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Abstract

Real-world videos of human activities exhibit temporal
structure at various scales; long videos are typically com-
posed out of multiple action instances, where each instance
is itself composed of sub-actions with variable durations
and orderings. Temporal grammars can presumably model
such hierarchical structure, but are computationally diffi-
cult to apply for long video streams. We describe sim-
ple grammars that capture hierarchical temporal structure
while admitting inference with a finite-state-machine. This
makes parsing linear time, constant storage, and naturally
online. We train grammar parameters using a latent struc-
tural SVM, where latent subactions are learned automati-
cally. We illustrate the effectiveness of our approach over
common baselines on a new half-million frame dataset of
continuous YouTube videos.

1. Introduction
We focus on the task of action classification and segmen-

tation in continuous, real-world video streams. Much past
work on action recognition focuses on classification of pre-
segmented clips. However, this ignores the complexity of
processing video streams with an unknown number of ac-
tion instances, each with variable durations and start/end
times. Moreover, actions themselves exhibit internal tem-
poral structure. For example, a ‘making tea’ action takes
several minutes and requires multiple sub-actions such as
heating water, preparing tea leaves, steeping the tea, and
pouring into a cup. Each sub-action can vary in duration
and sometimes temporal ordering.

Our work: In this work, we develop algorithms that re-
port back hierarchical parses of long video streams at mul-
tiple temporal scales (Fig. 1). Our algorithms are based on
grammars that compose videos out of action segments, and
recursively compose actions out of subaction segments. We
describe specialized grammars that can be parsed in an on-
line fashion with a finite state machine. Our algorithms
scale linearly with the length of a video and operate with
bounded memory, crucial for processing streaming video

sequences. Importantly, we describe methods for learning
grammars from partially-labelled data. We assume training
videos are provided with action labels, and describe a max-
margin learning algorithm for latently inferring subaction
structure.

Evaluation: Most datasets for activity recognition con-
sist of pre-segmented clips. We have constructed a dataset
of continuous temporal streams from YouTube sports clips.
Our 5-hour video dataset contains continuous video streams
with multiple types of actions with subaction structure. We
will make this available to the community to spur further
research.

2. Related Work
We refer the reader to the recent surveys of [20, 1] for

a complete treatment of the large body of related work on
action recognition. We focus on methods most related to
our approach.

Spacetime templates: Many approaches to action
recognition are based on spatiotemporal templates [11,
13, 21] defined on various features including optical flow
[19, 4, 24] and bag-of-feature histograms built on space-
time “words” [31, 16]. We use bag-of-word features as our
data models.

Latent temporal structure: Inspired by [16, 28], we
model action templates as compositions of subactions. For
example, we learn that some weightlifting actions should be
modeled as yanking subactions followed by a pressing
subaction (Fig. 1). However, most past work evaluates such
models on single-action video clips. Our work differs in
that we use grammars to compose multiple action instances
together to yield a globally-optimal video parse.

Action segmentation: To process long video streams
with multiple actions, one must address a temporal segmen-
tation problem. Historically, this is most often done with a
hidden markov model (HMM). Early approaches date back
to finite state machine models [33, 17], while more recent
work has explored discriminative variants such as CRFs
[32]. There exists a large body of literature on extensions to
HMMs in which states generate variable-length sequences;
these are sometimes called hierarchical HMMs [5, 30, 17]
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Figure 1. A sample video parsed to actions and subactions. Subactions are color-coded on the time-line while black represents background.
Given a video and a grammar (shown on the right), our linear-time parser produces a valid segementation into actions and subactions.

eling of actions are HMMs, spurred in part by their suc-
cessful application to speech recognition. Early approaches
date back to finite state machine models [32, 18], while
more recent work has explored discriminative variants such
as CRFs [31]. Previous work has used semi-Markov mod-
els to either capture temporal dependencies between actions
[23, 27, 9] or compositional dependencies between sub-
actions within an action [17, 26]. Our hierarchical model
allows us to simultaneously capture both dependencies with
a single grammar.

CFGs: Much prior work has explored CFGs for ges-
ture and event recognition [10, 15, 21, 24]. Attribute gram-
mars [13] and interval logics [28] generalize CFGs to in-
clude context-sensitive constraints at the cost of more ex-
pensive inference. Because of this burden, much prior work
applies a grammar on a sparse set of primitive actions de-
tected in a pre-processing stage. This makes inference scale
with the number of detections rather than the length of the
video. On the other hand, our linear-time parser allow us
to densely process all frames in a video. This allows us to
detect low-level actions (and subactions) while taking ad-
vantage of high-level contextual cues from our grammar.

Markov models: There exists a large body of literature
on extensions to HMMs in which states generate variable-
length sequences; these are sometimes called variable-
length HMMs [4, 20], semi-Markov models [11, 22, 26],
or segmental HMMs [6]. Most related to us are hierar-
chical semi-Markov models and hierarchical HMMs (HH-
MMs) [5, 29, 18]. HHMMs are recursive HMMs where
each hidden state is its own sequential probabilistic model.
[5, 29] both show that such are the same complexity as a
CFG, though [16] describe linear-time inference algorithms
obtained by expanding such models into an HMM with an
exponentially-large state-space.

CFG Segmental CFG Segmental RG

Abstract symbol
Terminal
Data

Figure 2. Context-free grammars (CFGs) use fixed-length termi-
nals that model a single data element. We show an example parse
tree on the left. Regular grammars (RGs) are a restricted type of
CFGs formed by a “one-sided” grammar. We introduce segmen-
tal variants of CFGs and RGs (SCFGs and SRGs), shown in the
middle and right, that generate variable-length terminals or seg-
ments. Variable-length terminals allow us to extract features de-
fined over the entire segment (such as the temporal length). SRGs
are particularly convenient for action recognition because they en-
code long-term hierarchical temporal structure, but still allow for
efficient linear-time parsing.

3. Grammar model
We will describe our grammar as a special case of a CFG.

Grammars, and in particular CFGs, are well studied topics
and covered in classic texts on natural language [14]. We
review the CYK parsing algorithm for CFGs as it forms the
basis for our parsing algorithm. One noteable aspect of our
grammar is that it generates variable-length segments in-
stead of single tokens; to derive this feature, we first de-
scribe a simple modification to a CYK parser for handling
such production rules (Fig. 2).

3.1. Context-Free Grammars

A weighted CFG in Chomsky Normal Form (CNF) is
specified by:

1. V is a finite set of non-terminal symbols

2. � is a set of terminal symbols
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Figure 1. A sample video parsed to actions and subactions. Subactions are color-coded on the time-line while black represents background.
Given a video and a grammar (shown on the right), our linear-time parser produces a valid segementation into actions and subactions.
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cessful application to speech recognition. Early approaches
date back to finite state machine models [32, 18], while
more recent work has explored discriminative variants such
as CRFs [31]. Previous work has used semi-Markov mod-
els to either capture temporal dependencies between actions
[23, 27, 9] or compositional dependencies between sub-
actions within an action [17, 26]. Our hierarchical model
allows us to simultaneously capture both dependencies with
a single grammar.

CFGs: Much prior work has explored CFGs for ges-
ture and event recognition [10, 15, 21, 24]. Attribute gram-
mars [13] and interval logics [28] generalize CFGs to in-
clude context-sensitive constraints at the cost of more ex-
pensive inference. Because of this burden, much prior work
applies a grammar on a sparse set of primitive actions de-
tected in a pre-processing stage. This makes inference scale
with the number of detections rather than the length of the
video. On the other hand, our linear-time parser allow us
to densely process all frames in a video. This allows us to
detect low-level actions (and subactions) while taking ad-
vantage of high-level contextual cues from our grammar.

Markov models: There exists a large body of literature
on extensions to HMMs in which states generate variable-
length sequences; these are sometimes called variable-
length HMMs [4, 20], semi-Markov models [11, 22, 26],
or segmental HMMs [6]. Most related to us are hierar-
chical semi-Markov models and hierarchical HMMs (HH-
MMs) [5, 29, 18]. HHMMs are recursive HMMs where
each hidden state is its own sequential probabilistic model.
[5, 29] both show that such are the same complexity as a
CFG, though [16] describe linear-time inference algorithms
obtained by expanding such models into an HMM with an
exponentially-large state-space.
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nals that model a single data element. We show an example parse
tree on the left. Regular grammars (RGs) are a restricted type of
CFGs formed by a “one-sided” grammar. We introduce segmen-
tal variants of CFGs and RGs (SCFGs and SRGs), shown in the
middle and right, that generate variable-length terminals or seg-
ments. Variable-length terminals allow us to extract features de-
fined over the entire segment (such as the temporal length). SRGs
are particularly convenient for action recognition because they en-
code long-term hierarchical temporal structure, but still allow for
efficient linear-time parsing.

3. Grammar model
We will describe our grammar as a special case of a CFG.

Grammars, and in particular CFGs, are well studied topics
and covered in classic texts on natural language [14]. We
review the CYK parsing algorithm for CFGs as it forms the
basis for our parsing algorithm. One noteable aspect of our
grammar is that it generates variable-length segments in-
stead of single tokens; to derive this feature, we first de-
scribe a simple modification to a CYK parser for handling
such production rules (Fig. 2).

3.1. Context-Free Grammars

A weighted CFG in Chomsky Normal Form (CNF) is
specified by:

1. V is a finite set of non-terminal symbols

2. � is a set of terminal symbols
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Figure 1. On the left, we show a hierarchical parse of a video segmented into actions (Snatch, Clean-and-Jerk) and sub-actions (yank, pause,
press, background). Actions are represented by non-terminal symbols (N,C) while subaction and background segments are represented by
terminal symbols (colored blocks). We show the associated grammar on the right.

or semi-Markov / segmental HMMs [8, 23]. Most related
to our work are [25, 6], who use a semi-Markov model to
segment video streams into actions. Our grammars do so
while simultaneously parsing actions into subactions.

Grammars: Much prior work has explored context-
free-grammars (CFGs) for gesture and event recognition
[7, 15, 22, 26]. Attribute grammars [10] and interval log-
ics [29, 12, 2] generalize CFGs to include context-sensitive
constraints, typically with the cost of more expensive infer-
ence. Because of this burden, much prior work applies a
grammar on a sparse set of primitive actions detected in a
pre-processing stage. This makes inference scale with the
number of detections rather than the length of the video.
We describe hierarchical grammars that model actions and
subactions with a finite-state machine. This allows us to
efficiently process all frames in a video directly using our
grammar.

3. Grammar model
Our primary contribution is a segmental regular grammar

of actions, described in Section 3.4. To derive it , we first
review the CYK parsing algorithm for general CFGs [14],
as it forms the basis for our efficient parsing algorithm. One
notable aspect of our grammar is that it generates variable-
length segments instead of single tokens; to derive this
feature, we first describe a simple modification to a CYK
parser for handling such production rules.

3.1. Context-free grammars

A weighted CFG in Chomsky Normal Form (CNF) is
specified by:

1. V is a finite set of non-terminal symbols

2. Σ is a set of terminal symbols

3. R is a set of rules of the form X → Y Z or X → w
for X,Y, Z ∈ V and w ∈ Σ. Each rule r ∈ R has
an associated score s(r, i, k, j) for instantiating it at
boundary points i, j with a transition point of k.

A general CFG contains rules of the form α→ β, where
α is any nonterminal and β is any string of terminals and
nonterminals. We write nV for the number of non-terminal
symbols, and nR for the number of rules. One can show
that any CFG can be written in CNF form by adding new
rules with “dummy” nonterminals.

Given a sequence w1, . . . , wN , the CYK algorithm is a
O(nRN

3) dynamic programming algorithm for computing
the best-scoring parse [14]. The algorithm will compute a
table of partial parses, of size O(nVN

2). CYK explicitly
computes the best parse of each possible segment and each
possible symbol label for that segment. The key quantity
which is iteratively computed is π[X, i, j], the score of the
best parse of the segment starting at frame i, ending at frame
j, and labeled as symbol X ∈ V .

In the CYK algorithm, we first initialize the “bottom”
row of the table, which represents the best parse of each
one-frame-long segment:

π[X, i, i] = max
r∈{X→w}

s(r, i) for i = 1 . . . N (1)

We can now populate the “second” row of the table,
which represents the optimal parses of 2-frame segments.
For a l-frame segment, we will look at all possible l − 1
splits and all possible nr production rules that could gen-
erate this segment. Each one can be scored by looking at
lower entries in the table, which have already been com-
puted. We then take the max, and update the entry for the
current l-long segment. We formally describe the algorithm
in Alg. 1 and visualize the core loop in Fig. 2.

3.2. Segmental context-free grammars

In this section, we describe an extension to CYK-parsing
that allows for production rules that generate multiple ter-
minals. Though our extension is somewhat straightforward,
we have not seen it derived in the literature and include it for
completeness. We later show that segment-level production
rules are crucial for capturing constraints on the duration
of segments. Consider a set of CNF rules augmented with



for l = 2 : N do1
for i = 1 : N − l + 1 do2

j = i+ l − 1;3
π[X, i, j] =4

max
r∈{X→Y Z}
k∈{i...j−1}

s(r, i, k, j)+π[Y, i, k]+π[Z, k+1, j];

end5

end6
Algorithm 1: CYK parsing. The parser iterates over
segments of length l, and start positions of each seg-
ment i. For each of such N2 segments, the parser
searches over all rules (at most nR) and split points (at
most N ) which could derive it (Fig. 2). This makes the
overall algorithm O(nRN

3). For each of the N2 ta-
ble entries, one must store the score of the nV possible
symbols, making storage O(nVN

2).

those that allow nonterminals to generate a k-long segment
of terminals:

X → w1:k where w1:k = w1 . . . wk (2)

Each of the above rules has an associated score s(X →
w, i, j) for placing a (k = j − i + 1)-element segment
starting at position i and ending at j. We call such a CFG
a segmental-CFG (SCFG). SCFGs can be seen as a type
of CFG where the number of rules scales with N , compli-
cating inference. An alternative approach would be to en-
code segment length k as an attribute in an attribute gram-
mar. However, the resulting constraints on production rules
are context sensitive, and so are no longer parsable with
CYK [27].

We show that, with a simple modification, CYK can
accept rules of the form (2), keeping the algorithm at
O(nRN

3) without any increase in complexity. Replace
Line 4 of CYK with the following two lines:

v = max
r∈{X→Y Z}
k∈{i...j−1}

s(r, i, k, j) + π[Y, i, k] + π[Z, k + 1, j]

π[X, i, j] = max
r∈{X→w1:k}
k=(j−i+1)

(
v, s(r, i, j)

)
(3)

For each table entry, we search over derivations as before
(equivalent to Line 4 of CYK), but now we also search over
segmental terminal derivations from the lowest layer. We
need check for only (k = j − i + 1)-long terminal deriva-
tions, of which there exist at most nR. This means that one
can parse a segmental CFG in O(nRN

3).

3.3. Regular grammars

CYK parsing may be difficult to apply to long videos
since computation and storage grows super-linearly with the
length of the video. Chomsky describes a special case of
context-free-grammars known as finite-state grammars or

Z
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i k j
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i j

w1w2...........w(j-i+1)

Figure 2. To compute the score of segmenting and labeling frames
i to j as symbol X , CYK searches over all production rules
(X → Y Z) and split points k that could derive X (left). Our seg-
mental CYK parser augments the above search by also consider-
ing derivations that directly score the observed terminals/features
(right).

regular grammars [3], which consist of restricted rules with
a single non-terminal followed by any number of terminals
on the right-hand side:

X → Y w, X → w (4)

Such grammars cannot model recursively-defined lan-
guages, such as strings of nested parentheses [14]. How-
ever, they can be parsed with finite state machines by re-
ducing them to first-order conditional Markov models with
the following steps: add dummy nonterminals to convert
production rules to CNF (if they are not already), define
a markov state for each non-terminal symbol, and finally
define a transition from states Y to X for each production
rule. Such grammars can be parsed with a standard Viterbi
decoder in O(nRN), where nR (the number of transitions)
is upper bounded by n2V [5]. Hence regular grammars natu-
rally take advantage of sparse Markov transition matrices.

Regular grammars are widely used to specify regular ex-
pressions used in pattern matching [14]. We describe a reg-
ular grammar for parsing weightlifting videos in Fig. 1. For
example, a clean-and-jerk action (B) is defined by a “string”
of yank, pause, and press terminals. The regular gram-
mar is expressed in CNF form in Fig. 4. Though such long-
range constraints can be expressed in a Markov model with
augmented states (corresponding to dummy nonterminals)
and sparse transitions, production rules with regular expres-
sions are a more concise representation.

3.4. Segmental regular grammars

We define a segmental RGs (SRGs) to be a RG with pro-
duction rules that generate arbitrary length sequences of ter-
minals:

X → Y w1:k, X → w1:k (5)

Note that SRGs can be converted to RGs by adding dummy
nonterminals. However, we show that one can devise a
parser that directly handles the segmental rules above. Our
SRG parser can either be seen as a special case of segmental
CYK parsing or an extension of Viterbi decoding.

Restricted CYK: Assume scores can be written as
s(X → Y w, i, j), where i is the start and j is the end of
the (k = j − i + 1)-element segment. Assume that seg-
ments can be at most L elements long. SRGs can be parsed
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Figure 3. We visualize a run of our SRG parser from Alg. 2. We
label symbols with the terminal color used to derive them, and use
blue arrows to denote argmax pointers from Line 2 of Alg. 2. In
the text, we show that our parser can be seen as a special case of
CYK and Viterbi decoding for sparse semi-Markov models.

in O(nRNL), where nR is the number of rules in the un-
derlying non-segmental grammar. The algorithm is similar
to CYK except that we need to maintain only the first col-
umn of table entries π[X, i, j] for a fixed i = 1. We write
this as π[X, j], the score of the best parse from position 1
to j, given that the symbol at j is X . For notational sim-
plicity, let us define an empty symbol {} which allows us
to write both rules from (5) using a single form. Initialize
π[{}, 1] = 0 and π[{}, j] = −∞ for j > 1:

for j = 1 : N do1

π[X, j] = max
k∈{1...L}
r∈{X→Y w}

π[Y, j−k]+s(r, j−k+1, j)

2

end3

Algorithm 2: Our SRG parser, which is visualized in
Fig.3. The inner loop searches for best derivation of X
that transitions from a previous nonterminal Y , at some
position j − k (after which the k remaining elements
are segmented intoX). At each iteration, the algorithm
searches over L possible transition points and nR pos-
sible rules for transitioning at that point, making overall
computation O(nRNL).

Online parsing: If we interpret j as indexing time,
the algorithm is naturally online. At any point, we can
compute the score of the best parse found until now with
maxX π[X, j]. Storage for online parsing is O(nV L) – in-
dependent of N – because we only need to store table en-
tries for the past L timesteps. This makes it scalable to long
(even streaming) data. We visualize a run of our parser in
Fig. 3.

Sparse markov decoding: Just as RGs can be written as
Markov models with sparse transition between states, SRGs
can be written as semi-Markov models with sparse transi-
tions between segment labels. Define a Markov segment la-
bel corresponding to each nonterminal symbol, and define
the score of rule s(X → Y w1:k, j) is the score of transi-
tioning from segment label Y into segment label X , where
frames from j − k + 1 to j are labeled with X [23]. SRGs
are useful because they make use of concise regular expres-
sions to encode long-range constraints between segments.
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Figure 4. The SRG rule-set used to generate the actual parse shown
in Fig. 1, where S is the sentence symbol corresponding to the
full parse till now, C-F are abstract symbols, and colored boxes
are variable length terminals representing yank, pause, and press
subactions. A black box is the background terminal. To write
the grammar in CNF form, we introduce symbols C and D cor-
responding to parses ending in a completed “snatch” (SA) and
“clean-and-jerk” (SB) actions respectively, and E and F corre-
sponding to parses ending in incomplete actions. Each subaction is
parametrized by a data model α (visualized with different colors)
and its ideal temporal length β (visualized with boxes of different
lengths), as in (7).

Parse tree: We can recover the optimal parse tree by
storing the argmax pointers from Line 2 of the algorithm.
Let R[X, j] and K[X, j] point to argmax rule r and offset
k. We can represent a parse tree with a collection of (r, j)
pairs obtained by backtracking through R and K, initializ-
ing with the highest-scoring symbol at the last frame. We
visualize these backtracked argmax pointers as blue arrows
in Fig. 3. We encode a parse-tree as

P = {(rm, jm) : m = 1 . . .M}

where M refers to the number of distinct segments in the
parse, jm is the last frame of the mth segment, rm is the
rule id whose right-hand-side instanced that segment.

4. Model structure
We model all actions with production rules of the form:

A→ xyz

where A is an action and x, y, z are variable-length subac-
tions. We select the optimal number of subactions through
cross-validation, but find 3 to work fairly consistently. Our
SRG grammar is of the form:

S → b, S → SAb, S → SBb, . . .

where S is a valid parse and b is a variable-length back-
ground terminal. The background may have a large vari-
ation, so we can introduce multiple background terminals
(multiple mixtures) and let the parser choose the best one.
In practice, we find that a single background terminal works
fairly well. Note that segment-level production rules are
crucial since they capture global features within segments
like the duration of segments.

Given a data sequence D and a candidate parse P =
{(rm, jm)}, we can write its score under our weighted SRG
grammar as

S(D,P ) =

M∑
m=1

s(D, rm, im, jm) (6)



where im = jm−1 + 1 and we explicitly denote the depen-
dence of each segment’s score s(rm, im, jm) on data D. To
further describe our particular data model, let us define xm
to be the terminal on the right-hand-side of rule rm:

s(D, rm, im, jm) = αxm
· φ(D, im, jm) + βrm · ψ(km) + γrm

(7)
To describe the parameters of our model, we will use an

illustrative example of a grammar defined for weightlifting
actions, shown in Fig. 1 and defined in Fig. 4. Terminal
symbols correspond to subactions, while abstract symbols
correspond to actions. A “clean-and-jerk” action is defined
by a yank, pause, and press subaction, while a “snatch” ac-
tion is defined by a yank and press.

Data model: The first term is a data term that ex-
tracts features from segment spanning frames im to jm,
and scores them with a model tuned for subaction (termi-
nal) xm. We compute a bag-of-features descriptor φ for
each segment, where a feature is a space-time visual word
[31, 28]. We can interpret αxm

as a model tuned for par-
ticular subactions; for example, the model for xm = yank
will be tuned for spacetime words that fire on crouching
poses. Note that α is symbol-specific xm rather than rule-
specific rm; this allows different rules to share data models
for equivalent symbols. For example, the “clean-and-jerk”
and “snatch” actions in Fig. 4 share the same subaction data
models.

Temporal model: The second term is analogous to
a temporal “prior” that favors particular segment lengths
k = jm − im + 1 for a subaction. β is rule-specific rm
and not symbol-specific xm. This allows a yank subaction
to have different priors for its length depending on which
action it was instanced. Specifically, we define ψ(km) =[
km k2m

]
. This means that the parameters βrm can be in-

terpreted as the rest position and rigidity of a spring that
defines the ideal length of a segment. In our experimen-
tal results, we show that such temporal terms are vital to
ensuring good segmentation accuracy. Furthermore, such
constraints are difficult to encode by a standard HMM.

Rule model: The last term γrm is a scalar “prior” or
bias that favors the use of certain rules over others. This
may encode the fact that “clean-and-jerk”s are more likely
to occur than “snatch” actions, for example.

5. Learning
Our model from (7) is linear in the model parameters

w = {α, β, γ}, allowing us to write the score of a parse as a
linear function S(D,P ) = w · Φ(D,P ). Though we learn
subactions in a latent framework, we initially describe the
fully-supervised scenario for ease of exposition.

Fully-supervised learning: Assume we are given train-
ing data of videos with ground-truth parses {Dn, Pn} and
a manually-specified set of production rules Γ. We wish

to learn weights w for the data model α, temporal model
β, and rule compositions γ. The weights should score cor-
rect parses highly and incorrect parses poorly; we do this by
defining a structured prediction learning function

arg min
w,ξn≥0

1

2
w · w + C

∑
n

ξn s.t. ∀n, ∀Hn (8)

w · Φ(Dn, Pn)− w · Φ(Dn, Hn) ≥ loss(Pn, Hn)− ξn

The above linear constraints state that, for each training
videoDn, the true parse Pn should outscore a hypothesized
parse Hn by some amount given by loss(Pn, Hn). We ex-
periment with different loss functions. Many approaches
use a Hamming loss, which simply counts up the number of
frames with incorrect symbol labels. We also considered a
simpler 0-1 loss that defines a candidate parse as incorrect
if none of its transitions are near ground-truth transitions.
Finally, we allow these constraints to be loosely satisfied
using slack variables. The above is equivalent to a struc-
tural SVM, for which many well-tooled solvers exist [9].
The main computational step in learning requires solving a
“loss-augmented” inference problem, where for each train-
ing example, one finds the worst-offending parse:

H∗n = max
H

w · Φ(Dn, H) + loss(Pn, H) (9)

Our loss functions can be absorbed into the data term of (7),
implying that our efficient SRG parser can be used to find
such an offensive parse.

Latent learning of subactions: Specifying a full parse
tree in learning can be expensive or ambiguous. In our sce-
nario, we are given video streams with action labels for each
frame, without any subaction labels. We denote the action
labels for video n as An. In this setting, we automatically
estimate subactions with a latent structural SVM [34]. We
use the CCCP algorithm [35] by iterating between the fol-
lowing:

1. Given a model w, infer a parse Pn for each video n
consistent with An.

2. Given a set of full parses {Pn}, learn a model w by
solving the QP of (8) with an action-specific loss.

Step 1 is implemented by modifying the loss function (9)
to penalize non-consistent parses with an infinite loss. This
loss also can be absorbed into the data term. In Step 2,
we define an action-specific loss(An, H) that penalizes dis-
agreement of action transitions rather than subaction tran-
sitions. Though data models, temporal priors, and rule
weights are fully learned, we must still specify the produc-
tion rules themselves. Additionally, we must specify a start-
ing state for the above iteration. Both are described below.



Initialization: Our grammar can encode rules between
action categories. However, in our experiments, we ana-
lyze videos that contain instances of a single action cat-
egory. For simplicity, we learn separate grammars for
each action category using the following generic rule set:
{S → b, S → SAb,A→ xyz}. We initialize the iterations
by segmenting each action instance A (in the training set)
into a fixed number of equally-sized subactions xyz. We
use cross-validation to select the optimal number of sub-
actions per action class, though we find 3 to work fairly
consistently. The final inferred subaction labels (latently
estimated on both training and testing data) can be quite
non-uniform, as shown in Fig. 6 and 7. Our latent learning
scheme is similar to the work of [28], except that we learn
rules for globally parsing a video stream with multiple ac-
tions rather than a single isolated action.

6. Experiments
Lack of data: Popular action benchmarks such as the

MED challenge in TRECVID consist of short video clips
with single actions, and so are not appropriate for evaluating
our method. Previous action segmentation methods are of-
ten evaluated on artificially-constructed videos, obtained by
concatenating together pre-segmented video clips [6, 25].
This is clearly limiting. Moreover, we are not aware of
any benchmark video dataset consisting of continuous un-
scripted human actions, outside of surveillance footage [1]
and wearable camera recordings [18].

Continuous Olympics Dataset: To address this defi-
ciency, we have collected our own dataset inspired by [16],
which introduced a dataset of amateur and realistic (but pre-
segmented) YouTube video clips of 16 different Olympic
sports. We have collected continuous videos of a subset of
8 actions from YouTube. Our Continuous Olympics dataset
contains almost 5 hours or half a million frames of such re-
alistic video footage. Each video contains an average of 6
action instances, each annotated with start/end frame labels.
Fig. 5 illustrates a sample frame of each action. We will re-
lease this dataset to spur further research in real-world ac-
tion parsing. We use a 50-50 train/test split in our experi-
ments.

Evaluation: We assume we are given a video of a known
action category, and then run our action-specific grammar
to parse the video into actions and subactions. Because
we do not have groundtruth subaction labels, we evaluate
only action label accuracy. We show qualitative results in
Fig. 6 and 7, and include parsed videos in our supple-
mentary material. We refer the reader to figure captions
for a detailed analysis. Given a candidate parsing of a se-
quence, we quantitatively evaluate it (Fig. 8) in two ways.
Per frame: We count the number of frames with matching
candidates and ground truth action labels. Action detec-
tion: Similar to PASCAL evaluation of object detection, we

Figure 5. Our Continuous Olympics action dataset contains video
streams of 8 different actions (“weightlifting”, “javelin”, “long-
jump”, “vault”, “bowling”, “diving”, “hammer-throw”, “tennis”)
collected from YouTube. There is large variety in view point,
scale, duration, and the number of action instances in each video.

think of our parser as returning candidate action-segment
“detections”. A detection is considered a true positive if the
overlap (union/intersection) between it and the ground-truth
action segment is more than a predefined threshold. We use
a default of 40%, as we found it consistent with visual in-
spection. We also evaluate other thresholds.

Baselines: We saw poor performance for simplistic
baselines such as a scanning window template and single-
frame HMM. We compare against the recent state-of-the-
art model of [28], who learn an action-specific subaction
model with 3 subactions. Actions are modeled using a
semi-Markov model, where states correspond to latently-
inferred subactions. However, it is not clear how to use
this model to detect multiple actions in a single video. We
apply it in a scanning window fashion, and output a set
of non-overlapping action segments with NMS. This pro-
duces reasonable frame labels (36% correct), but struggles
at segment detection (2% AP). This indicates the difficulty
of segment detection. We also compare to the segmental
action model of [25], which uses a semi-Markov model to
process an entire video, where states correspond to action /
background labels with priors over temporal duration. Such
models were also explored in [6], when trained with alterna-
tive objective functions. Algorithmically, such models cor-
respond to a “one-level” version of our grammar without
subactions. They directly produce a global parse without
requiring NMS, but do not reason about subactions. This
improves accuracy to 15% AP.

Our model: Our final model can be seen as a combi-
nation of [28] and [25] that makes use of an augmented
state space (defined by our production rules) to reason about
both actions and subactions. Our final accuracy is 22% AP.
Because our parser is algorithmically equivalent to a semi-
Markov model with sparse transitions, it is essentially as
fast as both baselines. We also compare to a version of
our model with no length prior on the duration of a sub-
action. This drastically drops performance from 22% to 8%.
Finally, we use a segmental CYK parser (3) to parse our
SRG, which produces identical results (as excepted). How-
ever, our parser take roughly .7 ms/frame (similar to our
baselines), while CYK takes roughly 2.3 sec/frame (1000X



Figure 6. A test video containing ‘javelin throw” actions. The bottom timeline shows ground-truth action labels (in gray), while the top
timeline shows inferred action and sub-action labels. The learned grammar infers three subactions loosely corresponding to running,
release, and throwing. The release sub-action is short and is not always visible in the figure. Our grammar model is able to enforce the
presence of such short but crucial sub-actions.

Figure 7. A test video containing ‘diving” actions, where ground-truth action labels are shown in gray. We latently infer 2 subactions
loosely correspond to initial bending and jumping. Some misalignment errors are due to ambiguities in the ground-truth labeling of
action boundaries. Overall, our parser produces a reasonable estimated count of action instances (though the first two action instances are
over-merged into one action segment.)

slower). Note that CYK can handle more general CFGs.

Analysis: Our subaction model performs best on actions
with clear structure, such as weightlifting, pole-vaulting,
and diving. Sometimes subactions can be semantically in-
terpretable, but this need not be case as the structure is la-
tently inferred. Overall, our model is reasonably successful
at labeling frames (62% accuracy) but still finds segment de-
tection challenging (22% AP). Reducing the overlap thresh-
old (for labeling an action segment as correct) from 40% to
10% increases AP from 22% to 43%. Ground-truth labeling
of action boundaries can be ambiguous, and so lower over-
lap thresholds are reasonable for evaluation. Moreover, low
thresholds still score the ability to count the number of ac-
tion instances in a video. Our results suggest that our parser
can be used for fairly accurate counting of action instances.

Conclusion: We have described segmental extensions
of grammars for action-parsing, focusing on efficient seg-
mental regular grammars. We show that such models cap-
ture temporal constraints at multiple scales, both between

actions and between subactions. We introduce parsing al-
gorithms that are linear-time, constant memory, and on-
line, and so quite practical for long-scale videos. We also
described max-margin algorithms for inferring latent sub-
actions form partially-labeled training data. To illustrate
our approach, we introduced a novel dataset of continuous
actions and demonstrated encouraging performance over a
number of standard baseline approaches.
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