
Detecting, Localizing and Recovering Kinematics of Textured Animals

Deva Ramanan1 and D. A. Forsyth1 and Kobus Barnard2

1University of California, Berkeley – Berkeley, CA 94720
2University of Arizona – Tuscon, AZ 85721

{ramanan,daf}@cs.berkeley.edu, kobus@cs.arizona.edu

Abstract

We develop and demonstrate an object recognition sys-
tem capable of accurately detecting, localizing, and re-
covering the kinematic configuration of textured animals
in real images. We build a deformation model of shape
automatically from videos of animals and an appearance
model of texture from a labeled collection of animal images,
and combine the two models automatically. We develop a
simple texture descriptor that outperforms the state of the
art. We test our animal models on two datasets; images
taken by professional photographers from the Corel collec-
tion, and assorted images from the web returned by Google.
We demonstrate quite good performance on both datasets.
Comparing our results with simple baselines, we show that
for the Google set, we can recognize objects from a collec-
tion demonstrably hard for object recognition.

1. Introduction

Learning shape is difficult, particularly for deformable
objects and objects undergoing changes in aspect. One op-
tion is to encode each deformed state (or aspect) with its
own individual template; this is usually impractical. The
alternative is to require encodings to share parts with ex-
plicit kinematics. The latter is attractive because parts tend
to have useful semantics; for example, it is valuable know
where the head, neck, body and legs of a giraffe are. Learn-
ing such a model from images is difficult because we must
solve the correspondence problem. To build a good shape
model, we first need to know where the head and legs are
in each image, and so we need good part detectors. But
to learn good part detectors, we need a shape model that
describes what image regions correspond with each other.
This interdependency makes this problem hard.

A recent paper demonstrates that video addresses this
correspondence problem; motion constraints help deter-
mine what image regions move where [15] (see also [8]).
Kinematic models are built by searching for possible animal
limbs that look consistent over time and that move smoothly

from frame to frame; the resulting models can detect ani-
mals. However, the spatial model is rough, and there are
no results for localization or kinematic recovery. In this pa-
per, we show how to build a significantly improved spatial
model (Sec. 2.2).

A further difficulty with the work described in [15] is that
the model of limb appearance is overly tuned to the specific
animal captured in the video. In this paper, we describe an
effective, discriminative texture model, built from a collec-
tion of segmented images (we use a set of labeled animal
pictures from the Hemera Photo-Object database [17]). Our
model is capable of recognizing giraffe textures (which are
notoriously difficult because they have structure at two spa-
tial scales — see [9, 16] and Fig.5). We compare our model
with various texture descriptors in Sec.4 and show that it
outperforms the current state-of-the-art for animal recogni-
tion. Texture descriptors that assume a known segmentation
(or that an image consists of a single texture) tend to per-
form poorly on real images; our model is trained and tested
on natural textures observed in images of real scenes.

We now have kinematic models of unknown animals,
built using video, and texture models of known animals us-
ing the Hemera collection. We show that, by matching the
models to one another, we can combine them automatically
to produce a fused model. The name of the modeled object
is known (because it is obtained from Hemera); the model
has a powerful, discriminative texture representation (ob-
tained as above); and it encodes kinematic variations in a
form that respects limb semantics (obtained using video).

First, we demonstrate that such a model can detect ani-
mals. Detection is known to be a relatively easy task, and
detection results are often inflated by backgrounds corre-
lated with the object. Here, we use baselines to obtain
datasets that are demonstrably harder than those currently
in use, and to demonstrate that our model cannot be using
background cues to detect objects. Second, we demonstrate
that our model can localize animals — if one were to shoot
at the model, there would be a high probability of hitting
the relevant animal. Finally, we show that our model reports
kinematics — estimated animal parts lie on image regions

1



Figure 1. Our model-building algorithm. Given an animal video (left), we find candidate limbs in each frame. We cluster the associated
image patches to find sets of limbs that are coherent in appearance over time and that move with bounded velocity (Sec.2.1). The clustered
limbs segment the video into animal/non-animal pixels and allow us to learn a spatial model (Sec. 2.2). On the right, we build a texture
model for various animals from the Hemera collection of labeled and segmented images. We link our models by matching the shape model
built from video to the foreground mask of the Hemera images and matching the texture model built from Hemera to the segmented video
(Sec.4.1). This automatic matching identifies the animal in the video. We use the combined shape and texture model in Fig. 2.

Figure 2. Our model recognition algorithm, as described in Sec.4.2. Assume we wish to detect/localize a giraffe in a query image (left).
We replace each image patch with its closest match from our library of Hemera animal and background textures (NN or nearest neighbor
classification). We construct a binary label image with ‘1’s for those patches replaced with a giraffe patch (center). We use dynamic
programming (DP) to find a configuration of limbs that are likely under the shape model (learned from the video) and that lie on top of
giraffe pixels in the label image (constructed from the image texture library). We show MAP limb configurations on the right.

with the correct (manually annotated) semantic label.

2. Building shape models from video

We use the algorithm of [15] (briefly described in
Sec.2.1) to recover animal segments from video. We use
an improved spatial model explained in Sec.2.2.

2.1. Finding and linking limbs

Assume we are given a video sequence, and told a single
unknown animal is present. There are two powerful cues
that can be used to establish what it looks like: first, the
animal is, rather roughly, assembled out of limbs. Second,
the limbs will look the same from frame to frame — their
appearance is coherent in time.

To exploit the first, we run a detuned limb detector on
each frame independently to generate a set of candidate
limbs. The detector searches for parallel lines of contrast
at a variety of positions, orientations, and scales. We expect
the detector to perform poorly; it may miss animal limbs in
many frames and it may fire on the background. Given the
set of detected limbs, we can extract the image patch asso-
ciated with each candidate and throw them in a “bag”. To

exploit the second cue, we cluster this bag of patches to look
for collections of patches from different frames that look the
same. True animal limbs look coherent over time and move
smoothly. We enforce this constraint by searching within
each cluster for the longest sequence of patches obeying
a bounded-velocity motion model. We finally prune away
those clusters which do not span enough frames.

We interpret each remaining cluster as one single limb in
the final animal body model. Recall that the patches from
each cluster point to detected candidates from the video.
This means that each cluster/limb has associated with it a
spatio-temporal track, where the instances all look like one
another and they move with bounded velocity. This set of
tracks is a track of the animal (Fig. 1) [14, 15].

2.2. Building a good spatial model

Given the tracked segments from the video, we want
to build a kinematic spatial model that can find the ani-
mal in other images. We improve upon the spatial model
presented in [15]. In that work, the spatio-temporal tracks
generated from the clustering are interpreted as observed
data, and the authors learn the tree structure that maxi-
mizes the log-likelihood of the observations [5, 15]. Con-
sider a fully connected graphical model of limb positions,

2



B
H

BB
B

fL rL

N

fL/H

uN

lN

B
lB

uB

Figure 3. We show model-building results for videos of a zebra left, tiger center, and giraffe right. We learn a tree shape model for limbs,
as described in Sec. 2.2. We show directed links in our tree models with arrows. We manually attach a semantic description to each limb
as Head, upper/lower Neck, upper/lower Body, or front/rear Leg. Labeling the tiger model is tricky; many limbs swim around the animal
Body, and one flips between the Head and front Leg. We use these labels to help evaluate localization performance in our results; they are
not part of the shape model. Obtaining a set of canonical labels appears difficult.

Phead, Pneck, Pbody (the precise limb labels are not needed
so long as their correspondence between frames is known).
Each link represents a joint distribution Pr(Plimb1, Plimb2)
of pairwise limb positions, to which they fit a (diagonal co-
variance) gaussian using the data from the tracks. The po-
sition of each limb is represented with a 3 element vector;
its center (x, y) position and orientation θ. As in [5], the
position of each non-root limb is represented with respect
to the coordinate system of its parent.

To learn the tree structure that maximizes the log-
likelihood of the observed pairwise marginals, [15] finds
the minimum-entropy spanning tree. This tends to result
in poor models. Often two far away limbs will be directly
linked in the learned spatial model. This is because the po-
sition of the detected limbs are quite noisy (due to the de-
tuned limb detector), in turn producing noisy entropy es-
timates. To enforce the natural prior that two limbs that
tend to appear near each other should be spatially linked to-
gether, we replace the pairwise entropy term with the mean
distance between those two limbs (and then compute the
minimum spanning tree). We root this tree at the most
“stable” limb (the limb detected most often in the original
video). Once we have learned a structure using the mini-
mum distance spanning tree, we represent the conditional
distributions with gaussians (as in [15]). This produces the
tree spatial models in Fig. 3. We now can write the posterior
configuration for an animal given the image as

Pr(P1 . . . Pn|Im) ∝
∏

(i,j)∈E

Pr(Pi|Pj)
n∏

i=1

Pr(Im(Pi))

(1)
where we have assumed E is the set of edges in
the minimum spanning tree and the likelihood term
Pr(Im|P1 . . . Pn) factorizes into a product of local image
functions Pr(Im(Pi)). Note in our current implementation
we do not search over scale, a limitation we discuss further
in Sec.5. We can efficiently compute the MAP estimate by
fast variant of dynamic programming (DP) [5]. We use this
(unnormalized) posterior as an animal detector by only ac-
cepting those maximal configurations above a threshold.

The likelihood term Pr(Im(Pi)) is a statistic that cap-
tures how “giraffe-like” a local image patch is. A natural
statistic to use is the output of a giraffe texture classifier run

Descriptor All Zebras Tigers Giraffe
Patches 8.2 8.93 5.56 5.97
Textons 11.1 31.3 12.7 12.5

SIFT 13.6 40.0 19.1 21.9

Table 1. We count how often we can correctly identify an animal
based on texture from a single patch from Fig.4. We report per-
centage of correct detections in cross validation experiments for a
1-NN classifier using 1500 prototypes per class. For the full (38
class) multi-class problem ’All’, we perform quite poorly. Many
animal classes (such as elephants and rhinoceroses) are hard to
discriminate using texture alone. When scoring correct detections
solely on zebra, tiger, and giraffe test patches, we do much bet-
ter, indicating those animals have distinctive texture. Looking at
various patch representations (normalized patch pixel values, his-
tograms of textons, and a SIFT descriptor), we find SIFT performs
the best. We adopt it as our texture descriptor, and examine its
behavior further in Fig.5.
on that local patch (see Fig.2). Building a good giraffe tex-
ture classifier from a single video is hard because there are
not many positive or negative examples. This suggests we
combine our spatial model from video with a texture model
learned elsewhere.

3. Texture models from real images

We use the Hemera Photo-Object [17] database of image
clip art to build a texture library; these annotated images
have associated foreground masks. We use all the images in
the “animals” category, throwing away those animals with
less than 3 example images. This leaves us with about 500
images spanning 38 animals. We scale the Hemera images
and video clips to be similar sizes, and assume the animals
in the video and in Hemera occur at roughly the same scale.

To build a good animal texture model, we need a good
animal texture descriptor capable of segmenting out the an-
imal from its background (giraffes typically occur in back-
grounds of fields and trees). Descriptors developed for stan-
dard vision datasets (such as CUReT [3]) may not be ap-
propriate since they classify entire images of homogeneous
texture. To evaluate descriptors on small image patches, we
use the Hemera animal collection as a labeled ground-truth
set (Fig.4). In Table 1, we compare 3 different patch de-
scriptors; histograms of textons [10], intensity-normalized
patch pixel values [18], and the SIFT descriptor [11]. Tex-

3



zebra

giraffe

tiger

Figure 4. Our library of animal textures built from Hemera. We show a subset of 100 17X17 patches for each of our 38 animals; we mark
the giraffe, tiger, and zebra rows in yellow. Our recognition task requires texture classification and segmentation (we need to separate
the animal from its background). This means we need to evaluate textures on a local image patch. We use this library to evaluate patch
descriptors in Table 1.
tons are quantized filter bank outputs that capture small
scale phenomena (such as t-junctions, corners, bars, etc.).
They are typically binned into a histogram over some spatial
neighborhood. The SIFT patch descriptor is a 128 dimen-
sional descriptor of gradients binned together according to
their orientation and location; it is designed to be robust to
small changes in pixel intensity and position. Note we use
the raw descriptor without normalizing a patch to its dom-
inant orientation (as in [11]). We extracted 1500 17X17
image patches from each animal class and built a 1-Nearest
Neighbor (NN) classifier based on each descriptor. Using
cross validation, we found the SIFT descriptor to perform
the best.

Giraffes present particular difficulties for texton based
descriptions (e.g. [9,16];Fig.5). The texture is characterized
by phenomena at two scales (long thin stripes that lie in
between big blobs). If we calculate textons over a large
scale, we miss the thin stripes. If we calculate textons on
a small scale, the long scale spatial structure of the textons
defines the big blobs (Fig.5). This spatial structure is lost
when we construct a histogram of local neighborhoods from
the texton map. This suggests that we should not think of
a giraffe texture as an unordered collection of textons, but
rather simply a patch, or a collection of spatially ordered
pixels. A robust patch descriptor such as SIFT is a natural
choice (other descriptors such as [1] may also prove useful).

Our results are surprising because SIFT was not designed
to represent texture (as noted in [11]); however we find it
can given we store enough examples. For each of the 38 an-
imals from our Hemera collection, we extract a set of 1500
patches of dimension 17X17, representing each patch with
its SIFT descriptor. We attempted to reduce the set of our li-
brary, but saw a loss in performance in our cross-validation
experiments. Obtaining a simpler parametric representation
of animal texture remains future work.

4. Combining shape from video and texture
from images

In order to combine the shape model learned from a
video with the correct animal texture model from Hemera,
we must first identify what animal is in the video.

4.1. Identifying animals from video

We assume that the animal in a given video is one of the
38 animals in Hemera. We match the texture models built
from Hemera to the video. We segment the video into
animal/non-animal pixels using the spatio-temporal tracks
from Sec.2.1. We extract the set of all 17X17 animal
patches from the video, and classify each as one of the 38
animals. We do 1-NN classification on each patch, finding
the closest match from our library of animal textures (by
matching SIFT descriptors). We can obtain a texture poste-
rior for animal labels given a video by counting the number
of times the classifier voted for the ith animal class (Fig.6).

Matching solely based on texture is not enough to get
the correct animal label; the giraffe video matches best with
a ’leopard’ texture. We add a shape cue by matching the
shape model built from the video to Hemera. For each
image in the Hemera collection, we use DP to find a config-
uration of limbs that occupies the foreground mask and that
is arranged according to the shape prior learned from the
video (Fig.3). We evaluate the likelihood term Pr(Im(Pi))
in Eq.1 by convolving the foreground mask with oriented
rectangle kernels of all ’1’s flanked on either side by rect-
angles of ’-1’s (we want the limbs to occupy the foreground
region and not the background). We show 4 matches for our
giraffe shape model in Fig.7; note the model matches quite
well to giraffe images in Hemera. For each animal class, we
take the best shape match score obtained over all images in

4



Figure 5. Given a query image left, we replace each 17X17 patch with its closest match from a patch in our texture library. This means
we need a good animal texture descriptor; one that captures the long thin stripes that lie within big blobs typical in a giraffe. Standard
approaches use histograms of textons (quantized filter bank outputs) [9, 10, 16, 18]. We show a texton map on the middle left, where
each color maps to an individual texton. The big blobs that distinguish the giraffe from the background are only apparent from the long-
scale spatial arrangement of textons. Looking at histograms of textons over small neighborhoods looses this spatial arrangement. Hence
classifying giraffe patches based on texton histograms is a poor approach, as seen in the middle right (and as acknowledged by [9, 16]).
Rather, if we classify patches using a descriptor capturing spatial arrangement of pixels (e.g. SIFT), we are better at detecting giraffe
patches (right).
that class. We normalize the scores to obtain a shape poste-
rior over animal labels in Fig.6. Using shape, we label the
giraffe video as ’giraffe’, but both the zebra and tiger video
are mislabeled.

We compute a final posterior by adding the (log) texture
and shape posteriors (weighting shape by 1

2 ) in the bottom
row of Fig.6. Selecting the best class, we identify the cor-
rect animal label for each of our videos.

4.2. Recognition using shape and texture

Our final recognition algorithm uses the approach out-
lined in Fig.2. Given a query image, we replace each 17X17
image patch with the closest match from our texture library.
We append the Hemera animal texture library with a ’back-
ground’ texture class of 20000 patches extracted from ran-
dom Corel images (not in our test pool and not containing
animals). We then construct a binary label image with a
’1’ if a patch was replaced with a given animal patch. We
interpret this binary image as a foreground mask for that an-
imal label, and use DP to find rectangles in the foreground
arranged according to the shape model learned from video
(Eq.1). For the ’zebra’,’tiger’, and ’giraffe’ animal labels,
we know the correct shape model to use because we have
automatically linked them (Sec.4.1).

In practice, it is too expensive to classify every patch in
a query image. Fortunately, the SIFT descriptor is designed
to be somewhat translation invariant; off-by-one pixel errors
should not affect the descriptor. This suggests we sample
patches from the image, and match them to our texture li-
brary; we match 5000 patches per image, which takes about
2 minutes in our implementation. Speeding up the match-
ing using approximate nearest neighbor techniques [7] or
building a parametric texture model may allow us to clas-
sify more patches from an image.

5. Results

We tested our models on two datasets; images from the
Corel collection and various animal images returned from
Google. We scale images to be roughly the same dimension
as our video clips. Our Corel set contained 304 images;
50 zebras, 120 tigers, 34 giraffes, and 100 random images
from Corel. Note these random images are different from
the set used to learn a background patch library. The second
collection of 1418 images was constructed by assembling
a random subset of animal images returned by Google. It
contains 315 zebras, 70 tigers, 472 giraffes, and 561 images
of other animals (’leopard’, ’koala’, ’beaver’, ’cow’, ’deer’,
’elephant’, ’monkey’,’ antelope’, ’parrot’, and ’polar bear’).

Detection. We show precision-recall (PR) curves in
Fig.8. For the Shape detector, we build an animal detector
using only the video and not Hemera. We build a crude tex-
ture library using positive and negative patches inside and
outside the spatio-temporal tracks. Given a new image, we
construct a binary label image by replacing patches with
their closest match from this limited texture library. We
then use DP to find the MAP configuration of limbs from
the binary label image. For the Texture detector, we build a
detector using only Hemera and not the video. We compute
a binary label image using the entire patch library (Hemera
animal patches plus background patches). Our final detec-
tor is a threshold on the sum of animal pixels (as in [9,16]).
For the S & T detector, we construct a binary label image
using the entire patch library, and then use DP to find the
MAP limb configuration. We compare our detectors with 2
baselines; a 1-NN classifier trained on color histograms and
random guessing. We tried a variety of other classifiers as
baselines (such as logistic regression and SVMs) but 1-NN
performed the best.

5



z
e
b
ra

h
o
rs
e

ti
g
e
r

e
le
p
h
a
n
t

c
a
lf

c
o
w

lio
n

d
o
n
k
e
y

rh
in
o
c
e
ro
s

b
e
a
r

g
o
a
t

le
m
u
r

s
h
e
e
p

to
a
d

c
a
tt
le

s
te
g
o
s
a
u
ru
s

liz
a
rd

tu
rt
le

le
o
p
a
rd

b
u
ff
a
lo

g
ir
a
ff
e

d
e
e
r

s
n
a
k
e

b
o
a
r

e
lk

c
h
ic
k

a
p
a
to
s
a
u
ru
s

fr
o
g

b
is
o
n

tr
ic
e
ra
to
p
s

s
a
la
m
a
n
d
e
r

p
ig

fa
w
n

b
a
b
o
o
n

tr
e
x

o
ra
n
g
u
ta
n

ib
e
x

c
ro
c
o
d
ile

ti
g
e
r

z
e
b
ra

c
a
tt
le

c
o
w

h
o
rs
e

e
lk

c
a
lf

rh
in
o
c
e
ro
s

g
o
a
t

s
te
g
o
s
a
u
ru
s

d
o
n
k
e
y

le
m
u
r

le
o
p
a
rd

lio
n

tu
rt
le

s
n
a
k
e

tr
ic
e
ra
to
p
s

to
a
d

ib
e
x

b
a
b
o
o
n

liz
a
rd

s
h
e
e
p

b
e
a
r

b
o
a
r

s
a
la
m
a
n
d
e
r

o
ra
n
g
u
ta
n

fr
o
g

fa
w
n

b
u
ff
a
lo

p
ig

d
e
e
r

b
is
o
n

c
h
ic
k

g
ir
a
ff
e

tr
e
x

e
le
p
h
a
n
t

a
p
a
to
s
a
u
ru
s

c
ro
c
o
d
ile

0
0
.0
8

0
.1
7

z
e
b
ra

h
o
rs
e

ti
g
e
r

e
le
p
h
a
n
t

c
a
lf

c
o
w

lio
n

d
o
n
k
e
y

rh
in
o
c
e
ro
s

liz
a
rd

 Texture
 Shape
T & S

texture

texture + shape

shape

0
0
.0
9

0
.1
9

tig
e
r

ze
b
ra

ca
tt
le

co
w

h
o
rs
e

e
lk

ca
lf

rh
in
o
ce

ro
s

g
o
a
t

st
e
g
o
sa

u
ru
s

texture

texture + shape

shape

g
ir
a
ff
e

liz
a
rd

tr
e
x

a
p
a
to
s
a
u
ru
s

le
m
u
r

g
o
a
t

s
a
la
m
a
n
d
e
r

d
o
n
k
e
y

o
ra
n
g
u
ta
n

b
a
b
o
o
n

c
o
w

tr
ic
e
ra
to
p
s

fr
o
g

s
n
a
k
e

d
e
e
r

c
a
lf

c
h
ic
k

s
h
e
e
p

rh
in
o
c
e
ro
s

c
ro
c
o
d
ile

ti
g
e
r

le
o
p
a
rd

tu
rt
le

s
te
g
o
s
a
u
ru
s

to
a
d

e
lk

h
o
rs
e

b
o
a
r

ib
e
x

c
a
tt
le

fa
w
n

p
ig

b
e
a
r

e
le
p
h
a
n
t

lio
n

b
u
ff
a
lo

z
e
b
ra

b
is
o
n

0
0
.2
1

0
.4
2

g
ir
a
ff
e

liz
a
rd

tr
e
x

a
p
a
to
s
a
u
ru
s

le
m
u
r

g
o
a
t

s
a
la
m
a
n
d
e
r

d
o
n
k
e
y

o
ra
n
g
u
ta
n

le
o
p
a
rd

texture

shape

texture + shape

Figure 6. We identify the animals in our videos by linking the shape models built from video to the texture models built from the labeled
Hemera image collection. We show posteriors of animal class labels given the zebra (left), tiger (middle), and giraffe (right) videos. In
the top row, we show posteriors of the ten best labels based on a texture cue, shape cue, and the combination of the two. We mark the
MAP class estimate for each cue. Matching texture models built from Hemera to the segmented videos, we mislabel the giraffe video as
’leopard’. By matching shape models built from videos to Hemera images, we match the giraffe correctly, but incorrectly label the zebra
and tiger videos. Combining the two cues, we match all the videos to the correct animal label. We show posteriors for the final combined
cue over the entire set of labels in the bottom row. Note the graphs are not scaled equally.

Figure 7. The top 4 matches (the top match on the left) in the
Hemera collection for the shape model learned from the giraffe
video. Note our shape model captures the articulated variation in
pose, resulting in accurate detections and reasonable false posi-
tives.

Difficulty of datasets. Recognition is still relatively
poorly understood, meaning that reports of absurdly high
recognition rates can usually be ascribed to simplicity of
the test set. Careful experimentation requires determining
how difficult a dataset is; to do so, one should assess how
simple baselines perform on that dataset [2, 4, 12, 13]. This
is often informative: for example, it is known that variations
in reported performance between different face recognition
algorithms are almost entirely explained by variations in the
performance of the baseline on the dataset [13]. In almost
all cases, our shape and texture animal models outperform
the baselines of random guessing and color histogram clas-

sification. The one notable exception is our tiger detector on
the Corel data, for which a color histogram outperforms all
our methods. This can be ascribed to the insufficiently well
known fact that Corel backgrounds are strongly correlated
with Corel foregrounds (so that a Corel CD number can be
predicted using simple color histogram features [2]). Our
detector performance seems to be decoupled from the base-
line performance; in the Google set, our detectors do better
even when the baselines do worse. This seems to be be-
cause, unlike Corel, images from Google tend to have var-
ied backgrounds (Fig. 9), which hurts our histogram base-
line but helps our animal detector. Comparing to detection
results reported in [9, 16], we obtain better performance on
a demonstrably harder dataset.

Importance of shape. In almost all cases, adding shape
greatly improves detection accuracy. An exception is de-
tecting tigers in the Google set (Fig.8). We believe this is
the case because of severe changes in scale; many tiger pic-
tures are head shots, for which our shape model is not a
good match (this also confuses our texture model, resulting
in the lower overall performance). However, for low recall
rates, shape is still useful in yielding high precision. The
top few matches for the tiger detector will be tigers only
if we use shape as a cue. Our results for shape are par-
ticularly impressive given the quality of our texture detec-

6



Percentage of correct localizations
Dataset Zebra Tiger Giraffe

Corel 84.9 92.0 76.9
Google 94.0 94.0 68.0

Percentage of correctly estimated kinematics
Dataset Zebra Tiger Giraffe

Corel 24.2 28.0 38.4
Google 30.0 34.0 46.0

Table 2. Results for localization (top) and kinematic recovery
(bottom). We define a correct localization to occur when a major-
ity of the pixels within the estimated limbs are true animal pixels
(we have a greater than 50% chance of hitting the animal if we
shoot at the estimated limbs). We also show the percentage of an-
imal images where the correct kinematics are recovered. By hand,
we mark a configuration to be correct if a majority of the estimated
limbs overlap a pixel region matching the semantic labeling from
Fig.3. The kinematic results for the giraffe are impressive given
the large number of different semantic labels; correct configura-
tions tend to align the upper neck, the lower neck, the upper body,
the lower body, the front leg, and the rear leg. Our animal detec-
tor localizes the animal quite well and often recovers reasonable
configurations.
tor baseline. It has been shown that feature matching with
SIFT features [4] produces quite good performance on es-
tablished object recognition datasets [6]. Such a scheme is
equivalent to our texture baseline, which we demonstrate is
outperformed by our shape & texture detector.

Location and kinematic recovery. Looking at the best
matches to our detectors (Fig.9), we see that we reliably lo-
calize the detected animal and quite often we recover the
correct configuration of limbs. We quantify this by manu-
ally evaluating the recovered configurations in Table 2. We
define a correct localization to occur when a majority of the
pixels covered by the estimated limbs are animal pixels (if
we shoot at the estimated limbs, we’ll most likely hit the
animal). We mark a pose as correct when a majority of the
limbs overlap a pixel region with the correct semantic label
from Fig.3. The pose results for the giraffe are impressive
given the large number of different semantic labels; correct
configurations tend to align the upper neck, the lower neck,
the upper body, the lower body, the front leg, and the rear
leg. In general, we correctly localize the animal, and often
we recover a reasonable estimate of its configuration.

6 Discussion
One contribution of this work is a novel (but simple)

representation of texture; rather than using a histogram of
textons, we represent texture with a patch of pixels. We
demonstrate that this representation outperforms the state-
of-the-art for our task of detecting animals.

Broadly speaking, we introduce (and rigorously evalu-
ate) an unsupervised system for learning articulated mod-
els using both video and images. Video is useful because
both motion and appearance consistency are strong cues for
learning. But an inherent limitation is that only a single ob-

ject instance is observed. Our strategy of combining models
learned from video and image collections (where multiple
instances are observed) seems to address this issue. These
learned models appear promising for recognition tasks be-
yond detection, such as localization, kinematic recovery,
and (possibly) counting.

Acknowledgments
We thank Alex Berg and Alyosha Efros for helpful discussions

on texture. This work was supported by NSF award no. 0098682
and by Office of Naval Research grant no. N00014-00-1-0890, as
part of the MURI program. D. R. is supported by a NSF fellow-
ship.
References

[1] A. Berg and J. Malik. Geometric blur for template matching.
In CVPR, 2001.

[2] O. Chapelle, P. Haffner, and V. Vapnik. Svm’s for histogram-
based image classification. In IEEE Trans. on Neural Net-
works, 1999.

[3] K. Dana, S. Nayar, B. van Ginneken, and J. Koenderink.
Reflectance and texture of real-world surfaces. In CVPR,
pages 151–157, 1997.

[4] G. Dorko and C. Schmid. Object class recognition under
discriminative local features. IEEE PAMI, under prepara-
tion.

[5] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient match-
ing of pictorial structures. In CVPR, 2000.

[6] R. Fergus, P. Perona, and A. Zisserman. Object class recog-
nition by unsupervised scale-invariant learning. In CVPR,
2003.

[7] P. Indyk and R. Motwani. Approximate nearest neighbor -
towards removing the curse of dimensionality. In 30th Sym-
posium on Theory of Computing, 1998.

[8] M. Kumar, P. Torr, and A. Zisserman. Learning layered pic-
torial structures from video. In Indian Conference on Vision,
Graphics and Image Processing, 2004.

[9] S. Lazebnik, C. Schmid, and J. Ponce. Affine-invariant local
descriptors and neighborhood statistics for texture recogni-
tion. In ICCV, 2003.

[10] T. Leung and J. Malik. Representing and recognizing the
visual appearance of materials using three-dimensional tex-
tons. Int. J. Computer Vision, 43(1):29–44, 2001.

[11] D. Lowe. Object recognition from local scale-invariant fea-
tures. In ICCV, 1999.

[12] M. E. Nilsback and B. Caputo. Cue integration through dis-
criminative accumulation. In CVPR, 2004.

[13] P. Phillips and E. Newton. Meta-analysis of face recognition
algorithms. In Proceeedings of the Int. Conf. on Automatic
Face and Gesture Recognition, 2002.

[14] D. Ramanan and D. A. Forsyth. Finding and tracking people
from the bottom up. In CVPR, 2003.

[15] D. Ramanan and D. A. Forsyth. Using temporal coherence
to build models of animals. In ICCV, 2003.

[16] C. Schmid. Constructing models for content-based image
retreival. In CVPR, 2001.

[17] H. Technologies. Hemera photo objects.
[18] M. Varma and A. Zisserman. Texture classification: Are

filter banks necessary? In CVPR, 2003.

7



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall
pr

ec
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

 S&T
 Texture
 Shape
Color
Random

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

Google zebras

Corel zebras

Google tigers

Corel tigers Corel giraffes

Google giraffes

Figure 8. Precision recall curves for zebra, tiger, and giraffe detectors run on a set of 304 Corel images (top) and 1418 images returned
by Google (bottom). The ’Shape’ detectors are built using shape models and crude texture models learned from the video. The ’Texture’
detectors are built using texture models trained on the image collection. The S & T detectors use texture models from the image collection
and shape models from the video (where the linking was automatic, as described in Sec. 4.1). We compare with 2 baselines; a 1-NN classifier
trained on color histograms and random guessing. For the tiger detector run on Corel, the color histogram does quite well, suggesting we
should look at the Corel dataset with suspicion. We show that, in general, shape improves detection performance. Comparing our zebra
and giraffe detection results to [9, 16], we show better performance on a demonstrably harder dataset.

Corel Google

Figure 9. Results for our zebra (top row), tiger (middle row), and giraffe (bottom row) models using shape and texture. We show the 3
best matches from a test pool of 304 Corel animal images and 1418 Google animal images. Our tiger model mistakenly fires on a Google
zebra due to the similar texture. The quasi-correct zebra configurations suggest our shape model might perform better if we searched over
scale. The giraffe configurations tend to be quite good. The Google results are impressive given the poor performance of our baselines; we
are detecting, localizing, and often recovering reasonable pose estimates for objects in a dataset demonstrably hard for object recognition.

8


