2 6.6 13
dog 9.1 24.5 5.6 14 14.6 34.1 9.6 15

horse 17.5 42.7 21.0 7 20.4 37.5 30.5 6
motorbike 23.4 56.4 24.4 9 31.0 60.6 32.8 9

person 20.9 37.5 38.6 1 22.6 44.9 42.4 3
pottedplant 9.7 37.1 14.6 6 12.1 36.8 23.6 4

sheep 19.7 43.6 14.8 13 24.3 50.3 23 9
sofa 8.5 21.9 3.5 17 11.8 21.9 16.1 6
train 19.2 41.0 27.5 7 24.2 45.6 34.5 5

tvmonitor 22.3 47.8 45.7 2 26.9 48.5 41.1 2
average 16.4 36.2 23.7 7 21.8 40.1 30 7

Fig. 6. A performance evaluation of our system using the held-out test set of the 2009 PASCAL Segmentation
Challenge [35] and the 2010 PASCAL Segmentation Challenge [1]. Our 2009 entry uses version 3 of local
detectors of [36], [4], while our 2010 entry uses version 4 (which has additional mixture components). We
compare to all the original systems entered in the competition, omitting our own entry in 2009 that was a
preliminary version of the system described here. We perform quite well compared to the average performance
across all entries. For “people”, ”bicycles”, and “cars” we obtain the best performance on the 2009 dataset. Since
“people” are common in the PASCAL dataset, our system tends to produce quite reasonable segmentations for
many images. Overall, we rank 7 among all entries for both years, and see a noticeable improvement in average
performance from 2009 to 2010. This improvement is partly due to the more-accurate shape model we learn
from the additional mixture models in the version-4 detectors of [36]. We show examples in Figure 12..

lar to us is the UofCTTI entry, which also pastes
down root shape masks on detection windows (but
without parts, color-models, or bottom-up ground).
We compare to such versions of our system in our
diagnostic experiments below, and believe their strong
performance is due to an improved object detector.
Notably, the top-performing method of Bonn [38]
does not use object detection windows, but rather
ranks putative segments based on a combination of
appearance and shape features.

6.4 Diagnostic experiments
Figure 7 documents experiments where we analyzed
the contribution of different model components to
the overall performance. These performance results
were computed on the set of 2010 “validation” seg-
mentation images (rather than using the online test
protocol). To avoid testing on data used to train the
local detectors, we tested only on those validation
images that were not in the segmentation or detection
training sets.

Instance-specific appearance model: To turn-off
instance-specific appearance modeling, we ignore the
color term P (xi|θn) from (2). This is equivalent to
pasting down a shape mask without any coordinate

descent optimization. Our instance-specific appear-
ance model turns out to be a strong cue, increasing
average performance from 34.7% to 38.4%. We see
large improvements for classes such as people, whose
instance appearance varies greatly due to clothing.
By estimating an instance-specific color model, our
system is able to use clothing-specific cues to help
segment out the person. Because only a single model
is estimated, our system oftentimes will segment out
regions associated with one dominant color. This sug-
gests a useful extension is learning a part-specific
color model that can capture the difference in appear-
ance between the torso and legs, for example.

Mixture-of-deformable-parts shape prior: To turn
off our deformable part prior, we simply ignore
part masks when computing the shape model from
Sec.3.2. The mixture-of-deformable part spatial prior
also tends to help, increasing average performance
from 36.5% to 38.4%. We see particularly large im-
provements for classes such as bicycle and bottle. We
hypothesize that the part models are able to better
capture anisotropic scalings of the object models not
present in the discrete mixtures (e.g., deforming parts
can better model tall and short bottles).
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PASCAL 2010 Validation set
baseline ¬part ¬color ¬superpixel ¬order Worst order Best order Our model

background 70.6 79.3 78.8 78.4 79.7 79.6 79.7 79.6
aeroplane 21.8 40.9 38.4 37.4 42.6 40.8 44.0 43.8

bicycle 15.3 17.8 10.8 21.9 23.9 20.4 25.9 25.5
bird 10.2 14.8 13.1 13.2 14.1 13.0 15.5 15.3
boat 16.3 16.8 17.1 17.1 18.3 18.1 18.3 18.3

bottle 32.9 37.8 37.3 35.5 40.2 36.1 41.9 39.5
bus 46.4 48.2 50.8 47.0 45.6 42.4 51.4 50.2
car 40.6 44.3 48.2 44.3 47.1 45.9 48.2 47.6
cat 16.9 15.5 14.9 15.2 13.7 11.6 15.2 15.3

chair 10.3 8.8 8.3 9.5 8.0 6.2 10.4 10.3
cow 17.9 16.0 11.4 16.7 12.8 10.1 18.9 15.7

diningtable 4.3 6.7 5.9 6.0 7.1 6.3 7.2 6.4
dog 7.9 8.7 8.5 7.4 8.7 8.1 9.4 8.9

horse 16.4 19.8 18.7 19.4 18.8 11.2 21.6 20.6
motorbike 16.0 18.0 16.1 16.9 17.9 17.2 20.4 17.5

person 33.5 34.9 30.1 35.0 34.8 32.2 37.1 36.4
pottedplant 19.4 15.1 12.9 15.8 14.1 13.0 15.3 14.4

sheep 15.6 17.3 14.5 16.1 15.2 13.5 18.4 17.7
sofa 11.0 9.2 8.8 10.6 9.7 8.8 9.9 9.7
train 31.2 33.2 34.1 33.2 33.7 30.6 35.6 35.0

tvmonitor 34.8 34.3 36.3 34.2 34.2 33.6 35.2 35.3
average 23.3 25.6 24.5 25.3 25.7 23.7 27.6 26.8

Fig. 7. The contribution of different components of our system to performance on the 2010 segmentation
validation data. The rightmost column is our full system. The left-most column represents our implementation of
the baseline approach used by the benchmark organizers to generate segmentations from a detection algorithm;
box-shaped segmentation masks are composited in order of detector score (after calibration). The next four
columns represent our full system minus particular components, such as instance-specific color estimation,
bottom-up grouping, and part-based priors, and layering. In all cases, our system outperforms the baseline.
To evaluate ¬order, we construct a non-ordered shape prior by marginalizing over all possible orderings. We
also compare the performance of the ordering selected by our model with the best-possible and worst-possible
orderings. Overall, each component plays an important role in our final model, with the instance-specific color
model and order-reasoning having the largest impact. Notably, in searching over orderings, our model chooses
an ordering that gives segmentation results quite close to those given by the best possible ordering. See Section
6.4 for further detailed analysis and discussion.

Bottom-up grouping: To turn off bottom-up group-
ing, we treat each pixel independently, removing the
“constraint” from Sec.3.4 that all pixels from a su-
perpixel must take on the same label. Overall, the
bottom-up grouping constraints provide a noticeable
improvement, increasing average performance from
36.3% to 38.4%. We see the largest improvements for
classes whose objects tend to have strong, smooth
boundaries. We observe this phenomena for many
rigid objects such as airplanes, cars, and buses, which
often produce strong boundaries due to characteristic
backgrounds of sky or road.

Layering: To examine the effect of our layered
representation, we would like to consider a version
of our system without layering. This is difficult to
construct since our probabilistic framework requires a
consistent shape model for pixels that overlap two or
more detection windows. We created an non-layered,
per-pixel shape model by marginalizing the ordered
model over all orderings P (zi|d) ∝

∑
π P (zi|dπ).

We see a small, but noticeable improvement in mov-
ing from the non-layered model to our full model that
explicitly reasons about a globally-consistent ordering
of detections. We hypothesize this lack of impact on

the benchmark score holds for two reasons. Firstly,
because images are sparsely labeled with 20 object cat-
egories, it is relatively rare for two objects of different
classes to overlap. Only 40% of images had overlaps in
the ground-truth bounding boxes, of which half only
had a single overlap. Secondly, our local detectors of-
ten fail to detect partially occluded objects. Both these
facts suggest there are relatively few interesting cases
where occlusion reasoning could help, thus limiting
the effect of layering on the benchmark score. We
further examine this phenomena in the next section.

Order model: To examine the effectiveness of our
layer order model (Equation (14)), we show the per-
formance of our system using the best-possible and
worst-possible ordering per image, as determined by
the average performance across all classes for each
image. The performance of our final model (38.4%)
appears close to the upper-bound given by the op-
timal ordering (39.4%). However, we observed that
the best-ordering often placed false positive detections
behind true positive detections, hence using order-
ing to inadvertently remove false positives. Since we
would like to examine the influence of ordering in
reasoning about relative depth, we also considered
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an additional experiment (described in Sec.6.5) using
only true positive detections.

Detector accuracy: To examine the behavior of
our system with different quality detectors, we per-
formed another experiment using ground-truth de-
tection windows (e.g., an “ideal detector” with zero
false positives and zero missed detections). When
evaluated on the entire PASCAL 2010 Validation set,
our final segmentation accuracy doubles to 60.9% (due
to space restrictions, we don’t include the associated
column in Fig.7. This suggests that the performance
of our system is closely tied to the accuracy of the
initial detectors.

6.5 Evaluation on images with overlap
To further examine the role of ordering detections, we
conducted an experiment using a set of true positive
detections culled from the subset of images where two
or more detections overlapped. True-positive detec-
tions were those detection outputs above threshold
whose overlap with some ground-truth bounding box
was greater than 50%. We show results on this subset
of the data in Figure 8. We note that the overall
performance of our system (59%) and relative impact
of each component is greater for this test-set, since
we utilize known-good detections and test on images
where overlapping detections are much more com-
mon. For example, on this test set, removing global
order-reasoning from the model reduces average per-
formance from 59% down to 57%.

We also examine the effect of different depth orders
on this set of images. The worst ordering scored
52.7%, the best possible scored 60.0%, and our sys-
tem scored 59.0%. Because we are examining only
true positive detections, the best-ordering score is no
longer inflated by the ability to remove false positives
by layering them behind other detections. This sug-
gests that our model does captures much of the gain to
be had by reasoning about depth order. Furthermore,
given accurate detectors (no false-positives), our sys-
tem nearly doubles in performance from 38% to 59%.

6.6 Instance-based segmentation benchmark
The PASCAL segmentation challenge scores the task
of semantic segmentation, where each pixel must be
labeled with 1 of 20 object labels or background. This
makes sense for classes which consist of “stuff” such
as grass, sky, mud, etc. In contrast, for “things”, i.e.
semantic classes denoting objects defined primarily
by shape, it seems far more natural to score object-
instance labels. Consider the image of three dogs in
Figure 9; the instance-level segmentation naturally
produced by our system is clearly more detailed than
the class segmentation scored by PASCAL. Further-
more, due to our layered representation, we are able
to reason about the instance labels of occluded pixels
as well (though scoring such output is difficult).

In this section, we evaluate the performance of our
system using two novel instance-based segmentation
benchmarks. The first is a natural extension of the
existing class-based benchmark, where the notion of
a correctly-labelled pixel is refined to require both
class and instance labels to agree. We also propose
an alternate score that decomposes into a sum of per-
instance scores. The latter can also be viewed as a
novel detection benchmark, unifying the traditionally
disparate evaluation criteria for detection and seg-
mentation.

PASCAL class benchmark: First, we introduce
notation for describing the PASCAL segmentation
benchmark. Let Gk andMk denote the set of ground-
truth and machine-generated segments respectively
for the kth object class. Let Gi ∈ Gk denote the set
of pixels corresponding to a particular segment. The
PASCAL class segmentation accuracy is given by:

accclass(k) =

∑
Gi∈Gk

∑
Mj∈Mk

|Gi ∩Mj |
|
⋃
Gi∈Gk

⋃
Mj∈Mk

Gi ∪Mj |
(21)

This score ranges between 0 and 1 and measures the
area of overlap of ground-truth and machine marked
pixels relative to the union of their areas.

Instance benchmark: To extend this performance
metric to object instance segmentations, we need to
establish a 1-to-1 correspondence between machine
and ground-truth segments. We describe such a cor-
respondence by a function p so that Gi is matched to
a particular instance Mp(i). Let P be the set of all such
matchings.

We define the instance benchmark accuracy,
accinst(k), to be a straightforward extension of (21)
by changing the numerator so that pixels are counted
as true positives only if class labels and instance
assignments agree:

accinst(k) = max
p∈P

∑
Gi∈Gk |Gi ∩Mp(i)|

|
⋃
Gi∈Gk

⋃
Mj∈Mk

Gi ∪Mj |
(22)

The optimal correspondence p can be found by solv-
ing a maximum-weight bipartite matching problem
containing edges that connect ground-truth and can-
didate segments of the same class within the same
image. Edge weights are given by pixel overlap counts
|Gi∩Mj |. Leftover segments are matched to “dummy”
nodes with zero overlap.

The instance benchmark is clearly stricter than the
class benchmark since the summation in the instance
benchmark numerator contains a subset of the terms
in the class benchmark numerator. By enforcing a
matching, the instance benchmark can appropriately
penalize undersegmentations which fail to split apart
objects of the same class.

Segment-Instance Precision and Recall: Both the
benchmarks defined thus far count the number of
correctly classified pixels, so larger objects are more
important to the total accuracy than smaller objects. To
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Subset of PASCAL 2010 Validation set with verified, overlapping detections
¬part ¬color ¬superpixel ¬order Worst order Best order Our model

background 81.9 79.5 81.6 82.8 82.5 83.0 82.8
aeroplane 68.8 73.9 61.8 75.9 75.9 75.9 75.9

bicycle 22.4 17.5 25.6 28.3 20.8 34.3 33.9
bird 73.3 58.3 68.1 74.8 74.9 74.9 74.9
boat 47.6 44.9 44.9 42.3 41.6 42.7 42.2

bottle 68.1 64.2 72.0 73.1 58.7 77.0 76.4
bus 74.0 78.3 75.3 79.2 78.8 79.5 79.5
car 64.6 62.6 61.6 68.2 63.8 68.5 67.4
cat 51.1 49.7 53.9 47.6 33.6 60.7 60.4

chair 31.4 26.7 34.3 34.5 26.7 41.1 39.4
cow 38.8 35.6 49.9 46.5 41.1 47.7 45.5

diningtable 52.3 45.5 46.6 48.9 45.5 52.0 50.4
dog 62.7 60.9 61.9 60.2 50.3 65.5 64.7

horse 52.8 44.4 51.8 57.6 54.2 58.1 55.3
motorbike 61.5 58.1 54.2 63.1 58.2 63.9 62.0

person 52.9 43.1 52.8 53.3 48.7 57.9 56.1
pottedplant 52.7 45.6 48.1 49.4 44.0 51.4 50.8

sheep 46.2 38.2 47.8 48.5 48.2 52.7 51.4
sofa 39.0 32.8 50.7 38.7 35.0 44.0 43.7
train 58.7 58.2 58.4 59.1 59.0 59.5 59.5

tvmonitor 66.2 65.6 72.4 68.6 65.1 69.5 67.0
average 55.6 51.6 55.9 57.2 52.7 60.0 59.0

Fig. 8. We analyze our system using verified (true-positive) detections on the subset of PASCAL 2010 validation
images where two or more such detections overlapped. In general, we see a large impact for each component
of our system. For example, a no-order version of system drops in performance from 59% to 57%. Our overall
performance of 59% almost doubles our performance on the full validation set. This suggests our model could
produce quite accurate segmentations given ideal detectors run on images where multiple overlapping objects
were common.

give each instance equal importance, we can instead
compute the intersection-over-union overlap score on
a per-instance basis rather than for the whole pool of
segments. In this case, an object instance Gi matched
to a segment Mj contributes a value

Oij =
|Gi ∩Mj |
|Gi ∪Mj |

(23)

to the final score. This per-object score is between
0 and 1 regardless of object size. The final score
for category k is the average value of Oij across
instances and can be normalized with respect to either
the number of ground-truth segments (recall) or the
number of machine-produced segments (precision):

accrec(k) = max
p∈P

1

|Gk|
∑
Gi∈Gk

|Gi ∩Mp(i)|
|Gi ∪Mp(i)|

(24)

accprec(k) = max
p∈P

1

|Mk|
∑

Mj∈Mk

|Gp−1(j) ∩Mj |
|Gp−1(j) ∪Mj |

(25)

In this case the optimal correspondence p for both
scores is identical and given by the solution of a
maximum-weight bipartite matching problem with
weights Oij .

If we replace Oij in the equations above with a
thresholded indicator function 1[Oij>.5], the result-
ing averages are equivalent to precision-recall values
computed in the PASCAL detection benchmark with
two differences: we compute overlaps with segmen-
tation masks rather than bounding-boxes, and we

compute an optimal correspondence p rather than a
approximate one [1]. This makes it directly possible to
directly compare the performance of object detectors
that return bounding boxes and instance-based seg-
mentation algorithms using a unified scoring criteria.

Results: In Figure 10, we evaluate performance
using accinst. Because this is a strictly harder criteria
than accclass (the set of true positive pixels must now
be smaller), all the performance numbers decrease. We
evaluate our system on the entire validation set (as in
Fig.7) and the subset of images with verified, over-
lapping detections (as in Fig.8), though we present
the full diagnostic analysis for the latter because it is
more interpretable. On either set, the overall decrease
in segmentation accuracy is relatively small; from
26.8% to 25.9% for the former and 59.0% to 57.7%
for the latter. This indicates that our system can be
used to segment individual object instances as well
as generating class segmentations.

In Figure 11, we evaluate performance using accprec
and accrec. Our segmentations tend to operate at
the high-precision low-recall regime, much like the
base detectors we use. Note that the precision-recall
benchmark differs from accinst in that all instances are
weighted equally (rather than by size in the image).
This is visible in the results. For example, we segment
people more accurately than tables (56% to 50%)
according to accinst but both have a similar F1-score
in the precision-recall benchmark. One explanation is
that people may occur at larger scales than dining



12

Fig. 9. We show an example output of our system
on the image from the top-left using the true positive
detections on the bottom-left. Our system produces
class labels for each pixel, show on the top-right.
This is the output scored by the PASCAL segmentation
benchmark. Our system can also return multi-class
instance labels z, as shown in the bottom-right image.
Moreover, due to our layered representation, we can
explicitly reason about the spatial layout of occluded
regions of objects. We show the binary segmentation
labels b on the three right images, where images
are ordered from back to front. Note that our system
correctly estimates the depth order of the three dogs
as well as inferring spatial extent of occluded parts of
the dogs.

tables in PASCAL.
Detection benchmark: One can also evaluate our

instance segmentations using the standard PAS-
CAL detection benchmark. This requires generating
bounding-boxes from the segmentation masks output
by our system. We found that this was not straight-
forward, as isolated pixels could produced skewed
bounding boxes, which in turn produced a poor de-
tection benchmark score. One interpretation of this
result is that when scoring detection accuracy, it is
more natural to use pixel overlap (as accprec and accrec
do) rather than bounding box overlap. Fig.11 suggests
that our system does produce better detections when
measured with the former.

7 CONCLUSION

We have proposed a simple model which performs
pixel labeling based on the output of scanning win-
dow classifiers. It does so by combining top-down
deformable shape priors with bottom-up grouping
constraints and instance-specific color models. It rec-
onciles all these cues in a globally consistent, 2.1D
interpretation of the image obtained by layering ob-
jects in depth. Based on extensive diagnostic analysis,
we have verified that each component of our system
is important in producing high-quality segmentations.
We also demonstrate that our algorithm extracts much
of the possible information about depth order infer-
able from given current detection systems.

In terms of performance, our system achieves or
surpasses the performance of current state-of-the-art
approaches for multiclass segmentation. Our system
produces much richer outputs than current systems,
in that it estimates the spatial layout of individual
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Fig. 11. We analyze our system on the full PASCAL
VOC 2010 Validation set, but using our new precision-
recall, instance-based, scoring criteria (accprec and
accrec). We compare the result of our system (the head
of the arrow) to the baseline approach from Fig.7 (the
tail of each arrow). We plot isocontours of constant
F1-score, the harmonic mean of precision and recall.
Our system produces better F1-scores for all classes.
Our system generally operates at a high-precision low-
recall regime, most likely due to the properties of
our calibrated detectors (which operate at a similar
regime).

objects, including both visible and occluded regions.
To score the accuracy of instance-level segmentation,
we introduce two new benchmarks that reconcile the
traditionally disparate evaluation criteria for object
detection and segmentation. Evaluating our new cri-
teria on benchmark data, we demonstrate that our
system can fairly reliably segment individual object
instances.

ACKNOWLEDGMENTS

Funding for this research was provided by a UC Labs
research program grant, NSF Grant IIS-0954083, ONR-
MURI Grant N00014-10-1-0933, and support from Mi-
crosoft, Google, and Intel.

REFERENCES
[1] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman, “The PASCAL Visual Object Classes Challenge
2010 (VOC2010) Results.”

[2] P. A. Viola and M. J. Jones, “Robust real-time face detection,”
IJCV, vol. 57, no. 2, pp. 137–154, 2004.

[3] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in CVPR, 2005, pp. I: 886–893.

[4] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan, “Object detection with discriminatively trained part
based models,” IEEE PAMI, 2009.

[5] X. He, R. Zemel, and M. Carreira-Perpinan, “Multiscale con-
ditional random fields for image labeling,” in CVPR, vol. 2,
2004.



13

Instance benchmark on PASCAL 2010 Validation with verified, overlapping detections
¬part ¬color ¬superpixel ¬order Worst order Best order Our model

background 81.9 79.5 81.6 82.8 82.5 83.0 82.8
aeroplane 68.8 73.9 61.8 75.9 75.9 75.9 75.9

bicycle 21.9 17.4 24.8 27.8 20.8 33.1 33.2
bird 72.7 57.3 67.2 73.6 73.7 73.9 73.9
boat 38.7 37.0 38.0 33.7 32.9 34.6 34.4

bottle 67.8 64.0 71.2 72.7 58.9 76.6 76.1
bus 73.6 77.6 74.3 78.8 78.2 79.2 78.9
car 64.2 62.3 61.1 67.6 63.1 68.2 66.6
cat 51.1 49.7 53.9 47.6 33.6 60.7 60.4

chair 28.8 24.2 31.1 31.7 24.8 37.9 36.2
cow 38.0 35.1 47.3 45.2 39.9 46.5 44.2

diningtable 52.3 45.5 46.4 48.9 45.6 51.9 50.4
dog 60.4 59.2 59.7 57.9 47.0 62.9 62.3

horse 50.5 42.9 50.3 54.1 50.5 56.5 53.5
motorbike 61.4 58.0 53.9 63.0 59.2 62.7 61.9

person 51.4 41.7 50.9 51.7 46.7 56.3 54.3
pottedplant 49.8 43.4 45.1 47.0 41.8 49.3 48.1

sheep 44.2 36.7 43.7 46.2 45.5 50.3 49.1
sofa 39.0 32.7 50.6 38.7 35.0 43.9 43.7
train 58.3 57.8 58.0 58.6 58.3 59.1 58.8

tvmonitor 65.4 64.8 71.2 67.8 64.6 68.4 66.5
average 54.3 50.5 54.4 55.8 51.4 58.6 57.7

Fig. 10. We analyze our system on the same dataset as Figure 8, but using our newly proposed instance-
based segmentation benchmark accinst. Because labeling pixels with instance labels is harder than assigning
class labels, these performance numbers are lower than those reported in Figure 8. The small overall drop in
performance (from 59% to 58%) suggests our system is able to quite accurately label object instances as well
as class labels. For reference, we also evaluated our instance benchmark on the full validation set, as in Figure
7. We similarly see a small drop in average segmentation accuracy, from 26.8% to 25.9%

False positives

Irregular shape

bus person

person

Interclass NMS

cow

horse

car

bus

Intraclass NMS

cat

car

person

person

horse

Poor localization

person

sheep

Class confusion

horse

sheep

car

Color bleeding

Fig. 12. Example failure modes of our system on the 2010 PASCAL dataset. We show triplets corresponding to
the original image, a class segmentation following the color scheme from PASCAL, and an instance segmentation
using an arbitrary color scheme. Some failures such as false positives, class confusion and poor localization are
attributable to shortcomings of the detector and are quantified by standard detector benchmarks. However, there
are also several failure modes that involve interactions of both components and non-maximum suppression
(NMS) which are only diagnosed by the segmentation or instance benchmark. For example, multiple animal
detectors often fire on the same image region, making independent pixel label assignment difficult. Failures such
as color bleeding and irregular shapes could be eliminated by improved segmentation models.

[6] A. Torralba, K. Murphy, and W. Freeman, “Contextual models
for object detection using boosted random fields,” NIPS, 2004.

[7] S. Kumar and M. Hebert, “A hierarchical field framework for
unified context-based classification,” in ICCV, vol. 2, 2005.

[8] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost:
Joint appearance, shape and context modeling for multi-class

object recognition and segmentation,” ECCV, vol. 3951, p. 1,
2006.

[9] Z. Tu, “Auto-context and its application to high-level vision
tasks,” in IEEE CVPR, 2008.

[10] M. Kumar, P. Torr, and A. Zisserman, “Obj cut,” in CVPR,
vol. 1, 2005.



14

[11] D. Ramanan, “Using segmentation to verify object hypothe-
ses,” CVPR, 2006.

[12] S. Yu, R. Gross, and J. Shi, “Concurrent object recognition and
segmentation by graph partitioning,” NIPS, pp. 1407–1414,
2003.

[13] B. Leibe, A. Leonardis, and B. Schiele, “Combined object cat-
egorization and segmentation with an implicit shape model,”
in ECCV 04 workshop on statistical learning in computer vision,
2004, pp. 17–32.

[14] A. Levin and Y. Weiss, “Learning to combine bottom-up
and top-down segmentation,” International Journal of Computer
Vision, vol. 81, no. 1, pp. 105–118, 2009.

[15] Z. Tu, X. Chen, A. Yuille, and S. Zhu, “Image parsing: Unifying
segmentation, detection, and recognition,” IJCV, vol. 63, no. 2,
pp. 113–140, 2005.

[16] X. Ren, C. Fowlkes, and J. Malik, “Cue integration for fig-
ure/ground labeling,” in NIPS, 2005.

[17] L. Ladicky, P. Sturgess, K. Alahari, C. Russell, and P. H. S. Torr,
“What, where and how many? combining object detectors and
crfs,” in European Conference on Computer Vision, 2010, pp. 424–
437.

[18] T. Brox, L. Bourdev, S. Maji, and J. Malik, “Object
segmentation by alignment of poselet activations to image
contours,” in IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), 2011. [Online]. Available:
http://www.eecs.berkeley.edu/ lbourdev/poselets

[19] L. Bourdev, S. Maji, T. Brox, and J. Malik, “Detecting
people using mutually consistent poselet activations,” in
European Conference on Computer Vision (ECCV), 2010. [Online].
Available: http://www.eecs.berkeley.edu/ lbourdev/poselets

[20] J. Wang and E. Adelson, “Representing moving images with
layers,” IEEE Trans on Image Processing, vol. 3, no. 5, pp. 625–
638, 1994.

[21] N. Jojic and B. Frey, “Learning flexible sprites in video layers,”
in CVPR, vol. 1, 2001.

[22] M. Kumar, P. Torr, and A. Zisserman, “Learning layered
pictorial structures from video,” in Indian Conf on Comp Vis,
Graphics and Image Proc, 2004, pp. 158–163.

[23] M. Nitzberg, D. Mumford, and T. Shiota, Filtering, Segmentation
and Depth. Springer-Verlag, 1993.

[24] R. Gao, T. Wu, S. Zhu, and N. Sang, “Bayesian inference for
layer representation with mixed markov random field,” in
Energy Minimization Methods in CVPR, pp. 213–224.

[25] I. Liechter and M. Lindenbaum, “Boundary ownership by
lifting to 2.1d,” in ICCV, 2009.

[26] J. Winn and J. Shotton, “The layout consistent random field
for recognizing and segmenting partially occluded objects,”
in CVPR, 2006.

[27] X. Ren, C. Fowlkes, and J. Malik, “Figure/ground assignment
in natural images,” in ECCV, 2006.

[28] D. Hoiem, C. Rother, and J. Winn, “3d layout crf for multi-view
object class recognition and segmentation,” in CVPR, 2007.

[29] M. Maire, “Simultaneous segmentation and figure/ground
organization using anuglar embedding,” in ECCV, 2010.

[30] D. Hoiem, A. Stein, A. Efros, and M. Hebert, “Recovering
occlusion boundaries from a single image,” in ICCV, 2007.

[31] A. Saxena, M. Sun, and A. Ng, “Make3D: Learning 3D Scene
Structure from a Single Still Image,” IEEE TPAMI, pp. 824–840,
2009.

[32] Y. Yang, S. Hallman, D. Ramanan, and C. Fowlkes, “Layered
object detection for multi-class segmentation,” CVPR, 2010.

[33] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “From con-
tours to regions: An empirical evaluation,” in CVPR, 2009.

[34] S. Li, “Markov random field models in computer vision,”
Computer VisionECCV’94, pp. 361–370, 1994.

[35] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The PASCAL Visual Object Classes Challenge
2009 (VOC2009) Results.”

[36] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester, “Dis-
criminatively trained deformable part models, release 4,”
http://people.cs.uchicago.edu/ pff/latent-release4/.
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