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Abstract

Tracking People and Recognizing their Acitivies

by

Deva Kannan Ramanan

Doctor of Philosophy in Engineering—Electrical Engineering and Computer Science

University of California, Berkeley

Professor David Forsyth, Chair

An important, open vision problem is to automatically describe what people are doing

in a sequence of video. This problem is difficult for several reasons. Firstly, one needs to

determine how many people (if any) are in each frame and estimate where they are and

what their arms and legs are doing. But finding people and localizing their limbs is hard

because people (a) move fast and unpredictably, (b) wear a variety of different clothes, and

(c) appear in a variety of poses. Secondly, one must describe what each person is doing;

this problem is poorly understood, not least because there is no known natural or canonical

set of categories into which to classify activities.

This thesis addresses a number of key issues that are needed to build a working system.

Firstly, we develop a completely automatic person tracker that accurately tracks torsos,

arms, legs, and heads. Our system works in two stages; it first (a) builds a model of

appearance of each person in a video and then (b) tracks by detecting those models in each
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frame (“tracking by model-building and detection”). By looking for coherence across a

video, our system can also build models of unknown objects. We use it to build articulated

models of various animals; these models can be used to detect the animals in new images.

This way, we can think of our tracking algorithm as a system that builds models for object

detection.

We then marry our tracker with a motion synthesis engine that works by re-assembling

pre-recorded motion clips. The synthesis engine generates new motions that are human-like

and close to the image measurements reported by the tracker. By using labeled motion clips,

our synthesizer also generates activity labels for each image frame (“analysis by synthesis”).

We have extensively tested our system, running it on hundreds of thousands of frames of

unscripted indoor and outdoor activity, a feature-length film (‘Run Lola Run’), and legacy

sports footage (from the 2002 World Series and 1998 Winter Olympics).

Professor David Forsyth, Chair Date
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Chapter 1

Introduction

One of the grand goals of artificial intelligence is to build a true “autonomous agent”;

something that can go out in the real world and interact with its environment, interact

with other objects, and perhaps most importantly, interact with people.

This dissertation focuses on building systems that understand people through videos

and images. Given that one wants to build systems that understand people, an immediate

question is: what level of understanding is needed? Many approaches treat people as blobs

or rectangular image regions (Figure 1.1); “understanding” in this context simply means

tracking the rectangle as it moves across an image. Such information by itself can be useful,

for example, to architects interested in how people move around in public spaces.

But people are more than a blob of pixels; they are animate beings that gesture with

their entire bodies. People articulate their limbs to communicate and express themselves.

This dissertation focuses on kinematic tracking, where one explicitly models how limbs
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Chapter 1. Introduction

Figure 1.1: What level of people-understanding do we need? On the left, we show a frame
from a webcam pointed at Sproul Plaza in Berkeley. Since people are small, most algorithms
analyzing this form of data treat people as blobs. On the right, we show a news photo from
the 2004 World Series. From this scale, a proper analysis should capture how the bodies are
articulated. This dissertation focuses on building systems that understand the articulations of
people from a video.

deform and articulate over time.

A working articulated tracker has numerous applications. It can be used for video

summary/mining – one could summarize daily activities in public areas. It can be used for

Human-Computer Interaction (HCI) – gesturing interfaces could enable smart offices and

smart homes. Tracking would also enable video motion capture – the recovered motion could

be used to later animate a virtual character. Finally, one could track people for surveillance

purposes – from medical analysis of patients to automatic flagging of suspicious behavior

in high security areas. Indeed, because of the many potential applications, people-tracking

has been a core challenge in the vision community for over 25 years. Although those years

showcased major improvements in algorithmic technique (notably, the use of particle filters),

most resulting systems require some limiting assumption (such as no fast limb movement,

controlled backgrounds, or manual initialization; see [34, 72]).
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Chapter 1. Introduction

1.1 The approach

We cast tracking in a probabilistic reasoning framework, and apply techniques from machine

learning to develop algorithms. By using formal probability models, we can take advantage

of principled learning and inference algorithms. Often, simply writing down the model is

a useful exercise because it makes explicit the hidden assumptions in standard approaches.

While developing our people tracker, we encounter a new model for uncertainty in video

data, with implications not just for tracking but also for object detection and video encoding.

An important question when building a practical system is: how does one know that

it works? We produce a novel evaluation methodology and apply it on a massive scale,

evaluating our articulated tracker on hundreds of thousands of frames (several orders of

magnitude more than previous systems). We demonstrate that we can fairly accurately

track people that are moving fast and that are surrounded by cluttered backgrounds without

manual initialization.

1.2 Thesis overview

In Chapter 2, we give an overview of past work on person tracking. Most approaches for

tracking people (and other objects) track some model over time. The basic observation

behind this thesis is that model-based tracking is easier with a better model. Thus the

process of tracking becomes intertwined with the process of building a good model for the

object being tracked. After learning a good model from a video, we then track by detecting

it in each frame. In Chapter 3, we introduce a tracking algorithm that automatically builds

3



Chapter 1. Introduction

models by looking for coherence across a video. Once the models are built, they can be

used to find the object in the original video as well as in novel images. We demonstrate

our algorithm on videos and images of animals. In Chapter 4, we apply the model-building

algorithm to the task of tracking people. We develop an algorithm that automatically

builds people-models opportunistically from select frames which are convenient. We also

show that building discriminative models is quite helpful. We demonstrate the resulting

people-tracker on hours of commercial and unscripted video. Finally, in Chapter 5, we show

an application of our people tracker; activity recognition. By tracking the configuration of

arms and legs over time, we can recognize whether someone is waving, jumping, catching a

ball, etc.

4



Chapter 2

Background

A practical person tracker should meet a veritable laundry-list of demands. It should self-

start, recover configurations of arms and legs, track accurately for long sequences; track

independent of activity, be robust to drift, track multiple people, track through brief occlu-

sions, and be computationally efficient. It should also avoid using background subtraction;

we want to track people who happen to stand still against backgrounds that happen to

move. Most current trackers fail to meet most of these demands. In this chapter, we look

at the current state of the art and argue that the underlying model most trackers follow

might be at fault.

2.1 Hidden Markov Models

By far the most common approach is to use a hidden Markov model (HMM), where the

hidden states are the poses (Xt) to be estimated, and the observations are images (Imt) of
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Chapter 2. Background

a video sequence (see [18, 26, 40, 42, 45, 83, 93, 95, 100, 101, 114]). For now, let us think of

pose Xt as a vector of 2D joint positions, though we will later look at 3D poses. Standard

Markov assumptions allow us to decompose the joint into

Pr(X1:T , Im1:T ) =
∏

t

Pr(Xt|Xt−1) Pr(Imt|Xt),

where we use the shorthand X1:T = {X1, . . . , XT }. Tracking corresponds to inference on

this probability model; typically one searches for the maximum a posteriori (MAP) sequence

of poses given an image sequence

X̂1:T = argmax
X1:T

Pr(X1:T |Im1:T ) = argmax
X1:T

Pr(X1:T , Im1:T ) (2.1)

= argmax
X1:T

∏
t

Pr(Xt|Xt−1) Pr(Imt|Xt). (2.2)

Four issues need to be addressed: (a) What is the inference algorithm? (b) What is the

dynamic model, Pr(Xt|Xt−1)? (c) What is the image likelihood model Pr(Imt|Xt)? (d)

How do we initialize the track (obtain X̂1)?

2.1.1 Inference Algorithm

The space of poses (the domain of Xt) is too large to discretize and explicitly search by

dynamic programming, though approximate strategies exist [51]. Early approaches originat-

ing from O’Rourke and Badler in 1980 and Hogg in 1983 used classic AI search techniques

[45, 82]. Most approaches perform inference by variants of kalman filtering [18, 42, 45, 95]
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Chapter 2. Background

or particle filtering [9, 11, 26, 58, 67, 68, 83, 100, 101, 106, 108, 114]. One uses the pose

in the current frame and a dynamic model to predict the next pose; these predictions are

then refined using image data. Particle filtering uses multiple predictions — obtained by

running samples of the prior through a model of the dynamics — which are reweighted by

comparing them with the local image data (the likelihood).

2.1.2 Motion Model

Humans move in very specific, but hard-to-model ways. Consider the moving light displays

of Johannson [55]. One can perceive human movement simply by observing lights positioned

at limb joints, but such precepts disappear once joints stop moving. This suggests that

motion might play a role in identifying/tracking people. One method of representing such

dynamics is to learn a model from motion capture data [100, 101], but this often requires

choosing the specific motion (walking,running, etc.) a priori. Alternatively, one can build a

dynamic model that selects a motion online from a set of models [2, 83]. Such finely-tuned

models are valid in some settings (e.g., HCI, when a user is performing a gesture from a

limited vocabulary), but are difficult to apply in general (e.g., video motion-capturing a

novel performance). Obtaining a generic parametric model of human motion is an active

area of research in the graphics community [5, 59, 61], but until one is found, we believe that

general purpose trackers should be limited to simpler models (such as constant velocity).

7



Chapter 2. Background

2.1.3 Image Likelihood

One needs a person model to compute an image likelihood Pr(Xt|Imt). Typically one uses

a template encoding appearance [41, 51, 74, 112], local motion [109] or both [117]). The

template can be updated on-line or learned off-line. Constructing a good likelihood model

is hard because it must be general enough to represent bodies in various poses and clothes

but specific enough not to be confused by background clutter. A common approach is to

evaluate the model likelihood only at certain image locations (e.g., particle filters restrict

themselves to predictions returned by a motion model). Such a scheme is susceptible to

drift because of clutter; if the predicted arm position lies on an “arm-like” pole, the track

will drift. One partial remedy is to perform local searches of the likelihood [26, 107].

Another is to globally search the entire likelihood; this is computationally taxing unless one

makes simplifying assumptions. Algorithms that track by detection search the likelihood

at each frame and keep only likely poses [41, 51, 70, 74, 79, 109, 110, 112, 117]. Such an

approach to tracking as detection is attractive because the resulting trackers re-initialize

themselves every frame. This makes them robust to drift and able to self-start. However,

these approaches require templates that reliably detect people, which is a non-trivial task.

2.1.4 Initialization/Detecting People

Most previous algorithms require hand-initialization, which is clearly unacceptable for many

applications. The task of initializing a tracker and constructing a good likelihood model

are similar; both require a good template that can detect people. Good results have been

8



Chapter 2. Background

Figure 2.1: To build a usable people tracker, one needs a good likelihood model and a method
to automatically initialize tracks – both require a template that can detect people. Detecting
people is difficult because of the large variation in appearance due to body shape and clothing
(left) and articulations of the body (middle). Detection is further complicated by cluttered
backgrounds (right).

demonstrated when skin regions are reliably detected [62], for clutter-less backgrounds [53,

74], and for background subtracted images (see the large body of literature on silhouette-

based methods [1, 31, 43, 48, 99, 105, 126]). A solution for reliably finding people in

general images is yet to be found. This detection problem seems very hard (more so than,

say, face detection) for two reasons: people vary greatly in appearance (due to individual

body shape, clothing, and articulations), and there exists lots of limb-like clutter in the

background (Figure 2.1). The former suggests enormous intra-class variation and the latter

implies little inter-class variation. A common strategy to handle the pose variation is to use

a bottom-up model of body parts [69, 73, 75, 96, 102]. These methods still require likelihood

models for each part. Constructing part models for unclad people is straightforward [36],

but clothing considerably complicates matters.

2.2 Data Association

Before we go further, it is useful to examine why HMMs are so ubiquitous in tracking

literature. This phenomenon can be traced back to the well-established success of HMMs
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Chapter 2. Background

in the radar community [10]. In that continuous-domain context, the traditional algorithm

for inference on a HMM is a kalman filter [71]. When tracking an airplane’s position

where the observations are global positioning system (GPS) reports, a kalman filter might

work quite well. However, this situation is fundamentally different when observations are

images from a video; the bulk of computation goes toward data association [10]: which

part of the image comes from the object, and which does not? A better comparison for

radar data is when we observe a million GPS measurements (≈ the number of pixels in an

image) at each time instant, and we must simultaneously track our object and determine

which is the true measurement. Here, we want a tracking algorithm that, instead of simply

smoothing a position measurement (as a Kalman filter does), identifies what measurement

to smooth. Particle filters use the dynamic model Pr(Xt|Xt−1) to identify the correct

measurement; a motion prediction tells us where to look in an image. This approach, though

computationally efficient, is susceptible to drift when tracking in a cluttered background.

The alternative is to do data association using the likelihood model Pr(Imt|Xt), but this

requires an accurate model that produces a low likelihood for background regions. Indirect

methods of doing this include background subtraction and skin detection, but again, these

are only valid in restricted situations.

Alternatively, one could build a likelihood model that directly identifies what image

regions are people. Assume we have a video of a single person (Fred); then ideally, we want

a “Fred” detector rather then a generic person detector; i.e. a likelihood model Pr(Imt|Xt)

that captures the fact that Fred is wearing a red shirt and has blond hair. This model can

10



Chapter 2. Background

perform data association since it can quickly ignore the pixels which are not red. In certain

situations, one could obtain such models off-line (consider a soccer match where the team

uniforms are known). In general, we will not know who will be in a video and so will need

to build models on-the-fly. One mechanism for doing this is to augment the state variable

Xt with an appearance term At that captures the color of a shirt [100, 101] (algorithms

based on optical flow often implicitly do this [18]). Such Markovian appearance models are

attractive because standard inference algorithms still apply. But in practice, they suffer

from two severe limitations; (a) one cannot automatically initialize them because one does

not know appearance a priori, and (b) the resulting trackers tend to drift. Note that in

some sense these are similar problems, since one method of ensuring a robust tracker is to

continually re-initialize it.

2.3 Why do Markovian models fail?

Consider the toy case of building a template-matching blob tracker for a torso (Figure 2.2).

The underlying model is a HMM where the hidden state at each frame is

Xi =
[
P i

Ai

]
,

where P i is (xi, yi) position of the torso blob and Ai is the appearance. Throughout this

thesis, we consider alternate encodings of appearance. For the time being, we can think of

Ai as a vectorized patch of pixels. The observations are images from a video sequence. Let
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2Im TIm1Im

X 1 X 2 X T
Pi
Ai[ ]i i(x ,y)

Figure 2.2: Hidden Markov Model for a blob tracker. Typically, the hidden state Xt is comprised
of the blob position Pt and appearance At, while the observation is an entire image frame Imt.

us assume the following probability models:

Pr(Xt|Xt−1) ∝ e−||Xt−Xt−1||2 (2.3)

Pr(Imt|Xt) ≡ Pr(Imt(Pt)|At) ∝ e−||Imt(Pt)−At||2 , (2.4)

where we have ignored constants for simplicity. Our motion model Pr(Xt|Xt−1) is Brownian

motion. Recall that our object state Xt encodes both blob position Pt = (xt, yt) and blob

appearance At. Our likelihood model favors pixel positions Pt at which the encompassing

image patch Imt(Pt) looks like the current blob template At. Note this likelihood only

models the image at the blob position, ignoring the background (a common assumption

in the tracking literature). We show in Chapter 4 that building discriminative likelihood

models exploiting background information do better.

If we perform inference on the model from Figure 2.2, the resulting track tends to

drift; see Figure 2.3. This is because there is no constraint in the model that requires the

12
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1A

TA

Figure 2.3: We perform inference on the model from Figure 2.2 with a standard template blob-
tracker. Even with manual initialization, the model tends to drift because there is no constraint
that the appearance at the end of the track AT should be similar to the initial appearance A1.

C

...A1 A2 AT

Figure 2.4: An alternative to the Markov model of appearance. Here, we model the views At

as i.i.d. samples from a canonical appearance C. This model forces the first A1 and last views
AT to be similar.

appearance at the last frame AT to be similar to the appearance from the first frame A1.

Small errors in the estimated appearance At accumulate; for example, the torso becomes

temporarily occluded by the arm, and so the track drifts to compensate. We can avoid the

drifting behavior with a constant model of torso appearance At:

Pr(At|C) ∝ e−||At−C||2 .

Here, the torso image patch at each frame At is modeled as a i.i.d sample from a

Gaussian centered at an underlying “true” torso patch C. With a constant appearance

13
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2Im
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TIm1Im

C
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2Im

C

PT

TIm1Im 1P

C

P 2 TP
(a) (b) (c)

Figure 2.5: Above (a), we show resulting model from incorporating the constant appearance
model from Figure 2.4 with the HMM from Figure 2.2. Blob position Pt still follows a Marko-
vian model, but the image likelihoods are tied together by the common appearance C. If the
appearance C is known, then our model reduces to a standard HMM (b); model-based tracking
algorithms take this approach. Since C is given a priori, the appearance must be invariant to
clothing; a common approach is to use an edge template [41, 51, 74, 112, 114]. By treating
C as a random variable, we build a template specific to the particular person in a video as we
track his/her position Pt. We show an undirected model in (c) that is equivalent to (a).

model, we force our initial appearance A1 and final appearance AT to be similar – a blue

shirt stays blue, even when occluded by an arm.

Note that AT and A1 can still differ – indeed, two samples from the same gaussian can be

arbitrarily far away. The variance of AT is bounded in a constant model varc(AT |A1) = 2,

while it grows linearly with time in a Markov model varm(AT |A1) = T − 1 (assuming a

noise model with unit variance). This is why Markov-based trackers typically work only on

short sequences; if we wait long enough, the tracked object can change arbitrarily.

14
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2.4 Constant Appearance Models

When we insert our constant appearance model into the HMM from Figure 2.2, the image

likelihoods become linked by the canonical appearance C:

Pr(Pt|Pt−1) ∝ e−||Pt−Pt−1||2 (2.5)

Pr(Imt|Pt, C) ∝ e−||Imt(Pt)−C||2 . (2.6)

Equation 2.6 (shown graphically in Figure 2.5-(a)) expresses the fact that we want

to select a blob position Pt whose encompassing image patch is close to the canonical

appearance C.

If we condition on C and assume the canonical appearance is given, our model reduces

to a standard HMM. Algorithms that track by template matching follow this approach; the

constant appearance model is represented by templates built a priori [41, 51, 74, 112, 114].

These templates are detuned because they must generalize across all people and be invariant

to clothing. Our model in Figure 2.5 allows us to build a template tuned to the specific

person in a video; we build a torso model that captures the specific color of a person’s shirt.

2.4.1 Tracking by EM

If we treat C as a model parameter, then Figure 2.5-(a) looks like a standard HMM where

the emission model is unknown. One could then apply the well-known Expectation Max-

imization algorithm for HMMs (the Baum-Welch algorithm) to infer simultaneously the
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hidden variables Pt and the model parameter C. Such an algorithm would take the follow-

ing iterative approach:

E-step: Assume we have some estimate of the torso appearance C. Then our model

reduces to a standard HMM, and we perform dynamic-programming to estimate the se-

quence of torso positions Pt. Formally, one would perform the forward-backward algorithm

to compute “soft” positions Pr(Pt|Im1:T , C),∀t.

M-step: Given a track of torso positions from the E-step, we can re-estimate the torso

model C by calculating the average image patch at the tracked positions. Formally speaking,

Cnew =
1
T

∑
t

EPt [Imt(Pt)] =
1
T

∑
t

∑
Pt

Pr(Pt|Im1:T , C)Imt(Pt).

Given the new estimate or torso appearance Cnew, we repeat the E-step.

Such a method has two practical limitations: (1) once we augment Pt to incorporate

articulated pose, maintaining probability distributions over the space of all poses becomes

difficult and (2) we do not know the number of people in a given video. If there are multiple

people present, then we will have to learn multiple appearance models C. In this case there

is no single true value of C, and it is convenient to treat it as a random variable (so we can

represent uncertainty).

2.4.2 Tracking by model-building

We can write our HMM as an undirected graphical model (Figure 2.5-(c)) where C is an

explicit variable:
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Pr(P1:T , C|Im1:T ) ∝
∏

t Ψ(Pt, Pt−1)Ψt(Pt, C), (2.7)

where the potentials are:

Ψ(Pt, Pt−1) ≡ Pr(Pt|Pt−1) ∝ e−||Pt−Pt−1||2 (2.8)

Ψt(Pt, C) ≡ Pr(Imt|Pt, C) ∝ e−||Imt(Pt)−C||2 . (2.9)

This characterization emphasizes the fact that when we track from video, we want both

to recover object position Pt and to build a model of object appearance C. Direct inference

is difficult because we cannot search over all possible pixel positions Pt and appearance

models C; both variables are inherently continuous. Furthermore, the potential Ψt(Pt, C)

is typically multi-modal and non-Gaussian. Even if we are told that the blob appearance

is a white patch, there might be multiple places in an image that locally look similar to it.

However, the iterative EM approach hints at a useful framework to follow. Given a

detuned or rough appearance model C, we can use it to obtain a rough track. Given the

rough track, we can tune the model to (possibly multiple) people in a video. Given the

tuned models, we can re-track, and iterate as necessary. The difficulty with this approach

is the initial model-building stage of using a detuned appearance model to build multiple

tuned models.
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This view of tracking as model-building is rare in the video analysis community; one

important exception is the the layered sprite model of Jojic and Frey [56]. The authors

develop an EM algorithm to learn blob appearances (or, in their case, layers). One important

difference is that their model ignores motion constraints Pr(Pt|Pt−1). The authors also

assume they know the number of layers a priori and do not deal with articulated models.

We develop an algorithm in the next chapter that addresses these shortcomings.
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Building Models of Animals

Positives Negatives

Learned Model
Figure 3.1: To build models from videos, we look at techniques that build models from images.
Assume one wants to learn a zebra model from an image collection of zebra images (left) and
non-zebra images (right). Given this input, learning algorithms look for image features that
consistently appear in the positive set, but that never appear in the negative set. Algorithms
do this using variants of clustering or EM. In this case, Schmid [98] learns a zebra model that
looks for black-and-white striped patches. Given the learned model, it can be used to find zebra
regions in a novel image (bottom). We develop a similar algorithm that builds models from
videos by looking for consistency across a set of frames.

To construct an algorithm that builds models from videos, we look to the object de-
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tection community for inspiration. Many authors have developed algorithms that build

object models from image collections [29, 33, 60, 98, 119]. Say we want to use one of these

algorithms to learn a model of a zebra (Figure 3.1). We assemble a set of positive example

images containing zebras, and a set of negative example images not containing zebras. This

form of input is often called semi-supervised data because we are labeling which images

contain a zebra, but for a given zebra image, we do not label which image regions are zebra

and which are background. The task of the learning algorithm is to “finish” the partial

labeling; learn a zebra model that labels zebra image regions. Most algorithms do this by

variants of clustering or EM; basically one looks for image regions that consistently appear

in the positive set, but not in the negative set. In the case of Figure 3.1, the algorithm

consistently finds black-and-white striped image patches in the positive set, and so learns

a corresponding zebra texture model.

We can apply the same kinds of learning algorithms to frames from a video sequence of

a zebra. We treat the frames as images from the positive set. Unfortunately, we do not have

a negative set with which to compare, but we do have an alternate source of information:

smoothness of motion. We know that a zebra region is likely to appear consistently in most

frames of a zebra video, and that those zebra regions are likely to move smoothly from one

frame to the next. In essence, we can use temporal coherence in a video sequence to provide

supervisory signals.

Assume we are given a video sequence of single unknown animal. This chapter presents

an algorithm that automatically builds a visual model of the animal. Section 3.1 describes
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Figure 3.2: An overview of this chapter. Given a video sequence with a single animal, we cluster
candidate segments (Section 3.1) to build a visual model of the animal (Section 3.2). We
then use the model to track the animal in the original video (Section 3.3), identify the animal
(Section 3.5), and detect the animal in new images (Section 3.6).

a clustering method that constructs rough spatio-temporal tracks of body segments over a

sequence. In Section 3.2, we use the tracks to learn a visual model known as a pictorial

structure [31, 35].

Once we learn the model, there are several neat applications. We use it to find the

animal in the original video (so that we can track it better; Section 3.3). By looking up

the visual model in a library, we can also identify the animal (Section 3.5). Finally, we

can use the model to detect the animal in other images or videos (Section 3.6). This

last application is interesting because it suggests an alternative motivation for this chapter

(besides tracking): an algorithm for building models for object detection [91].

We significantly improve the quality of the visual model by augmenting it with a animal

texture model learned from a library of textures. Examining various texture descriptors, we

find they do not characterize animal textures well. We develop a novel texture representation

in Section 3.4 that outperforms the state-of-the-art.
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3.1 Building a spatio-temporal track

Suppose we are given a video with a single animal, and we want to build a spatio-temporal

track of how its body parts deform over time. If we assume the animal is made up of body

segments, we can:

1. Detect candidate segments with a detuned segment detector.

2. Cluster the resulting segments to identify body segments that look similar across time.

3. Prune segments that move too fast in some frames.

3.1.1 Detecting Segments

We model segments as cylinders that project to rectangles in an image. One might construct

a rectangle detector using a Haar-like template of a light bar flanked by a dark background

(Figure 3.3). To ensure a zero DC response, one would weight values in white by 2 and

values in black by -1. To use the template as a detector, one convolves it with an image

and defines locally maximal responses above a threshold as detections. This convolution

can be performed efficiently using integral images [118]. We observe that a bar template

can be decomposed into a left and right edge template fbar = fleft + fright. By the linearity

of convolution (denoted *), we can write the response as

im ∗ fbar = im ∗ fleft + im ∗ fright.
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+1 0−1 0 +1−1+2−1 −1 +
bar

=
left edge right edge

Figure 3.3: One can create a rectangle detector by convolving an image with a bar template and
keeping locally maximal responses. A standard bar template can be written as the summation
of a left and right edge template. The resulting detector suffers from many false positives, since
either a strong left or right edge will trigger a detection. A better strategy is to require both
edges to be strong; such a response can be created by computing the minimum of the edge
responses as opposed to the summation.

In practice, using this template results in many false positives since either a single left

or right edge triggers the detector. We found taking a minimum of a left and right edge

detector resulted in response function that (when non-maximum suppressed) produced more

reliable detections

min(im ∗ fleft, im ∗ fright)

With judicious bookkeeping, we can use the same edge templates to find dark bars on light

backgrounds. We explicitly searched over 15 template orientations (at 12o intervals) and 25

scales (5 lengths crossed with 5 widths).

It turns out to be hard to build accurate low-level segment detectors. Figure 3.4-(a)

shows three frames from a video of a zebra in which the detectors often fire on the animal

body, but also fire on clutter in the background. We would like to pick out the true animal

body parts from the set of candidate detections. Unfortunately, we do not know what the

animal segments should look like (since we are not told a zebra is present). But we know

that animal segments should be consistent in appearance over time; if the head is striped

in the first frame, it should be striped in the final frame. We find collections of segments
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(a)

valid tracks prune tracks

(b) (c) (d)

cluster

Figure 3.4: Obtaining spatio-temporal tracks by clustering. We first search for candidate seg-
ments using local detectors (we show 3 sample frames in (a)). We cluster the image patches
together in (b). From each cluster we extract a valid sequence obeying our motion model in
(c). We prune away the short sequences to retain the final spatio-temporal tracks in (d).

that look similar to each other by clustering the entire set of detected segments.

3.1.2 Clustering Segments

Since we do not know the number of segments in our model (or for that matter, the number

of segment-like things in the background), we do not know the number of clusters a priori.

Hence, clustering segments with parametric methods like Gaussian mixture models or k-

means would be difficult. We opted for the mean shift procedure [22], a non-parametric

density estimation technique.

We create a feature vector for each candidate segment, consisting of a normalized color

histogram in the Lab color space, appended with shape information (in our case, simply

the length and width of the candidate patch). Note that this feature vector is to be used
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for clustering, for which it is sufficient. The representation of appearance is not limited to

this feature vector.

The color histogram is represented with projections onto the L, a, and b axis, using 10

bins for each projection. Hence our feature vector is 10 + 10 + 10 + 2 = 32 dimensional.

We scale the histogram and scale dimensions so as to obtain a meaningful L2 distance for

this space. Further cues — for example, image texture — might be added by extending the

feature vector, but appear unnecessary for clustering in the cases we have considered thus

far.

Identifying segments with a coherent appearance across time involves finding points in

this feature space that are (a) close and (b) from different frames. Because this is difficult;

we drop requirement (b), which can be imposed on clusters post hoc, and concentrate on

(a). The mean shift procedure is an iterative scheme in which we find the mean position of

all feature points within a hypersphere of radius h, recenter the hypersphere around the new

mean, and repeat until convergence. We initialize this procedure at each original feature

point and regard the resulting points of convergence as cluster centers. For example, for the

zebra sequence in Figure 3.4, starting from each original segment patch yields five points of

convergence (denoted by the centers of the five clusters in (b)).

Sometimes, illumination changes will cause a single animal part to appear in two or

more clusters. As a post-processing step we greedily merge clusters which contain members

within h of each other (starting with the two closest clusters). We account for over-merging

of clusters by extracting multiple valid sequences from each cluster during step (c). That
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is, for each cluster during the third step in Figure 3.4 (explained further in the following

section), we keep extracting sequences of sufficient length until none are left. Hence for a

single arm appearance cluster, we might discover two valid tracks, one of a left arm and

one of a right arm.

3.1.3 Enforcing a motion model

As Figure 3.4 indicates, not every coherent patch is associated with a moving figure. The

second column of clusters in 3.4-(b) are background regions. However, at this point cluster

elements are neither constrained to move with bounded velocity nor required to form a

sequence — there might be several elements from the same frame.

We now find the most likely sequence of candidates for each cluster that obeys the

velocity constraints. By fitting an appearance model to each cluster (typically a Gaussian,

with mean at the cluster mean and standard deviation computed from the cluster), we can

formulate this optimization as a straightforward dynamic programming problem. Let Pt be

the position of a segment in the tth frame. We assume that these have a Markovian behavior:

i.e., Pr(Pt|P1:t−1) = Pr(Pt|Pt−1). The reward for a given candidate is its likelihood under

the Gaussian appearance model, and the temporal rewards are ‘0’ for links violating our

velocity bounds and ‘1’ otherwise. We add a dummy candidate to each frame to represent

a “no match” state with a fixed charge. By applying dynamic programming, we obtain

a sequence of segments, at most one per frame, where the segments are within a fixed

velocity bound of one another and where all lie close to the cluster center in appearance.

As Figure 3.4-(c) demonstrates, this results in a somewhat smaller set of segments associated
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with each cluster. This is particularly true for the second column of background clusters;

background segments that happen to cluster together often do not move like true segments.

We now discard those tracks which are not long enough. In Figure 3.4-(c), this results

in pruning away the second two clusters. Note that we could impose other tests of validity

beyond the length of a track. For example, we might require that a segment move at some

point, and so we would prune away a track which is completely still. Alternatively, if we

are given two different videos of the same animal, we might prune away those clusters that

do not appear in both.

The segments belonging to the remaining three clusters are shown in Figure 3.4-(d). We

can now learn a visual model from the spatio-temporal tracks in Section 3.2. But first, it is

useful to cast our clustering procedure in light of our constant appearance model developed

in Section 2.4.

3.1.4 Approximate Inference

The segment-finding procedure discussed above is, in fact, an approximate inference pro-

cedure for the graphical model shown in Figure 3.5. Recall our original blob model from

Figure 2.5 (shown again in Figure 3.5-(a)); this model captured the fact that we want to

track a segment while building a model of its appearance. The algorithm described in

this section is a loopy inference procedure for our blob model (see also [23, 77, 89]). We

pass max-product messages asynchronously and visualize our message schedule with the

embedded trees shown in Figure 3.5.

In the first subtree, we want to infer a posterior over C given the image patches from a
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Figure 3.5: Approximate inference on our blob tracking model from Figure 2.5. The original
model (a) encodes the fact that we want to track a segment while simultaneously building a
model of its appearance. An alternative interpretation is that we want to cluster, or learn a
coherent appearance, while simultaneously enforcing that all the patches from a cluster obey a
motion model. We can do the latter (approximately) by dropping the motion constraint. We
naively cluster, looking for collections of coherent segments (b). In this case, we find multiple
coherent appearances (corresponding to the zebra head and body). We instantiate the model
multiple times, for each cluster. Given the learned appearance, we do dynamic programming to
extract a sequence of valid tracks where all the segments look similar to the learned model (c).

sequence. We show in Appendix 3.A that the mean shift clustering procedure finds modes in

the posterior of C. We interpret each mode, or cluster, as a unique segment. We instantiate

multiple copies of the model Figure 3.5-(b), one for each cluster. We can partly justify this

procedure by our aggressive post-clustering merging of clusters; any left-over clusters that

remain separate are likely to be different segments rather than multiple appearance modes

of a single segment.

We now can treat C as an observed quantity, for each instantiation of Figure 3.5-(c).

Inferring Pt from such a model is straightforward; this is just our dynamic programming

solution to find the most likely sequence of candidates given a known appearance. Note our
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initial claim of segment configurations (Pt) being Markovian is only true when we condition

on C. Finally, we disregard those instantiations we deem to be invalid (i.e., not existing for

enough frames).

3.2 Learning a pictorial structure

B
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Figure 3.6: We show the pictorial structures learned from videos of a zebra left, tiger center,
and giraffe right. On the bottom, we visualize the zebra pictorial structure as a graphical
model. This model is parameterized by probability distributions capturing geometric arrangement
of parts Pr(P i|P j) and local part appearances Pr(Im(P i)|P i) (the vertical arrows into the
shaded nodes). These distributions and the tree structure of the graph are automatically learned
from the video. We manually attach a semantic description to each limb as Head, upper/lower
Neck, upper/lower Body, or front/rear Leg. Labeling the tiger model is tricky; many limbs swim
around the animal Body, and one flips between the Head and front Leg. We use these labels
to help evaluate localization performance in our results; they are not part of the shape model.
Obtaining a set of canonical labels appears difficult.

We use the spatio-temporal tracks (obtained by clustering) to build a visual model

called a pictorial structure. A pictorial structure model is a parts-based model of an object

consisting of two terms; a geometric term that relates the spatial arrangement of parts, and
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an appearance term that describes the local appearance of each part [31, 35, 51].

Pr(P 1 . . . PN |Im) ∝
∏

(i,j)∈E

Pr(P i|P j)
n∏

i=1

Pr(Im(P i)|P i). (3.1)

Pr(P i|P j) are geometric terms that capture the spatial arrangement of part i with

respect to part j, and Pr(Im(P i)|P i) captures the local appearance of the image at part i.

Here, we extend part configuration P i to include both position (x, y) and orientation θ. The

position of each non-root segment P i is represented with respect to the coordinate system

of its parent P j . E is a set of edges that capture the dependency structure of the model.

A model is fully specified when the edge structure and the probability distributions along

each edge are known. If E is a tree, one can efficiently match these models to an image

using Dynamic Programming (DP). Felzenszwalb and Huttenlocher [31] describe efficient

DP-based techniques for computing the MAP estimate and for sampling from the posterior

in Equation 3.1. One can also use the (unnormalized) posterior as an animal detector by

only accepting those maximal configurations above a threshold.

Learning by maximum likelihood: Standard methods learn pictorial structures

by maximum likelihood estimation (MLE) given images where parts are labeled [31, 52].

Theoretically, one could learn pictorial structures from unlabeled data using EM, where

labels are the hidden variables marginalized out. This approach is taken in [33], where

the learned models are called constellation models. To avoid local maxima issues with EM,

those models must be learned from uncluttered images and with finely tuned part detectors.

In our case, we learn pictorial structures by direct MLE without any manual intervention;
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we use the coherence in a video to provide an implicit labeling. Note that we do not need

precise labels, but rather correspondence between parts over time – this is provided by the

cluster membership.

Learning E: Typical methods for learning the spatial structure E will not work in

our case; we describe the approach from [31, 51, 90] here. Consider a fully connected

bi-directional graph where each vertex represents a segment P h, Pn, and P b (the precise

segment labels are not needed so long as their correspondence between frames is known).

Directed edges in this graph are weighted by the entropy of Pr(P i|P j). To learn the tree

structure that maximizes the likelihood of the observations, [31, 51, 90] finds the minimum-

entropy spanning tree. This tends to result in poor models. Often two far away limbs will be

directly linked in the learned spatial model. This is because the position P i of the detected

limbs are quite noisy (due to the detuned limb detector), in turn producing noisy entropy

estimates (see Figure 3.7). To enforce the natural prior that two limbs that tend to appear

near each other should be spatially linked together, we replace the entropy term with the

mean distance between those two limbs, and then compute the minimum spanning tree.

We root this tree at the most “stable” limb (the limb detected most often in the original

video). This produces the tree spatial models in Figure 3.7.

Pr(P i|P j): We fit the geometric terms Pr(P i|P j) by standard Gaussian MLE assum-

ing diagonal covariance matrices. For example, assume one has a collection of zebra images

where Head, Neck, and Body segments are labeled. The sample mean and standard devia-

tion of head positions relative to the neck would define the MLE estimate of Pr(PH |PN ).
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Minimum Entropy Edges

Minimum Distance Edges

Figure 3.7: On the top, we show the edge structure E learned by a minimum entropy spanning
tree (this are the edges that maximize the likelihood of the observed spatio-temporal tracks).
This can create links between two far away segments (the giraffe’s head and leg) because of
noisy entropy estimates. A better strategy is to link the parts that tend to lie near each other
(bottom).

In our case, we use the cluster membership to provide the labels.

Pr(Im(P i)): One could also fit the appearance terms Pr(Im(P i)) by MLE; however,

we found this yields a poor detector since we have ignored the background. We learn a

discriminative part appearance model by learning a animal texture classifier from the

video. We use the spatio-temporal tracks to segment the video into animal (foreground)

and background pixels. We fit a 5-component Gaussian mixture model in RGB space for

the foreground/background, as in [97].1 We use our pictorial structure to find an animal in

a image using the procedure in Figure 3.8. Given an image, we first use our texture model

to label the animal pixels. We evaluate the part likelihood Pr(Im(P i)) by convolving
1Technically speaking, we learn generative models for the foreground and background. They are “dis-

criminative” in the sense they are used to classify pixels.
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Figure 3.8: Detecting a pictorial structure Pr(P head, Pneck, . . . |Im). Given the image on the
left, we first classify foreground pixels using a color model learned from the spatio-temporal
tracks. We use dynamic programming to find an arrangement of limbs that lie on foreground
pixels and that look like the shape prior; this yields the MAP estimate on the right. We also
can use a foreground mask and shape prior to generate sample body poses from the posterior
Pr(P head, Pneck, . . . |Im) (using the method of [31]). We superimpose the samples to yield the
final posterior map on the bottom. The posterior models the front leg joint better than the
MAP estimate; this suggests we can use uncertainty in how we match a model to compensate
for its inadequacies.

the label mask with rectangle templates looking for light bars on dark backgrounds (as in

Section 3.1.1); we want parts to lie on animal pixels and not the background. An alternative

would have been to learn a separate texture model for each animal limb (we do this for people

in Section 4.3.2); we found this was not necessary for animals with homogeneous texture.

Note that our RGB-based texture classifier is specific to the video it is trained on.

Hence they are limited to being used to find animals in the original videos (for tracking, as

in Section 3.3). However, if we want to find animals in new images, we need to build more

sophisticated texture models (Section 3.4).
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3.3 Tracking by finding

Given the learned pictorial structure, we can use it to track the animal in the original

video. For each frame, we find the best-matching body pose (by dynamic programming),

or obtain a distribution over body poses (by sampling); see Figure 3.8. We show results

for three sequences depicting different moving animals in Figures 3.9, 3.10, and 3.11. The

tracks were not hand initialized, and the same program was used in each case. The program

automatically learns a pictorial structure and then identifies instances in each frame. In

each sequence, the animal’s body deforms considerably, the zebra because it is moving very

fast, the giraffe and the tiger because giraffes and tigers deform a lot when they move.

Nonetheless, the program is able to build an appearance model that is clearly sufficient to

capture the essence of the moving animal, but lacks some details. In particular, legs are

narrow, fast, and hard to detect; consequently, the learned pictorial structures fails to model

them. Furthermore, the temporal correspondences for the segments — which are indicated

by colored outlines in the figures — are largely correct. Finally, the tracker has been able

to identify the main pool of pixels corresponding to the animal in each frame.

Following [109], we evaluate our tracker using detection rates (Figure 3.12) obtained

from the original video. Our algorithm builds a representation of each animal as a collection

of parts. We define a correct localization to occur when the majority of pixels covered by

an estimated part have the correct semantic label from Figure 3.6. The quality of the track

using the pictorial structure is quite good, and is much better than the original spatio-

temporal track. This suggests that tracking is easier with a better model. One can envision
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Figure 3.9: Tracking results for the zebra video. In the top row, we show the spatio-temporal
tracks obtained by clustering together segments that obeyed our motion model. Correspondence
over time (denoted by the colors) are given by cluster membership. Given those segments, we
learn the zebra pictorial structure model shown in Figure 3.6. Given the learned model, we can
re-track by computing MAP estimates for each frame in the video (middle). We can also
visualize the entire posterior using the sampling method from Figure 3.8 (bottom). Note that
the tracks tend to get significantly better as we build an improved visual model of the zebra;
we quantify this in Figure 3.12.

Figure 3.10: Tracking results for the tiger video, using the same conventions as Figure 3.9. Note
the tracks tend to get significantly better as we build an improved visual model (we quantify
this in Figure 3.12).
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Figure 3.11: Tracking results for the giraffe video, using the same conventions as Figure 3.9.
Note the tracks tend to get significantly better as we build an improved visual model (we quantify
this in Figure 3.12).
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Figure 3.12: We evaluate our trackers using detection rates for the original videos. Our algorithm
builds representations of animals as a collection of parts. We overlay the percentage of frames
where parts are correctly localized. We define a part to be correctly localized when it overlaps
a pixel region with the correct semantic label from Figure 3.6. On the top, we show results
from the original spatio temporal tracks obtained by clustering edge detections. After learning
a pictorial structure from the tracks, we use the model to re-detect the animal. This results in
significantly better performance, as shown on the bottom.

iterating this procedure (in a manner quite similar to EM) by refitting a pictorial structure

model to the newly tracked segments, and then tracking given the pictorial structure model.

36



Chapter 3. Building Models of Animals

zebra

giraffe

tiger

Figure 3.13: Our library of animal textures built from Hemera. We show a subset of 100 17X17
patches for each of our 38 animals; we mark the giraffe, tiger, and zebra rows in yellow. Our
recognition task requires texture classification and segmentation (we need to separate the animal
from its background). This means we need to evaluate textures on a local image patch. We
use this library to evaluate patch descriptors in Table 3.1.

We performed only one iteration.

Our tracker is successful largely because of the quality of the foreground masks produced

by the learned animal classifiers (Figure 3.8). These classifiers do not generalize well to

novel images (with say, different illumination conditions); we build robust animal texture

classifiers in Section 3.4.

3.4 Building a texture model

Both to identify a pictorial structure (Section 3.5) and to detect it in new images (Sec-

tion 3.6), we need a good animal texture descriptor. We want a descriptor capable of pro-

ducing foreground masks like those of Figure 3.8, but for novel images. Specifically, it must

be able to segment out an animal from cluttered backgrounds (typically foliage). Descrip-

tors developed for standard vision datasets (such as CUReT [24]) may not be appropriate
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Comparing texture descriptors for detecting animal patches
Descriptor All Zebras Tigers Giraffe
Patches 8.2 8.93 5.56 5.97
Textons 11.1 31.3 12.7 12.5
SIFT 13.6 40.0 19.1 21.9

Table 3.1: We count how often we can correctly identify an animal based on texture from a
single patch from Figure 3.13. We report percentage of correct detections in cross validation
experiments for a 1-NN classifier using 1500 prototypes per class. For the full (38 class) multi-
class problem ‘All’, we perform quite poorly. Many animal classes (such as elephants and
rhinoceroses) are hard to discriminate using texture alone. When scoring correct detections
solely on zebra, tiger, and giraffe test patches, we do much better, indicating those animals
have distinctive texture. Looking at various patch representations (normalized patch pixel values,
histograms of textons, and a SIFT descriptor), we find SIFT performs the best. We adopt it as
our texture descriptor, and examine its behavior further in Figure 3.14.

for segmentation since they classify entire images of homogeneous texture. Giraffe textures

in particular are notorious for being difficult to capture (e.g. [60, 98]; see Figure 3.14).

3.4.1 Texture library

To evaluate descriptors on small image patches, we create a texture library. We use the

Hemera Photo-Object[44] database of image clip art; these annotated images have associ-

ated foreground masks. We use all the images in the “animals” category, throwing away

those animals with less than 3 example images. This leaves us with about 500 images span-

ning 38 animals. We assemble a texture library by randomly sampling 1500 17X17 patches

from each animal class (Figure 3.13).

3.4.2 Descriptor Evaluation

We use the library to compare 3 different patch descriptors; histograms of textons [63],

intensity-normalized patch pixel values [116], and the SIFT descriptor [66]. Textons are
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quantized filter bank outputs that capture small scale phenomena (such as t-junctions,

corners, bars, etc.). They are typically binned into a histogram over some spatial neigh-

borhood. The SIFT patch descriptor is a 128 dimensional descriptor of gradients binned

together according to their orientation and location; it is designed to be robust to small

changes in pixel intensity and position. Note that we use the raw descriptor on a 17X17

patch, without normalizing for scale or dominant orientation (as in[66]).

We evaluate our texture model by 3-fold cross-validation. We tried a variety of classifiers,

such as K-way logistic regression, SVMs, and K-Nearest Neighbors (NN). This classification

problem is difficult because of the large number of classes (almost 40); training an all-pairs

SVM classifier took exorbitantly long. When training a SVM on 2 animal classes, we did

not observe any sparsity. This suggests that the decision boundary is curvy (and so we need

all sample points as support vectors). K-NN performed the best, with K = 1. Hence we

evaluate patch descriptors using 1-NN classification (again using 3-fold cross-validation) in

Table 3.1.

There are three conclusions we can draw: (1) Classifying small patches seems much

harder than classifying entire images of homogeneous texture. Our results are worse than

those reported for texture databases like CUReT [60, 63, 116]. (2) There is a large vari-

ance in performance depending on the animal class. Discriminating between elephants and

rhinoceros is hard because of their similar hides, but highly textured animals such as zebras,

tigers, and giraffes stand out. Finally, (3) SIFT seems much better suited for detecting an-

imal textures from small patches. We look at the ability of SIFT to segment out animals
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Figure 3.14: Given a query image left, we replace each 17X17 patch with its closest match
from a patch in our texture library. This means we need a good animal texture descriptor;
one that captures the long thin stripes that lie within big blobs typical in a giraffe. Standard
approaches use histograms of textons (quantized filter bank outputs) [60, 63, 98, 116]. We
show a texton map on the middle left, where each color maps to an individual texton. The
big blobs that distinguish the giraffe from the background are only apparent from the long-scale
spatial arrangement of textons. Looking at histograms of textons over small neighborhoods
looses this spatial arrangement. Hence classifying giraffe patches based on texton histograms is
a poor approach, as seen in the middle right (and as acknowledged by [60, 98]). Rather, if
we classify patches using a descriptor capturing spatial arrangement of pixels (e.g. SIFT), we
are better at detecting giraffe patches (right).

from real images in Section 3.4.3.

3.4.3 Why are giraffes hard?

Segmenting giraffes present particular difficulties for texton based descriptions (e.g. [60, 98];

Figure 3.14). The texture is characterized by phenomena at two scales (long thin stripes

that lie in between big blobs). If we calculate textons over a large scale, we miss the thin

stripes. If we calculate textons on a small scale, the long scale spatial structure of the

textons defines the big blobs (Figure 3.14). This spatial structure is lost when we construct

a histogram of local neighborhoods from the texton map. This suggests that we should not

think of a giraffe texture as an unordered collection of textons, but rather simply a patch, or
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a collection of spatially ordered pixels. A robust patch descriptor such as SIFT is a natural

choice, although other descriptors such as [8] may also prove useful.

Our results are surprising because SIFT was not designed to represent texture (as noted

in [66]). However we find it can represent texture given we store enough examples. The

drawback to our nearest neighbor approach is the time required to classify a new patch; we

must compare it against 1500 prototypes from 38 classes. Obtaining a simpler parametric

representation of animal texture remains future work.

We now can use our texture models to identify the animal in a video (Section 3.5) and

detect the animal in new images (Section 3.6).

3.5 Identifying the animal

We use our patch-based texture model from Section 3.4 to identify the animal in a video.

We assume that the animal in a given video is one of the 38 animals in Hemera. We scale

the Hemera images and video clips to be similar sizes, and assume the animals are present

at similar scales. We use a two-part matching procedure, shown in Figure 3.15.

Texture cue: We match the texture models built from Hemera to the video. We use

the animal tracks (Section 3.3) to segment the video into animal/non-animal pixels. We

extract the set of all 17X17 animal patches from the video, and classify each as one of the

38 animals. We do 1-NN classification on each patch, finding the closest match from our

library of animal textures (by matching SIFT descriptors). We obtain a texture posterior

for animal labels given a video by counting the number of times the classifier votes for the
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Figure 3.15: We identify animals in videos by matching to labeled image collections. Given an
animal video (left), we obtain spatio-temporal tracks of limbs by clustering (Section 3.1). We
use the tracks to learn a spatial model (Section 3.2) and segment the video into animal/non-
animal pixels (Section 3.3). On the right, we build a texture model for various animals from
the Hemera collection of labeled and segmented images. We link our models by matching the
shape model built from video to the foreground mask of the Hemera images and matching
the texture model built from Hemera to the segmented video (Section 3.5). This automatic
matching identifies the animal in the video. We use the combined shape and texture model for
recognition in Figure 3.18.

ith animal class. Looking at Figure 3.16), we see that matching solely based on texture

does not procude the correct animal label; the giraffe video matches best with a ‘leopard’

texture.

Shape cue: We add a shape cue by matching the shape model built from the video to

Hemera. For each image in the Hemera collection, we use dynamic programming to find a

configuration of limbs that occupies the foreground mask and that is arranged according to

the shape prior learned from the video. We show 4 matches for our giraffe shape model in

Figure 3.17. Note that the model matches quite well to giraffe images in Hemera. For each

animal class, we take the best shape match score obtained over all images in that class. We

normalize the scores to obtain a shape posterior over animal labels in Figure 3.16. Using

shape, we label the giraffe video as ‘giraffe’, but mislabel both the zebra and tiger videos.
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Figure 3.16: We identify the animals in our videos by linking the shape models built from video
to the texture models built from the labeled Hemera image collection. We show posteriors of
animal class labels given the zebra (left), tiger (middle), and giraffe (right) videos. In the
top row, we show posteriors of the ten best labels based on a texture cue, shape cue, and
the combination of the two. We mark the MAP class estimate for each cue. Matching texture
models built from Hemera to the segmented videos, we mislabel the giraffe video as ‘leopard’.
By matching shape models built from videos to Hemera images, we match the giraffe correctly,
but incorrectly label the zebra and tiger videos. Combining the two cues, we match all the videos
to the correct animal label. We show posteriors for the final combined cue over the entire set
of labels in the bottom row. Note that the graphs are not scaled equally.

We compute a final posterior by adding the (log) texture and shape posteriors (weighting

shape by 1
2) in the bottom row of Figure 3.16. Selecting the best class, we identify the correct

animal label for each of our videos.

3.6 Finding animals in new images

We use our patch-based texture model from Section 3.4 and the correspondence obtained

from Section 3.5 to build a system for finding animals in new images. We follow the approach
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Figure 3.17: The top 4 matches (the top match on the left) in the Hemera collection for the
shape model learned from the giraffe video. Note that our shape model captures the articulated
variation in pose, resulting in accurate detections and reasonable false positives.

Figure 3.18: Our model recognition algorithm, as described in Section 3.6. Assume we wish to
detect/localize a giraffe in a query image (left). We replace each image patch with its closest
match from our library of Hemera animal and background textures (NN or nearest neighbor
classification). We construct a binary label image with ‘1’s for those patches replaced with a
giraffe patch (center). We use dynamic programming (DP) to find a configuration of limbs
that are likely under the shape model (learned from the video) and that lie on top of giraffe
pixels in the label image (constructed from the image texture library). We show MAP limb
configurations on the right.

outlined in Figure 3.18.

Given a query image, we first obtain a “foreground” mask using the texture library built

in Section 3.4. We replace each 17X17 image patch with the closest match from our library,

using a SIFT descriptor. We append the Hemera animal texture library with a ‘background’

texture class of 20000 patches extracted from random Corel images (not in our test pool and
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not containing animals). We then construct a binary label image with a ‘1’ if a patch was

replaced with a given animal patch. We interpret this binary image as a foreground mask

for that animal label, and use DP to find rectangles in the foreground arranged according

to the shape model learned from video (Section 3.2). For the ‘zebra’,‘tiger’, and ‘giraffe’

animal labels, we know the correct shape model to use because we have automatically linked

them (Section 3.5). Hence our final animal detection system is completely automatic.

In practice, it is too expensive to classify every patch in a query image. Fortunately, the

SIFT descriptor is designed to be somewhat translation invariant; off-by-one pixel errors

should not affect it. This suggests we sample patches from the image and match them

to our texture library. We match 5000 patches per image, which takes about 2 minutes

in our implementation. Speeding up the matching using approximate nearest neighbor

techniques [50] or building a parametric texture model may allow us to classify more patches

from an image.

3.6.1 Evaluation

We tested our models on two datasets: images from the Corel collection and various animal

images returned from Google. We scaled images to be roughly the same dimension as our

video clips. Our Corel set contained 304 images; 50 zebras, 120 tigers, 34 giraffes, and 100

random images from Corel. Note that these random images are different from the set used

to learn a background patch library. The second collection of 1418 images was constructed

by assembling a random subset of animal images found by Google. It contains 315 zebras,

70 tigers, 472 giraffes, and 561 images of other animals (‘leopard’, ‘koala’, ‘beaver’, ‘cow’,
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Figure 3.19: Precision recall curves for zebra, tiger, and giraffe detectors run on a set of 304
Corel images (top) and 1418 images returned by Google (bottom). The ‘Shape’ detectors
are built using shape models and crude texture models learned from the video. The ‘Texture’
detectors are built using texture models trained on the image collection. The S & T detectors
use texture models from the image collection and shape models from the video (where the linking
was automatic, as described in Section 3.5). We compare with 2 baselines; a 1-NN classifier
trained on color histograms and random guessing. For the tiger detector run on Corel, the color
histogram does quite well, suggesting we should look at the Corel dataset with suspicion. We
show that, in general, shape improves detection performance. Comparing our zebra and giraffe
detection results to [60, 98], we show better performance on a demonstrably harder dataset.

‘deer’, ‘elephant’, ‘monkey’,‘antelope’, ‘parrot’, and ‘polar bear’).

Detection. We show precision-recall (PR) curves in Figure 3.19. For the Shape detec-

tor, we build an animal detector using only the video and not Hemera. We build a crude

texture library using positive and negative patches inside and outside the spatio-temporal

tracks. Given a new image, we construct a binary label image by replacing patches with

their closest match from this limited texture library. We then use DP to find the MAP

configuration of limbs from the binary label image. For the Texture detector, we build a

detector using only Hemera and not the video. We compute a binary label image using the
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entire patch library (Hemera animal patches plus background patches). Our final detector

is a threshold on the sum of animal pixels (as in [60, 98]). For the S & T detector, we

construct a binary label image using the entire patch library, and then use DP to find the

MAP limb configuration. We compare our detectors with 2 baselines; a 1-NN classifier

trained on color histograms and random guessing. We tried a variety of other classifiers as

baselines (such as logistic regression and SVMs) but 1-NN performed the best.

Difficulty of datasets. Recognition is still relatively poorly understood, meaning

that reports of absurdly high recognition rates can usually be ascribed to simplicity of

the test set. Careful experimentation requires determining how difficult a dataset is; to

do so, one should assess how simple baselines perform on that dataset [20, 28, 78, 84].

This is often informative: for example, it is known that variations in reported performance

between different face recognition algorithms are almost entirely explained by variations

in the performance of the baseline on the dataset [84]. In almost all cases, our shape and

texture animal models outperform the baselines of random guessing and color histogram

classification. The one notable exception is our tiger detector on the Corel data, for which a

color histogram outperforms all our methods. This can be ascribed to the insufficiently well

known fact that Corel backgrounds are strongly correlated with Corel foregrounds (so that

a Corel CD number can be predicted using simple color histogram features [20]). In the

Google set, our baselines do worse, but our detectors do better. This negative correlation

seems to stem from the fact that Google images have varied backgrounds, unlike Corel

images (see Figure 3.21 versus Figure 3.22). Such backgrounds hurt our global histogram
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baseline but may help our animal detector (since the animal might be easier to segment).

Comparing to detection results reported in [60, 98], we obtain better performance on a

demonstrably harder dataset.

Importance of shape. In almost all cases, adding shape greatly improves detection

accuracy. An exception is detecting tigers in the Google set (Figure 3.19). We believe this

is the case because of severe changes in scale; many tiger pictures are head shots, for which

our shape model is not a good match (this also confuses our texture model, resulting in the

lower overall performance). However, for low recall rates, shape is still useful in yielding

high precision. The top few matches for the tiger detector will be tigers only if we use

shape as a cue. Our results for shape are particularly impressive given the quality of our

texture detector baseline. It has been shown that feature matching with SIFT features [28]

produces quite good performance on established object recognition datasets [33]. Such a

scheme is equivalent to our texture baseline, which we demonstrate is outperformed by our

shape and texture detector.

Location and kinematic recovery. Looking at the best matches to our detectors

(Figure 3.21 and Figure 3.22), we see that we reliably localize the detected animal and

quite often we recover the correct configuration of limbs. We quantify this by manually

evaluating the recovered configurations in Table 3.2. We define a correct localization to

occur when a majority of the pixels covered by the estimated limbs are animal pixels (if

we shoot at the estimated limbs, we’ll most likely hit the animal). We define a kinematic

recovery as correct when a majority of the limbs overlap a pixel region with the correct

48



Chapter 3. Building Models of Animals

Percentage of correct localizations
Dataset Zebra Tiger Giraffe

Corel 84.9 92.0 76.9
Google 94.0 94.0 68.0

(a)
Percentage of correctly estimated kinematics

Dataset Zebra Tiger Giraffe
Corel 24.2 28.0 38.4

Google 30.0 34.0 46.0
(b)

Table 3.2: Results for localization (a) and kinematic recovery (b). We define a correct local-
ization to occur when a majority of the pixels within the estimated limbs are true animal pixels
(we have a greater than 50% chance of hitting the animal if we shoot at the estimated limbs).
We also show the percentage of animal images where the correct kinematics are recovered. By
hand, we mark a configuration to be correct if a majority of the estimated limbs overlap a pixel
region matching the semantic labeling from Figure 3.6. The kinematic results for the giraffe
are impressive given the large number of different semantic labels; correct configurations tend
to align the upper neck, the lower neck, the upper body, the lower body, the front leg, and
the rear leg. Our animal detector localizes the animal quite well and often recovers reasonable
configurations.

semantic label from Figure 3.6. The pose results for the giraffe are impressive given the

large number of different semantic labels; correct configurations tend to align the upper

neck, the lower neck, the upper body, the lower body, the front leg, and the rear leg. In

general, we correctly localize the animal, and often we recover a reasonable estimate of its

configuration, although we suffer from scale issues (see Figure 3.22).

Counting. We detect multiple instances of the same animal in a single image by finding

the MAP animal configuration, masking away those pixels covered by the estimated limbs,

and repeating. We are able to successfully classify 20% of the tiger pictures from our Corel

set that contain one tiger as having one tiger. In general, we do quite poorly at counting

because animals often occur together in herds; this confuses our greedy counting proce-
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Figure 3.20: Counting results for the zebra (left), tiger (middle left), and giraffe (middle
right) models. We plot results for Corel. We show fraction of images with ‘i’ animals that were
correctly classified as a function of our detector threshold (where i ∈ {0, 1, 2,many} and many
is 3 or more). We see that 20% percent of tiger images can be correctly classified as having 1
tiger. However, since animals often appear in herds and overlap, counting them in general is a
difficult problem. We show an example of a difficult image on the right. Depending upon how
one scores partial occlusions and multiple scales, there could be two to four giraffes present.
Counting appears to be a quite difficult object recognition task [53].

dure, which would work better on well-separated animals in an image. Counting remains

a challenging problem for object recognition; relatively few systems have demonstrated

results [53].

Another important application of accurate localization is the ability to apply mutual

exclusion. Since our tiger detector often becomes confused by zebras, we would expect

much better performance if, upon finding a zebra with our zebra detector, we masked away

those pixels before applying the tiger detector. This strategy will only work with reasonably

accurate localization.

3.7 Discussion

One contribution of this chapter is a novel (but simple) representation of texture; rather than

using a histogram of textons, we represent texture with a patch of pixels. We demonstrate
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Figure 3.21: Results for our zebra (top row), tiger (middle row), and giraffe (bottom row)
models using shape and texture on a test pool of 304 Corel animal images. We show the top
scoring detections for each detector. Even though this dataset is relatively easy for detection
(by evidence of good baseline performance), we can still evaluate localization and kinematic
recovery results. We localize the animal quite well, and often recover reasonable kinematic
estimates (though sometimes we have trouble determining which direction an animal is facing).

that this representation outperforms the state-of-the-art for our task of detecting animals.

Broadly speaking, we introduce (and rigorously evaluate) an unsupervised system for

learning articulated models using video. Video is useful because both motion and appear-

ance consistency are strong cues for learning. Such cues allow us to learn fairly complex

pictorial structures with internal kinematics. These models allow us to track a deforming

animal in a video automatically and to identify the animal from an image library. One
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Figure 3.22: Results for our zebra (top row), tiger (middle row), and giraffe (bottom row)
models using shape and texture on a test pool of 1418 animal images obtained from Google.
We show the top scoring detections for each detector. Our tiger model mistakenly fires on a
Google zebra due to the similar texture. The quasi-correct zebra configurations suggest our
shape model might perform better if we searched over scale. The giraffe configurations tend to
be quite good. The Google results are impressive given the poor performance of our baselines;
we are detecting, localizing, and often recovering reasonable pose estimates for objects in a
dataset demonstrably hard for object recognition.

would also hope to use the models to find animals in new images. This turns out to be

hard because of a fundamental limitation of video; only a single object instance is observed,

and so the learned appearance is too specific. We show a useful strategy of combining

models learned from video and image collections (where multiple instances are observed).

These learned models appear promising for recognition tasks beyond detection, such as

localization, kinematic recovery, and (possibly) counting.
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Appendix 3.A Clustering as inference

In this section, we show the equivalence of clustering and inferring appearance of C. The

mean shift algorithm from Section 3.1.2 finds modes in the log posterior on C given image

patches from a sequence Imt(Pt). For tractability, we only consider a finite set of image

positions {P̂t} detected by a segment finder. Throughout this section, we ignore additive

and multiplicative constants since scaling and offsetting a function does change the location

of its extrema. We follow the same naming conventions of [22].

Using standard max-product equations, the max posterior can be written as

m(C) =
∏

t

max
P̂t

exp−||Imt(P̂t)−C||2 (3.2)

log(m(C)) =
∑

t

max
P̂t

{−||Imt(P̂t)− C||2} (3.3)

=
∑

t

max
P̂t

kh(||Imt(P̂t)− C||2). (3.4)

In Equation 3.4, we generalize the negative squared error term to be a robust m esti-

mator

kh(||x− y||2) = −min(||x− y||2, h) (3.5)

= max(1− ||x− y||2

h
, 0). (3.6)
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Since we expect our detector to miss the true limb in some frames, we wish to only pay a

truncated cost h for those missed detections. Massaging kh(x) into Equation 3.6 (by shifting

and scaling by h) emphasizes the relationship to an epanechnikov kernel; this connection

between m-estimators and kernel functions has been drawn before [22].

Equation 3.4 looks like a Parzen’s window estimate of C, except for the max term.

The mean shift algorithm is a gradient ascent algorithm for finding local modes in Parzen’s

window estimates; we show a modified mean shift procedure that finds modes of Equation

3.4:

Ck+1 =
∑

t Im
∗
t (Ck)gh(||Im∗

t (Ck)− Ck||2)∑
t gh(||Im∗

t (Ck)− Ck)||2)
.

where

gh(x) = −δkh(x)
δx

(3.7)

= I(x < h) (3.8)

Im∗
t (Ck) = argmax

Imt(P̂t)

kh(||Imt(P̂t)− Ck||2) (3.9)

= argmin
Imt(P̂t)

||Imt(P̂t)− Ck||2, (3.10)

where I is the standard identity function, and Im∗
t (Ck) is the image patch from each frame

closest to Ck. The resulting mode-finding algorithm is quite simple;

1. Initialize a guess Ck = C1.
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2. Find the set of detected patches within a radius of h of Ck.

3. If there are multiple patches from the same frame, only keep the closest patch to Ck.

4. Set Ck+1 to be the average of the set, and if ||Ck+1 − Ck|| > ε, goto Step 2.

We initialize the search C1 to each detected patch, and denote the various convergence

points of modes on m(C). We show a proof of convergence in the next section.

3.A.1 Proof of Convergence

At iteration k of the algorithm, we are at a current estimate Ck. Let us collect the closest

patches from each frame Im∗
t (Ck) (Equation 3.10). We can use them to construct an

approximate Parzen’s window estimate of the log posterior

fk(C) =
∑

t

kh(||Im∗
t (Ck)− C||2).

Computing Ck+1 from Step 4 is exactly equivalent to performing a single ordinary mean

shift step on the function fk(C) from the position Ck. This step maintains all the standard

properties of the mean shift algorithm. For Ck+1 6= Ck, we can write

fk(Ck) < fk(Ck+1) ≤ fk+1(Ck+1).

The first inequality is a standard mean shift property, applied to the step on fk(C) [22].

The second is true because fk+1(Ck+1) was constructed using the patches closest to Ck+1,

and so any other choice of patches is sub-optimal. Since {fk(Ck), fk+1(Ck+1) . . .} is strictly
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increasing and is upper-bounded by the number of frames, the series converges. We can

also write

||fk+1(Ck+1)− fk(Ck)||2 ≥ ||fk(Ck+1)− fk(Ck)||2 (3.11)

≥ M ||Ck+1 − Ck||2, (3.12)

for some strictly positive constant M . The first inequality is true because fk+1(Ck+1) ≥

fk(Ck+1) and the second is a standard mean shift property, applied to the step on fk(C)

[22]. The above result, combined with the convergence of {fk(Ck), fk+1(Ck+1) . . .}, implies

{Ck, Ck+1 . . .} is convergent.
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Building Models of People
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Figure 4.1: We use a model-based people tracker. Initially, we use a detuned edge-template as
a generic person model. From the video data, we build an instance-specific model capturing a
person’s appearance. We then track by detecting that model in each frame.

This chapter describes a system that, given a video sequence of possibly one or more

people, automatically tracks each person. Our fundamental assumption is that coherence in

appearance is a stronger cue to body configuration than dynamics because body segments

may move very fast but it takes time to change clothes. This suggests the following two
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part strategy. We first build a model of what the person looks like, and then we track by

detecting that model in each frame.

We use a pictorial structure representation that models the human body as a puppet

of rectangles (Figure 4.1). We describe the full model in Section 4.1. Since methods for

detecting pictorial structures are well understood [31], we focus on algorithms for learning

them (from a given video sequence). The previous chapter details an algorithm for learn-

ing arbitrary pictorial structures from simple videos (where we know a single object was

present). To track multiple people, we exploit the fact that a priori we know the geometric

model Pr(P i|P j) for a human body: a torso is connected to two arms and legs, etc. Hence

all we need to learn is the appearance of each part Pr(Im(P i)).

We describe two methods of building appearance models. One is a bottom-up approach

that looks for candidate body parts in each frame; this is a straightforward extension of the

algorithm from Chapter 3. We cluster the candidates to find assemblies of parts that might

be people (Section 4.2). Another is a top-down approach that looks for an entire person

in a single frame. This method directly exploits the known geometric model Pr(P i|P j); we

know people tend to occupy certain key poses, and so we build models from those poses

that are easy to detect (Section 4.3). Once we have learned an appearance model by either

method, we detect it in each frame to track a person (Section 4.4). We finally conclude

with results in Section 4.5.
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Figure 4.2: Our person model (a) is a tree pictorial structure. This model is parameterized
by probability distributions capturing geometric arrangement of parts Pr(P i

t |P
j
t ) and local part

appearances Pr(Imt(P i
t )|P i

t , C
i) (the vertical arrows into the shaded nodes). Our full tem-

poral model replicates (a) for each frame t, adds in a part motion model Pr(P i
t+1|P i

t ), and
explicitly models part appearance Ci. We show the full model for a torso-arm assembly in (b)
(marginalizing out the image observations for convenience).

4.1 Temporal Pictorial Structures

Our basic representation is a pictorial structure [31] (see Figure 4.2-(a)). We replicate the

standard model T times, once for each frame:

Pr(P 1:N
1:T , Im1:T |C1:N ) =

T∏
t

N∏
i

Pr(P i
t |P i

t−1) Pr(P i
t |P

π(i)
t ) Pr(Imt(P i

t )|P i
t , C

i). (4.1)

As a notation convention, we use superscripts to denote body parts i ∈ {tor, arm, . . .}

and subscripts to denote frames t ∈ {1 . . . T}. The term π(i) denotes the parent of part i,

following the tree in Figure 4.2-(a). The variable P i
t is a 3-vector capturing the position

(x, y) and orientation θ of part i at time t. The first term in the right hand side (RHS) of
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Equation 4.1 is a motion model for an individual part; the last two terms are the standard

geometric and local image likelihood terms in a pictorial structure [31].

For a fixed sequence of images Im1:T , we can interpret the RHS as an energy func-

tion of P i
t and Ci. We visualize the function (for a torso-arm assembly) as an undirected

graphical model in Figure 4.2-(b). Effectively, we want to find an arm position P arm
t

such that the arm lies nearby a torso Pr(P arm
t |P tor

t ), the arm lies near its position in

the previous frame Pr(P arm
t |P arm

t−1 ), and the local image patch looks like our arm model

Pr(Imt(P arm
t )|P arm

t , Carm).

Our image likelihood models the local image patch with a Gaussian centered at the

template Ci

Ψt(P i
t , C

i) = Pr(Imt(P i
t )|P i

t , C
i) (4.2)

∝ exp−||Imt(P i
t )−Ci||2 . (4.3)

We ignore constants for simplicity. We model the spatial kinematics of the human body

with a puppet of rectangles with freely rotating revolute joints, using potentials of the form

Ψ(P arm
t , P tor

t ) = Pr(P arm
t |P tor

t ) (4.4)

∝ I(D(P tor
t , P arm

t ) < dmax), (4.5)

where I is the standard identity function and D(P1, P2) is the distance between the hinge

points for the two segments (as in [31]). For the upper leg segments, we add angular bounds
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preventing them from pointing up into the torso.

Our motion model is bounded velocity

Ψ(P i
t , P

i
t−1) = Pr(P i

t |P i
t−1) (4.6)

∝ I(||P i
t − P i

t−1|| < vmax) (4.7)

Finding an optimal track given a video sequence now corresponds to finding the max-

imum a posteriori (MAP) estimate of Ci
t and P i

t from Figure 4.2-(b). Exact inference on

this model is difficult for two reasons; (1) the graph contains large induced cliques [57]

and (2) the state spaces of the variables are quite large. Surprisingly, even if we know the

appearance of a person, exact inference is intractable. That is, even by shading in the Ci

nodes from Figure 4.2-(b), the size of the induced cliques are exponential in the number of

body parts; a nine-segment model proves far too complex. In addition, both P i
t and Ci are

discretized versions of underlying continuous quantities. We could directly work with con-

tinuous variables if we restricted our potentials to some parametric family (e.g., Gaussian),

but we expect ψt(Ci, P i
t ) to be highly multi-modal (we commonly encounter many torso

and arm-like objects in the background).

Our model has both loopy structure and variables with large state spaces; an attractive

strategy is to ignore the loops and pass local messages [124], and to represent those messages

with a set of samples [54, 111]. Since we want MAP estimates, we will pass max-product

messages [37]. We present two algorithms that, although seemingly quite different, are

essentially the result of different message-passing schedules.
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4.2 Building models by clustering

We present in this section an algorithm that passes messages for a single part i across a set

of T frames. We pass messages across Ci until we learn the appearance of part i; we then

pass messages for Cj until we learn j’s appearance, and so on (until we learn the appearance

of all body parts). We first procedurally describe the algorithm and then relate it to our

model.

An important observation is that we have some a priori notion of part appearance Ci as

having rectangular edges. We would like to refine this model to capture the full appearance

of a part. This suggests the following approach:

1. Detect candidate parts in each frame with an edge-based part detector.

2. Cluster the resulting image patches to identify body parts that look similar across

time.

3. Prune clusters that move too fast in some frames.

4.2.1 Detecting parts with edges

We use the same part detector as described in Section 3.1.1. We repeat the information

here for clarity. We model body parts as cylinders which project to rectangles in an image.

One might construct a rectangle detector using a Haar-like template of a light bar flanked

by a dark background (Figure 4.3). To ensure a zero DC response, one would weight values

in white by 2 and values in black by -1. To use the template as a detector, one convolves it
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−1 +1 0−1 −1+2 0 −1+1
left rightbar

im

im*left

im*left + im*right min(im*left,im*right)

im*right

Figure 4.3: One can create a rectangle detector by convolving an image with a bar template and
keeping locally maximal responses. A standard bar template can be written as the summation
of a left and right edge template. Given the image on the bottom left, we convolve it with left
and right edge templates (all images are scaled from [0,1]). The resulting bar detector suffers
from many false positives, since either a strong left or right edge will trigger a detection (see the
red ellipse in the bottom middle). A better strategy is to require both edges to be strong;
such a response can be created by computing the minimum of the edge responses as opposed
to the summation.
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with an image and defines locally maximal responses above a threshold as detections. This

convolution can be performed efficiently using integral images [118]. We observe that a bar

template can be decomposed into a left and right edge template fbar = fleft + fright. By

the linearity of convolution (denoted *), we can write the response as

im ∗ fbar = im ∗ fleft + im ∗ fright

In practice, using this template results in many false positives since either a single left

or right edge triggers the detector. We found taking a minimum of a left and right edge

detector resulted in response function that (when non-maximum suppressed) produced more

reliable detections

min(im ∗ fleft, im ∗ fright)

With judicious bookkeeping, we can use the same edge templates to find dark bars on light

backgrounds. We assume we know the scale of people in a given video, and so search over a

single scale for each body part. We expect our local detectors to suffer from false positives

and missed detections, such as those shown in Figure 4.4-(a).

4.2.2 Clustering image patches

Since we do not know the number of people in a video (or, for that matter, the number of

segment-like things in the background), we do not know the number of clusters a priori.

Hence, clustering segments with parametric methods like Gaussian mixture models or k-

means is difficult. We opted for the mean-shift procedure [22], a non-parametric density
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Figure 4.4: Building a model of torso appearance. We detect candidate torsos using an edge
template on the left. We cluster the candidate image patches to enforce a constant appearance
in the center, and then prune away those clusters that do not move (all but the top 3). We now
use the medoid image patch from each cluster as templates to find the (dynamically valid) torso
tracks on the right. Note that since we are using appearance and not edges to find segments,
we can track against weak contrast backgrounds (the blue segment on the lower right).

estimation technique.

We create a feature vector for each candidate segment, consisting of a 512 dimensional

RGB color histogram (8 bins for each color axis). Further cues — for example, image

texture — might be added by extending the feature vector, but appear unnecessary for

clustering.

Identifying segments with a coherent appearance across time involves finding points

in this feature space that are (a) close and (b) from different frames. The mean-shift

procedure is an iterative scheme in which we find the mean position of all feature points

within a hypersphere of radius h, recenter the hypersphere around the new mean, and repeat

until convergence. We initialize this procedure at each original feature point, and regard

the resulting points of convergence as cluster centers. For example, for the sequence in Fig
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4.4, starting from each original segment patch yields 12 points of convergence (denoted by

the centers of the 12 clusters in (c)).

As a post-processing step we greedily merge clusters which contain members within h of

each other (starting with the two closest clusters). We account for over-merging of clusters

by extracting multiple valid sequences from each cluster during step (c). For each cluster

we keep extracting sequences of sufficient length until none are left; this is explained further

in Section 4.2.3. Hence, for a single arm appearance cluster, we might discover two valid

tracks of a left and right arm.

4.2.3 Enforcing a motion model

For each cluster, we want to find a sequence of candidates that obeys our bounded velocity

motion model. By fitting an appearance model to each cluster (typically a Gaussian, with

mean at the cluster mean and standard deviation computed from the cluster), we can

formulate this optimization as a straightforward dynamic programming problem. Let Pt be

the position of a segment in the tth frame. We assume that these have a Markovian behavior;

i.e. Pr(Pt|P1:t−1) = Pr(Pt|Pt−1). The reward for a given candidate is its likelihood under

the Gaussian appearance model, and the temporal rewards are ‘0’ for links violating our

velocity bounds and ‘1’ otherwise. We add a dummy candidate to each frame to represent

a “no match” state with a fixed charge. By applying dynamic programming, we obtain a

sequence of segments, at most one per frame, where the segments are within a fixed velocity

bound of one another and where all lie close to the cluster center in appearance.

We finally prune the sequences that are too small or that never move. The claim that we
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Figure 4.5: Given the clusters from Figure 4.4, we search near each of the valid torso clusters
for candidate arms and legs (using our segment detector set at a smaller scale). We use the
spatial model from our person detector to limit the search space; we only look for arms near
the top of torsos. We show 3 frames of candidate detections from the yellow-shirt cluster. We
cluster the new candidates to learn arm and leg appearances. Repeating for each torso cluster,
we build a “John”, “Bryan”, and “Deva” detector.

should only concern ourselves with segments that are coherent over time and that move (a

notion we call foreground enhancement) is markedly different from traditional background

subtraction since it is used to learn appearance and not to find people. Once the appearance

is known, we can track people who stand still (so long as they move at some point).

4.2.4 Learning multiple appearance models

We use the learned appearance to build better segment detectors; e.g., we now know that

the torso is a yellow rectangle, rather than just two parallel edges. We search for new

candidates using the medoid image patch of the valid clusters from Figure 4.4-(c) as a

template. We link up those candidates that obey our velocity constraints into the final
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torso track in Figure 4.4-(c). Since we found 3 valid torso clusters, we have 3 final torso

tracks. We then search near each of the torso tracks for candidate arm and leg segments.

This step exploits our geometric model Ψ(P arm
t , P tor

t ) from Equation 4.5; we know arms

lie near the top of torsos and legs lie near the bottom. We repeat the clustering procedure

to learn appearance models for those body parts. Using the medoid image patch from

the largest arm and leg clusters as templates, we find new arm and leg tracks near each

of the existing torso tracks (Figure 4.5). We now have constructed multiple appearance

templates for each person in a video. Effectively, we have taken our initial person detector,

which consisted of a deformable template of parallel edges, and built from the the video a

collection of person-specific people detectors (a “John”, a “Bryan”, and a “Deva” detector).

We now can run these detectors independently in each frame to obtain the final tracks

shown in our results (Section 4.5.1). Note that by building instance-specific object models,

we can perform multiple-object tracking as detection. For long sequences, we build

appearance models by clustering only an initial subset of the frames. We found that using

50-100 frames suffices, though we explore this point further in Section 4.5.1. Given the

learned models, we then use them in an online fashion, detecting them in new frames as

they arrive.

4.2.5 Approximate Inference

We now cast our algorithm in light of our model from Figure 4.2-(b). We visualize our

message-passing schedule with a set of trees in Figure 4.6-(a). We show in Appendix 3.A

that the mean shift clustering algorithm finds modes in the posterior of Ci, as computed
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Figure 4.6: A set of trees for loopy inference on Figure 4.2-(b). Trees (a) and (b) learn and apply
torso and arm appearance templates. Tree (c) enforces our motion model. Tree (d) restricts
arm and torso patches to those which obey our kinematic constraints.

by the tree. We interpret each torso cluster as a unique person, instantiating one copy of

the model from Figure 4.2-(b) for each cluster. For each instantiation, we use the mode

estimate (the medoid of the cluster) to construct a new torso likelihood template. We use

this template to perform inference on the remaining trees from Figure 4.6. We perform

inference on tree (c) to find a sequence of torso detections that all look like the template

and that move smoothly; this is our previous dynamic programming step from Section 4.2.3.

We then infer on tree (c) to find a set of arm segments near the found torsos. We then infer

on tree (d) to learn an arm appearance. We finally end with the arm chain in tree (b) to

extract a dynamically valid arm sequence.

For the entire 9 segment human body, we learn appearance in an order which reflects

the quality of our segment detectors. Our torso detector performs the best, followed by the

lower arm & leg detectors (since they are more likely to lie away from the body and have a

cleaner edge profile), and finally the upper arm & legs. The upper limbs are hard to detect,
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so we constrain their position by first detecting and learning the appearance of the torso

and lower limbs.

4.3 Building models with stylized detectors

The approach of clustering part detectors works well when parts are reliable detected.

However, building a reliable part detector is hard, a well-known difficulty of bottom-up

approaches. An alternative strategy is to look for an entire person in single frame. This

is difficult because people are hard to detect because of variability in shape, pose, and

clothing, a well-known difficulty of top-down approaches.

We could detect people by restricting our temporal pictorial structure from Equation 4.1

to a single time slice. Such a pictorial-structure detector can cope with pose variation. But

since we do not know part appearances Ci a priori, we must use generic edge templates as

part models. Such a detector will be confused by background clutter (see Figure 4.21).

However, our detector is not trying to “detect” a person, but rather build a model of

appearance. This is an important distinction because typically one wants detectors with

high precision and recall performance. In our case, we want a person detector with rather

unique properties: (a) it must accurately localize limbs (since we will use the estimated

limbs to build appearance models) and (b) it should have high precision (we want most

detections to be of people). Given both, we can tolerate a low recall rate since we can

use the learned appearance models to find the figure in those frames where the detector

failed [92].
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non−distinctive pose too small just right − detect this

Figure 4.7: What poses are easy to detect and build appearance from? We cannot learn
appearance when body parts are occluded. People are hard to detect when they occupy an
awkward pose, suffer from motion blur, look like the background, or are too small. As such, we
build a stylized detector for large people in lateral walking poses (bottom right).

We build a person detector that only detects people in typical poses. Even though the

detector will not fire on atypical poses, we can use the appearance learned from the standard

poses to track in those atypical frames. This notion of opportunistic detection states

that we can choose those poses we want to detect. This way we concentrate our efforts on

easy poses rather than expending considerable effort on difficult ones. Convenient poses

are ones that are (a) easy to detect and (b) easy to learn appearance from (see Figure 4.7).

For example, consider a person walking in a lateral direction; their legs form a distinctive

scissor pattern that one tends not to find in backgrounds. The same pose is also fairly

easy to learn appearance from since there is little self-occlusion; both the legs and arms are

swinging away from the body. Following our observations, we build a single-frame people

detector that finds people in the mid-stance of a lateral-walk.
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Figure 4.8: Our lateral-walking pose finder. Given an edge image on the left, we search for a tree
pictorial structure [31] using rectangle chamfer template costs to construct limb likelihoods. We
restrict limbs to be positioned and oriented within bounded intervals consistent with walking left.
We set these bounds (designated by the arcs overlaid on the model) by hand. We also search a
mirror-flipped version of the image to find people walking right. To enforce global constraints
(left and right legs should look similar), we sample from the pictorial structure posterior (using
the efficient method of [31]), and re-compute a global score for the sampled configurations.
The best configuration is shown on the right. In general, this procedure also finds walking
poses in textured backgrounds; to prune away such false detections, we re-evaluate the score
by computing the goodness of a segmentation into person/non-person pixels. We do this by
building an appearance model for each limb (as in Figure 4.9) and then use the model to classify
pixels from this image. We define the final cost of a walking-pose detection to be the number
of mis-classified pixels.

Our system initially detects a lateral-walking pose with a stylized detector (Section 4.3.1).

That detection segments an image into person/background pixels. This allows us to build a

discriminative appearance model (Section 4.3.2) – we learn the features that discriminate

the figure from its background (and assume those features will also discriminate the figure

in other frames).

4.3.1 Detecting lateral walking poses

An overview of our approach to people detection is found in Figure 4.8. We will use

a sequence from the film “Run Lola Run” as our running example (pun intended). We

construct a (stylized) person detector by restricting our full temporal model from Figure
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4.2-(b) to a single frame. We write a single-frame pictorial structure model as:

Pr(P 1:N , Im|C1:N ) =
N∏
i

Pr(P i|P π(i)) Pr(Im(P i)|P i, Ci). (4.8)

We use an 8-part model, searching for only one arm since we assume the other arm will

be occluded in our lateral walking pose. We modify our geometric and image likelihood

terms (originally defined in Section 4.1) to look for stylized poses.

Pr(P i|P π(i)): We manually set our kinematic shape potentials to be uniform within

a bounded range consistent with walking laterally (Figure 4.8). For example, we force θ

for our upper legs to be between 45 and 15 degrees with respect to the torso axis. We do

not allow them to be 0 degrees because we want to detect people in a distinctive scissor-leg

pattern. Learning these potentials automatically from data is interesting future work.

Pr(Im(P i)|P i, Ci): We evaluate the local image likelihood with a chamfer template

edge mask [113]. Our part template Ci must be invariant to clothing variations and so we

use a rectangular edge template (Figure 4.8). Given an image, the chamfer cost of an edge

template is the average distance between each edge in the template and the closest edge in

the image. We compute this efficiently by convolving the distance-transformed edge image

with the edge template. To exploit edge orientation cues, we quantize edge pixels into one

of 12 orientations and compute the chamfer cost separately for each orientation (and add

the costs together). To capture the deformations from Figure 4.8, we convolve using rotated

versions of our templates.

Since we use our lateral-walking detector in a high-precision/low-recall regime, we need
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Figure 4.9: An overview of our approach; given a video sequence, we run a single-scale walking
pose detector on each frame. Our detector fails on the small scale figure and the on a-typical
pose, but correctly detects the walking pose (left). Given the estimated limb positions from
that detection, we learn a quadratic logistic regression classifier for each limb in RGB space,
using the masked limb pixels as positives and all non-person pixels as negatives. In the middle
left, we show the learned decision boundary for the torso and crudely visualize the remaining
limb classifiers with a Gaussian fit to the positive pixels. Note that the visual models appear
to be poor; many models look like the background because some of the limb pixels happen to
be in shadow. The classifiers are successful precisely because they learn to ignore these pixels
(since they do not help discriminate between positive and negative examples). We then run the
classifiers on all frames from a sequence to obtain limb masks on the middle right (we show
pixels from the third frame classified as torso, lower arm, lower leg, and head). We then search
these masks for candidate limbs arranged in a pictorial structure [31], searching over general
pose deformations at multiple scales. This yields the recovered configurations on the right. We
show additional frames in Figure 4.19

to look only at those configurations where all the limbs have high likelihoods. Before

evaluating the kinematic potentials, we perform non-maximum suppression on the chamfer

likelihood response functions (and only keep candidate limbs above a likelihood threshold).

We also throw away arm candidates that are vertical or horizontal (since there tends to be
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many vertical and horizontal rectangles in images of man-made structures). This is again

justified for high-precision/low-recall detection; even though the arm of a person may in

fact be horizontal or vertical, we choose not to learn their appearance in this pose, since we

would encounter many false positive detections (and build incorrect appearance models).

Global constraints: We found it useful to enforce global constraints in our person

model. For example, left and right legs tend to be similar in appearance [75]. Also, our

kinematic leg potentials still allow for overlap if the left leg happens to be translated over

onto the right leg. These dependencies cannot be captured by a tree pictorial structure.

Instead of finding the MAP estimate of Eq.4.8, we generate samples from the posterior

(using the efficient method of [31]), and throw away those samples that violate our global

constraints. We generate 2000 samples per image. To find configurations where the left and

right legs look similar, we add the disparity in leg appearance (as measure by the L2 distance

between color histograms) to the negative log probability of the sampled configuration. To

force left and right legs to be far apart, we discard samples where leg endpoints are within

a distance d of each other, where d is the width of the torso. We finally keep the sample

with the lowest cost.

Segmentation score: Given an image with a laterally walking person, the procedure

above tends to correctly localize the limbs of the figure. But it does not perform well as

a people detector; it fires happily on textured regions. We add a region-based cue to the

detection score. We can interpret the recovered figure as a proposed segmentation of the

image (into person/non-person pixels), and directly evaluate the segmentation [75] as the
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Stylized Detection Partial Occlusion Full Occlusion

Figure 4.10: We show tracking results for a sequence with large changes in illumination. On the
left, we show the frame on which our walking pose detector fired. Our system automatically
learns discriminative limb appearance models from that single frame, and uses those models to
track the figure when the background changes (right). This suggests that our logistic regression
appearance model is quite generalizable. Note that since our system tracks by detection, it can
track through partial and full occlusion.

final detection cost. Rather than use a standard segmentation measure, we adopt a simpler

approach.

We build classifiers (in RGB space) for each limb, as described in Section 4.3.2. For

each limb classifier, we create a test pool of limb pixels (from inside the corresponding limb

mask) and background pixels (from identically-sized rectangles flanking both sides of the

true limb). We then classify the all test pixels and define the cost of the segmentation to be

the total number of misclassified pixels. This strategy would not work if we used classifiers

with high Vapnik-Chervonenkis (VC) dimension (a nearest neighbor classifier always returns

0 errors when training and testing on the same data [115]). Restricting ourselves to a near-

linear classifier (such as quadratic logistic regression) seems to address this issue. We

threshold this final segmentation score to obtain good stylized-pose detections.

4.3.2 Discriminative appearance models

Since our person detector localizes a complete person in a single frame, we know both the

person pixels and the non-person pixels. This suggests that we can build a discriminative
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model of appearance. We assume each limb is (more or less) constant in color, and train a

quadratic logistic regression classifier. We use all pixels inside the estimated limb rectangle

as positives, and use all non-person pixels (i.e., those pixels not inside any limb mask) as

negatives. Our appearance model for each limb is a quadratic surface that splits RGB

space into limb/non-limb pixels (Figure 4.9). Recall that our set of limbs are the head,

torso, upper/lower arm, and left/right upper/lower leg. We fit one model for the upper leg

using examples from both left and right limbs (and similarly for the lower leg). We find our

appearance models to be quite generalizable (see Figure 4.10).

4.4 Tracking by model detection

Given either model-building method (from Section 4.2 or 4.3), we now have a representation

of the appearance of each part Ci. Since people tend to be symmetric in appearance, we

maintain a single appearance for left and right limbs. The representation may be genera-

tive (a template patch) or discriminative (a classifier). We evaluate the local image (log)

likelihood of a template patch using L2 distance of RGB histograms (Section 4.2.2). We

evaluate the (log) likelihood of a classifier by summing up the number of misclassified pixels

in a local image region (by running the rectangle templates of Section 4.2.1 on limb masks).

Since our learned part models Ci provide a good description of a person’s appearance,

we can localize a person quite well just by looking at a single frame. As such, we use a

single frame pictorial structure (using the known part appearances) to detect each person

in each frame.
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Figure 4.11: We detect people by sampling from a one-leg, one-arm pictorial structure
Pr(P 1:N |C1:N , Im). For the image on the top left, we can visualize the posterior (top cen-
ter) by superimposing the samples (bottom). We find individual legs and arms by finding
modes in the posterior; in images where only one arm is visible, we will find only one arm
mode. Our mode-finding algorithm smooths the posterior. When we represent the samples in
an appropriate pose space, smoothing allowing us to recover a foreshortened arm even when all
sampled arms are too long (top right).

Occlusion: One practical difficulty of tracking people is dealing with self-occlusion;

poses where we see both arms and legs are quite rare. Rather than use a formal occlusion

model, we found the following procedure to work well. We draw 1000 samples from the

posterior of Pr(P 1:N |Im,C1:N ) for a single arm, single leg pictorial structure model. We

use the efficient method of [31]. The samples tend to lie on actual arms and legs because of

the quality of our limbs masks. We can visualize this posterior by rendering the samples on

top of one another (Figure 4.11). Interestingly, we see two distinct legs in this map; they

correspond to different modes in the posterior. The uncertainty in the matches captures the

presence of two arms and two legs. We can explicitly find the modes with the meanshift

algorithm [22]. Recall that this algorithm performs gradient ascent from an initial starting

point. We represent each sample pose as a vector of 2D limb endpoints. We start from the
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sample with the highest posterior value, and we typically need a few mean shift iterations

to reach a mode. We remove those samples whose legs and arms overlap, and repeat to find

a second mode (only keeping the new mode if its above some threshold).

Spatial Smoothing: The above procedure has a neat side affect; it spatially smooths

the posterior function Pr(P 1:N |Im,C1:N ). The amount of smoothing is proportional to the

bandwidth of the meanshift procedure. We found a “smoothed mode” pose to be better

than a direct MAP estimate in two regards: 1) the smoothed pose tends to be stable since

nearby poses also have high posterior values and 2) the smoothed pose contains “sub-pixel”

accuracy since it is a local average. Note that this is sub-pixel accuracy in the pose space.

Recall that our poses are now represented as a vector of 2D joint positions. All poses

contain arms of equal length, but, by averaging joint positions, we might obtain arms of

different lengths. Interestingly, this averaging often captures the foreshortening of a limb

(see Figure 4.11).

Temporal Smoothing: Independently estimating the pose at each frame has its obvi-

ous drawbacks; the final track will look jumpy. One can produce a smooth track by feeding

the pose posterior at each frame (as represented by the 1000 samples) into a formal motion

model. We perform local smoothing at a given frame by adding all samples from the previ-

ous and next frame when performing our mode-finding procedure. Our final pose estimate

will then be a weighted average of nearby poses from nearby frames.

Multiple People: In general, we must account for multiple people in a video. The clus-

tering procedure from Section 4.2 naturally handles multiple people with multiple clusters.
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Given a set of walking-pose detections from Section 4.3, we need to establish automatically

the number of different people that are actually present. For each detection, we learn a gen-

erative appearance model (by fitting a Gaussian in RGB space for each limb mask). This

returns a vector of RGB values. We cluster these vectors to obtain sets of people models

with similar appearance, again using the meanshift procedure. After obtaining clusters of

similar looking people, we use positive and negative examples from across the cluster when

training the logistic regression for each limb appearance. We then use these people models

as described in the next two paragraphs.

Multiple instances: If a video has multiple people that look similar, our algorithms

might only learn a single set of part models Ci (consider a video of a soccer team). In

this case, when visualizing the posterior of the pictorial structure, we will see many modes

corresponding to different instances. We use the same mode finding procedure to find a set

of unique detections.

In general, we will have multiple appearance models, each possibly instanced multiple

times. For each model, we independently find all instances of it in a frame. Many models

will compete to explain the same or overlapping image regions. We use a simple greedy

assignment; we first assign the best-scoring instance to the image pixels it covers. For all

the remaining instances that do not overlap, we find the best-scoring one, assign it, and

repeat. This greedy strategy works best when people are well separated in an image.
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4.5 Experimental results

Typically, a primary criterion for evaluating the performance of a tracker is its expected

time-to-failure. This pre-supposes that all trackers eventually fail — we argue this is not

true. If one tracks a face by running a face detector on each frame, one can track for

essentially infinitely long [118]. In this case, the quality of the track can measured by the

quality of the face detector (in terms of correct detections and false positives). We extend

this analysis to the detection of individual body parts. In probabilistic terms, we argue that

when tracking with a weak motion model, performance is determined by the quality of the

likelihood model (our person template).

4.5.1 Building models by clustering

We have tested our clustering algorithm on four different sequences (Table 4.1). “Jumping

Jacks” and “Walk” were both taken indoors (at 15 frames per second, or fps) while the sub-

jects were simultaneously motion captured. Ground truth for those sequences was obtained

by registering the motion capture data with the video. We clustered an initial subset of

the total frames; 75/100 and 150/288, respectively. “Street Pass” and “Weave Run” were

both taken outdoors (at 30 fps), and ground truth was hand-labeled for a random subset of

frames. For these sequences, we clustered the first 200/380 and 150/300 frames respectively.

We show localization rates in Table 4.1. We define a part to be correctly localized when

the majority of pixels covered by the estimated part have the correct labeling (we manually

label a random set of 100 frames from a sequence). We only score the first arm and leg
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% of frames correctly localized (clustering)
Sequence Torso Arm Leg
J. Jacks 94.6 87.4 91.8

Walk 99.5 84.3 68.2
Street Pass 91.2 57.4 38.7
Weave Run 90.3 21.2 61.8

Table 4.1: Tracker performance on various sequences. We evaluate performance by looking at
the percentage of frames where body parts have been correctly localized. Our torso rates are
quite good, while rates for limbs suffer in the challenging outdoor sequences.

mode found for a given person detection. We localize torsos quite well, but limbs are hard,

particularly in the challenging outdoor sequences.

Self-starting: None of these tracks were hand initialized. However, we do optimize

thresholds for the segment detectors and the bandwidth for the mean-shift procedure for

the sequences shown. More sophisticated segment detection and clustering algorithms may

eliminate the need for tweaking.

Multiple activities: In Figure 4.12, we see frames from the two indoor sequences;

“Jumping Jacks” and “Walk.” In both left rows, we show the original edge-based candidates

that clustered together. When limbs are close to the body or surrounded by a weak-

contrast background, few candidates are found. By building an appearance model (using

the surrounding frames where candidates are detected), we now can track using the learned

appearance. Because we track by detection without a strong motion model, we can track

both activities with the same system.

Lack of background subtraction: In Figure 4.13, we show frames from a sequence

that contains a moving background. We still learn accurate appearance models, although

varying lighting conditions often result in poor matches (as the poor localization results
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Figure 4.12: Self-starting tracker on “Jumping Jacks” (top) and “Walk” (bottom) sequences.
In both left rows, we show the original edge-based candidates that clustered together. When
limbs are close to the body or surrounded by a weak-contrast background, few candidates are
found. By building an appearance model (using the surrounding frames where candidates are
detected), we now can track using the learned appearance (right).

for arms and legs in Table 4.1). By using a metric more robust to lighting changes, the

appearance models learned in the clustering and the segments found may be more accurate.

Alternatively, one might add explicit illumination variables to Ci to deal with temporal

changes in brightness.

Multiple people, recovery from occlusion and error: In Figure 4.14, we show

frames from the “Weave Run” sequence, in which three figures are running in a weave

fashion. In the top row, we see two tracks crossing. When the two figures lie on top of each

other, we correctly disambiguate who is in front, and furthermore, recover the interrupted

track of the occluded figure. In the bottom row, a track finds a false arm in the background

but later recovers. We also see a new track being born, increasing the count of tracked
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Figure 4.13: Self-starting tracker on “Street Pass” sequence containing multiple moving objects.
The learned appearance templates are shown below select frames from the track. We denote
individual tracks by a token displayed above the figure. The tracker successfully learns the correct
number of appearance models, and does not mistake the moving car for a new person. We are
also able to recover from partial and complete occlusion, as well as from errors in configuration
(which drifting appearance models would typically fail on).

people to three.

Number of frames to cluster: For long sequences, we only cluster the first K frames.

A natural question is how does K affect the final performance? We evaluate localization

performance versus K in Figure 4.15 for the “Walk” sequence. We also show results for

models learned with part detectors augmented with a skin classifier. Both detectors in

Figure 4.15 happen to perform well for small K since our subject is initially against a

uncluttered background. As we increase K and our subject walks into the room, our edge

detectors pick up extraneous background candidates which cluster into poor appearance
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Figure 4.14: Self-starting tracker on “Weave Run”. We show a subset of frames illustrating one
figure passing another above the set of learned appearance templates. Note that the correct
figure is occluded and that the correct track is recovered once it reappears. An earlier incorrect
arm estimate is also fixed (this would prove difficult assuming a drifting appearance model).
The final frame new track being born, increasing the count of found people to three. Below
each figure we show detection signals, as a function of time, specifying when it is in view. The
manual and automatic signal extracted from the tracker agree – the tracker tends to detect
figures when they are in view and misses them when they are not.

models. However, both perform well as K is increased sufficiently. This result suggests that

high-level clustering can compensate for poor low-level detection, given that we cluster over

enough frames. Also note that performance does not change if we measure it on the initial

set of K training frames or the entire sequence. This suggests that our learned appearance

models generalize well.
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Figure 4.15: How do our generic part detectors affect performance? We plot performance for
edge versus edge+skin detectors for the “Walk” sequence. We vary the initial size of K frames
used to cluster and learn an appearance model. For small K, both detectors fortuitously learn
a good model due to a lack of background clutter. As K increases, background clutter leads
our edge detectors to construct poor appearance models. For large K, clustering yields working
models irrespective of the detectors. Note that performance is equivalent when measured on
the initial training frames (left) or the entire sequence (right); this suggests that the learned
appearance models generalize well.

4.5.2 Building models with a stylized detector

Our stylized pose system is faster than our clustering system, because it operates on single

frames rather than groups of frames. This allowed us to test this system on hundreds of

thousands of frames. Our dataset includes the feature length film “Run Lola Run”, an hour

of footage of a local park, and long sequences of legacy sports footage, including Michelle

Kwan’s entire 1998 Olympic performance.

Our automatic tracker consists of two stages. The system first runs a stylized pose

detector in each frame of a sequence to find select frames from which to build discriminative

appearance models (Section 4.3). It then tracks by detecting the learned appearance models

in all frames (Section 4.4). We evaluate each component separately.

Automatic Initialization: We stress that all these tracks were obtained completely

automatically with no manual intervention; the same program with identical parameters

was used in each case. We did scale the video clips so that the figure was of a size expected
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by the stylized detector.

4.5.2.1 Lateral-Walking Pose Detection

Evaluating our walking pose detector is a difficult task by itself. Labeling false positives

is straightforward; if the detector finds a person in the background, that is incorrect. But

labeling missed detections is difficult because our detector is not trying to detect all people,

but only people in certain configurations.

In the case of “Run Lola Run”, we can exploit shots (sequences where the camera is

filming continuously) in our evaluation. We label each shot (as determined by a histogram-

based shot detector) as containing a full-body figure or not. We define the score of a shot to

be the best score from our walking detector on its set of frames. The implicit assumption

is that if a shot contains a person, our walking pose detector will fire at some point. In

Figure 4.16, we show precision-recall curves for the task of detecting shots with full-body

figures using our walking detector. Note that we would expect to perform much better if we

use a learned appearance model to track throughout a video, and not just in the shot it was

found (particularly for “Run Lola Run” since Lola never changes clothes!). Even without

exploiting that fact, we still do quite reasonably at high-precision/low-recall regions of the

graph, and significantly better than chance.

For the park sequence, there are no natural shots, making recall measurements awkward

to define. Since this video contains multiple people (many of whom look similar), we cluster

the appearance models to obtain a set of different-looking people models, and then use them

to search the entire video. In this case, we would like to select a detector threshold for our
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Figure 4.16: Evaluating our stylized detector on “Run Lola Run”. We score each shot with the
best detection score from our stylized detector. On the top show the top 12 shots from the
first 30000 frames of the movie. On the bottom, we show precision-recall curves for detecting
shots with a full-body person. At low-recall, high-precision regions, our detector performs quite
well. Many running shots of Lola show her running toward or away from the camera, for which
our detector does not fire. If we use the model learned from one shot across the whole video,
we would expect to do significantly better (since Lola never changes clothes!).

walking detector where most of the accepted detections are correct, and we still accept

enough different-looking models to capture most people in the video. As such, we plot

precision versus number of appearance model clusters spanned by the accepted detections
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Figure 4.17: Evaluating our stylized detector on unscripted outdoor footage. On the top, we
show the top 10 detections for the first 30000 frames of the video. Even though multiple people
are frequently interacting (see Figure 4.20), our walking pose detector tends to fire on frames
where the figures are well separated, since they have a better detection score. Note that we do
not use any form of background subtraction. On the bottom, we show precision curves. Recall
is awkward to define since we are not trying to detect people in every frame; rather we want
to fire at least once on different looking people in the sequence. We obtain a set of models
of different looking people by clustering the correct detections of our walking detector (which
we validate by hand). For a given detector threshold, we can explicitly calculate precision (how
many of the reported detections are correct) and the number of different models spanned by
correct detections. As we lower the threshold, we span more models.

in Figure 4.17. We do quite reasonably; we can find most of the different looking people

in the video while still maintaining about 50% precision. In other words, if our appearance

model detection was perfect (Section 4.5.2.2) and we were willing to deal with 50% of the

tracks being junk, we could track all the people in the video.

We look at the ability of our detector to find people performing unusual activities in

Figure 4.18. Perhaps surprisingly, we are still able to find frames where our detector fires.
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This means our algorithm is capable of tracking long and challenging sports footage, where

people are moving fast and taking extreme poses. We show results on a baseball pitch from

the 2002 World Series and Michelle Kwan’s entire medal winning performance from the

1998 Winter Olympics.

4.5.2.2 Appearance model detection

In the second phase of our algorithm, we track by detecting the learned appearance models

in each frame. Following the convention from Section 4.5.1, we evaluate performance by con-

sidering localization results for limbs (Table 4.2). The results for our commercial sequences

are impressive considering the fast movement and the complexity of the background. Our

success is due to the simple fact that people often dress to be visually distinctive. If baseball

players wore green uniforms, it would be hard to spot one’s teammate on a playing field.

Likewise, filmmakers often want characters to stand out so they can be seen by an audience;

a wonderful example is Lola’s red hair. Once our person model learns to look for red hair

(Figure 4.19) or a white uniform (Figure 4.18), it is essentially impossible for it to loose

track because by design there is little white or red in the background.

In our park sequence (Figure 4.20), we learn multiple appearance models for multiple

people. Here, we consider a localization to be correct if it fires on any person in the image

because we do not look for consistency of detections from one frame to the next. Since

many people in the sequence look like each other, we need additional constraints (such as

motion) to pull out individual tracks. Our results here are also good, though not near the

performance we achieve on our commercial sequences. We do quite well at detecting torsos,
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Figure 4.18: Our automatic tracker on commercial sports footage with fast and extreme motions.
On the top, we show results from a 300 frame sequence of a baseball pitch from the 2002 World
Series. On the bottom, we show results from the complete medal-winning performance of
Michelle Kwan from the 1998 Winter Olympics. We label frame numbers from the 7600-frame
sequence. For each sequence, our system first runs a walking pose finder on each frame, and
uses the single frame with the best score (shown in the left insets) to train the discriminative
appearance models. In the baseball sequence, our system is able to track through frames with
excessive motion blur and interlacing effects (the center inset). In the skating sequqnce, our
system is able to track through extreme poses for thousands of frames. This means that our
system can track long sequences with extreme poses, complex backgrounds, and fast movement
without manual intervention.

with about 90% accuracy, while arms are still difficult because they are small and move fast.

This task is hard for many reasons; the video is washed out, there are significant shadow

effects, and there are many small people interacting with each other (Figure 4.20).
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% of frames correctly localized (stylized pose)
Sequence Torso Arm Leg
Baseball 98.4 93.75 95.3
Skating 99.2 77.5 97.6

Lola 95.6 89.8 92.6
Park 79.1 29.2 58.3

Table 4.2: We evaluate our appearance model detection by calculating how often individual
limbs are correctly localized. For “Run Lola Run”, we average performance over three shots
on which the stylized detector correctly fired (a separate appearance model was learned for
each shot; see Figure 4.10,4.21,4.19). Our torso and leg detection tends to be quite good,
with arms being harder to track because they are small. The outdoor “Park” sequence proves
difficult because of crowd scenes and lighting changes. Our performance is impressive given the
difficulty and length of sequences we test on; our commercial sequences contain extremely fast
movement and non-stationary complex backgrounds, and are tracked completely automatically.

Figure 4.19: A sequence from “Run Lola Run” of Lola running around corner and bumping into
a character while undergoing extreme scale changes. Note that the other character is wearing
bulky clothing and so our person detector has no hope of finding him. Our initial walking detector
is run at a single scale, but once we learn an appearance model (as shown in Figure 4.9), we
track over multiple scales by searching an image pyramid at each frame.

4.6 Discussion

This chapter presents an approach to people-tracking that bootstraps a generic person

model into an instance-specific one. The basic framework is to (1) run a generic model on
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Figure 4.20: Automatic tracking of a sequence from the 30000 frame park sequence. This
sequence is harder than our commercial footage because we have poor color resolution, many
small figures are in shadow, and many are occluding each other while performing fast motions.
We still obtain good detections and reasonable localization of arms and legs. Since many of the
learned models look similar, we do not try to disambiguate instances from frame to frame. One
might do that using motion constraints.

a video, (2) build a specific model from the detections, and then (3) use the specific model

to track.

Do better models help? The fundamental premise of this chapter is that tracking is

easier with an instance-specific person model, rather than a generic one. A natural question

to ask is how well one could do simply with a generic model. We examine this in Figure 4.21.

We construct two pictorial structures using identical code except for the part appearance

model Pr(Im(P i)|P i, Ci). We use edge templates for the generic model, and we use a color

classifier for the ‘Lola’ model (trained on a stylized detection). Looking at the posterior

map, the ‘Lola’ model performs much better at data association; it readily ignores most of

the background clutter. Background clutter confuses the generic model, causing spurious

modes in its posterior. These modes also suggest why propagating a dynamic model is hard;

it must maintain uncertainty across all of these modes. The MAP estimates of the ‘Lola’
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MAP of generic person model

generic person posterior

MAP of ‘Lola’ model

‘Lola’ posterior

partial
occlusion
complete

occlusion

detection
incorrect

% of frames correctly localized
Model Torso Arm Leg

Generic 31.4 13.0 22.2
‘Lola’ 98.1 94.3 100

Figure 4.21: Tracking people is easier with an instance-specific model as opposed to a generic
model. In the top 2 rows, we show detections of a pictorial structure where parts are modeled
with edge templates. We show both the MAP pose and visualize the entire posterior using the
method of Figure 4.11. Note that the generic edge model is confused by the texture in the
background, as evident by the bumpy posterior map. In the bottom 2 rows, we show results
using a ‘Lola’ model where part appearances are learned from a stylized detection (Section 4.3).
This model does a much better job of data association; it eliminates most of the background
pixels. We can quantify this by looking at the percentage of frames where limbs are accurately
localized (the table). Note that because we track by detection, our system can recover from
partial and complete occlusions.

model also produce better tracks. We quantify this by looking at localization rates.

Fundamentally, we build models by looking for coherence in the detections. We develop

an algorithm in Section 4.2 that operationalizes this notion by clustering candidate body
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parts. A quite useful observation is that this initial detection can be done opportunistically;

we describe an algorithm in Section 4.3 that looks for stylized poses that are reliably detected

and easy to build appearance from. One could also look for stylized motions over short

frames; such a detector might perform better because it pools information from across

frames. Another practical observation is that discriminative appearance models learned

from a few frames can discriminate an object in other frames. Discriminative features for

tracking are not new [21], but by learning them from select frames in which we trust our

detections, they become quite powerful.

Comparison of model-building algorithms: We find the two model-building algo-

rithms complementary. The stylized-pose system appears more robust, since a single set of

parameters worked for all the sequences shown. If we can observe people for a long time,

or if we expect them to behave predictably, detecting stylized poses is likely the better

approach. These scenarios might be realistic for public areas monitored by security cam-

eras or athletic performances. However, if we observe a person moving for a short time in

a contrived manner, clustering a pool of candidate parts may work better than a stylized

detector. A simple example of this is our jumping jack sequence (Figure 4.12); here, the

clustering algorithm easily learns the body appearance, but stylized pose algorithm fails be-

cause the figure never walks laterally. This suggests another improvement for our stylized

system; increase the set of stylized poses to cover different aspects.
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Activity Recognition

Let us assume that we have a pictorial structure model for each actor in a video. The

model can be obtained off-line or online using the methods described in Chapter 4. In this

chapter, we show how to use such a model to obtain a description of the activities of each

actor automatically. Our basic approach is to match 2D poses (obtained by matching the

pictorial structure to each frame) to 3D poses from a motion capture library. Off-line, we

label the 3D poses with activity labels, and so we retrieve the labels during the matching.

5.1 Previous Work

There has been a substantial amount of work on recognizing activities from video (for review

papers, see [3, 12, 13, 40, 49]).

There seems to be a general consensus that different taxonomies are needed for inter-

preting events at different time scales. Bobick [13] refers to an atomic event as a movement,
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a sequence of movements as an activity, and finally terms large-scale events as actions.

Methods for recognizing small-scale movements typically match some video signature to

a template. If the background is stationary or uncluttered, than one can match low-level

spatio-temporal descriptors without explicitly tracking arms and legs [14, 25, 30, 87, 125].

Alternatively, one could explicitly extract body pose, and directly match based on pose

estimates [7, 9, 112]. These approaches are more similar to our work.

Recognizing large scale movements probably requires more sophisticated techniques;

one approach is that of temporal logics. Here actions and events are represented with a

set of logic primitives; valid temporal relations are represented by interval bounds (to pick

up a cup we must first grab it) [4, 85, 86]. Given a video with low-level event detections,

one obtains high level descriptions by forms of constraint propagation [103, 104]. Logic

formalisms can be difficult to both author and perform inference with because they require

clean input; it is not clear if they will work given missing or noisy video summaries.

5.1.1 Methods based on Hidden Markov Models

By far the most popular approach is to use a HMM, where the hidden state is an activity

to be inferred, and observations are image measurements. Models used have tended to be

small (for example, one sees three to eight state models in [15, 17, 32]). Yamato et al.

describe recognizing tennis strokes with HMM’s [122]. Wilson and Bobick describe the use

of HMM’s for recognizing gestures such as pushes [121]. Yang et al use HMM’s to recognize

handwriting gestures [123].

There has been a great deal of interest in models obtained by modifying a basic activity-
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state HMM. The intention is to improve the expressive power of the model without compli-

cating the processes of learning or inference. Variations include a coupled HMM (CHMM)

[15, 17], a layered HMM (LHMM) [76, 80, 81], a parametric HMM (PHMM) [120], an en-

tropic HMM (EHMM) [16], and variable length Markov models (VLMM) [38, 39]. All these

HMM variations could be seen as ways of simplifying the process of model authoring: i.e.,

learning the state transition matrix. Fitting a large state space model from data is hard

because one needs lots of data.

5.2 Our approach

We focus on recognizing small-scale activities (movements, in Bobick’s terms). An imme-

diate concern is what activities to recognize? For limited domains, such as tennis footage,

there maybe natural categories – a forehand stroke, a backhand, etc. However, when placing

a camera in a public park, it is not so obvious (see Figure 5.1). In our opinion, in order to

capture everyday movements, one must use a vocabulary that is large and expressive. To

achieve this, we allow activity labels to be composed; one can both walk and wave simul-

taneously. With such a representation, we must take care to not allow invalid combinations

(e.g., one cannot simultaneously run walk).

A large vocabulary complicates matters considerably because learning and inference are

now difficult. In particular, estimating the parameters of a large state-space HMM is hard

because one needs an exorbitant amount of training data. We decouple both learning and

inference from the choice of vocabulary by taking an analysis as synthesis approach; we
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Figure 5.1: What is the correct annotation vocabulary? Most likely, an annotation system
will not contain a ‘Trying to catch a frisbee between the legs, but dropping it’
term. This makes it difficult to construct a canonical vocabulary for everyday motion. We
construct a class structure that allows for different labels to be composed; such a system might
label the above motion as crouching, reaching, and kicking. This creates a large effective
vocabulary size which makes direct analysis difficult. We build a system that decouples analysis
from the choice of vocabulary by matching poses rather than annotations.

recognize activities by synthesizing a motion that looks like a video. We synthesize motion

by re-arranging pre-recorded clips from a motion capture database. By pre-labeling clips

with activity labels, we synthesize an activity labeling “for free”.

Essentially, we replace an activity state-space HMM with a pose state-space HMM.

Learning a pose model is easier because poses live in a metric space; this means we can

construct transition matrices by looking for poses that are nearby in this space. Such

matrices are typically sparse and known as motion graphs in the graphics literature [5, 59,

61]. From our HMM perspective, synthesis is equivalent to inferring a sequence of hidden

pose states. In practice, one performs synthesis by using graph search algorithms on an

underlying motion graph.

Figure 5.2 shows an overview of our approach to activity recognition. We use 3 core

components: annotation, detection, and motion synthesis. Initially, a user labels a collection
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of 3D motion capture frames with annotations; this can be done with minimal supervision

(Section 5.3). Given a new video sequence to annotate, we use a pictorial structure to

detect 2D poses of each figure in a sequence [31]. We then synthesize 3D motion sequences

which look like the detections by matching them to our annotated motion capture library

(Section 5.4). We finally accept the annotations associated with the synthesized 3D motion

sequence.

Our approach of linking video tracks with a motion capture database dates back to at

least the work of Sidenbladh et al [100]. Similar approaches of synthesizing motions given

constraints from video are taken in [61, 94]. Those works use a motion graph to enforce

a human smoothness prior; we use a motion graph as a mechanism for explicit analysis –

obtaining an activity description [88].

5.3 Obtaining Annotated Data

We have annotated a body of motion data using the system described in [6]. We repeat the

process here for convenience.

There is no reason to believe that a canonical annotation vocabulary is available for

everyday motion, meaning that the system of annotation should be flexible. In practice,

this means that it should be relatively simple for a user to revise the annotations attached

to the data set. Annotations should allow for composition as one can wave while walking,

for example. We achieve this by representing each separate term in the vocabulary as a bit

in a bit string. Our annotation system attaches a bit string to each frame of motion. Each
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Annotations

{run,walk, wave, etc.}

3D motion
library

original video 2D track

annotated 
video

Motion Synthesizer

user

StandWaveStandWave

detect
model
build

+

Figure 5.2: Our annotation system consists of 3 main components; annotation, detection,
and motion synthesis. A user initially labels a collection of 3D motion capture frames with
annotations. Given a new video sequence to annotate, we track by detecting a pictorial structure
model in each frame. We then synthesize 3D motion sequences which look like the 2D tracks
by lifting tracks to 3D and matching them to our annotated motion capture library. We accept
the annotations associated with the synthesized 3D motion sequence as annotations for the
underlying video sequence.

bit in the string represents annotation with a particular element of the vocabulary, meaning

that elements of the vocabulary can be composed arbitrarily.

That said, we still need an initial vocabulary that can be composed/revised as needed.

We use a set that is convenient for synthesizing motions from a given database; this sug-

gests the vocabulary will be tied to that specific database. We use 7 minutes of football mo-

tions, collected for a commercial video game. An independent user decided a set of 13 labels

would be useful for synthesizing motions from this collection; run, walk, wave, jump,
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turn left, turn right, catch, reach, carry, backwards, crouch, stand, and pick

up. These labels are allowed to occur in any combination: turn left while walking, or

catch while jumping and running. This produces an enormous vocabulary of 213 = 8192

different annotations. Learning a HMM with such a large state space may be difficult; we

avoid such difficulties by dealing with poses rather than labels. In practice, many label

combinations will never be used; we can’t conceive of a motion that should be annotated

with both stand and run. Examining our database, we see that only 46 combinations are

ever observed. We must take care to ensure that the final analysis/synthesis algorithm

respects these valid combinations (see Section 5.4.3).

Actual annotation is simplified by using an online learning approach where a user boot-

straps a classifier. Initially, a user hand-labels a random subset of frames from the database.

One SVM classifier is learned for each element of our vocabulary independently; this means

one learns a run/not-run classifier, a stand/not-stand classifier, etc. The classifiers use

Gaussian kernels, and use the joint positions for one second of motion centered at the frame

being classified as a feature vector. Since the motion is sampled in time, each joint has a

discrete 3D trajectory in space for the second of motion centered at the frame. We used a

public domain SVM library (libsvm [19]). The out of margin cost for the SVM is kept

high to force a good fit.

After the initial training, we use the classifiers to label the remaining frames in the

database. The user is incrementally presented with newly classified frames, and makes

corrections as necessary. The user verified data is then added to the SVM training set and
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the classifier’s decision boundary is re-optimized. It is our experience that after annotating

3-4 example variants of an annotation, the user rarely needs to correct the auto-annotation

results. It is remarkable that such a procedure tends to respect constraints implicit in the

user-labelings; the classifiers tend not to label a new motion as both a run and a stand.

This means it is possible to annotate large databases of motions quite rapidly.

5.4 3D Motion Synthesis

Given a pictorial structure for each actor, we match it to each frame to obtain 2D pose

estimates. We assume that our sequences are filmed with stationary cameras (or a moving

camera with known motion, so that it can be factored out). We expect our 2D estimates

to be noisy, and to suffer from left/right ambiguities.

We can think of the pictorial structure as returning a sequence of 2D stick figures.

Intuitively, it might seem that identifying the rough 3D pose is possible by looking at a

single 2D pose; we define a matching criteria that does this in Section 5.4.1. However, a 2D

stick figure is still ambiguous in many ways; it is difficult to recover the orientation of the

torso with respect to the camera, and it is difficult to label the left/right limbs. We resolve

these ambiguities in Section 5.4.2 by propagating information throughout a video.

5.4.1 Matching by minimizing reprojection error

In this section, we describe an approach for matching 3D poses to 2D poses, assuming a

scaled orthographic camera model. We represent each 2D pose as a point cloud of joint
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positions. We define a joint position at the upper & lower torso, shoulders, elbows, wrists,

knees, and ankles (for a total of 12 points). We can similarly represent each pose from our

motion capture library as a cloud of 12 corresponding 3D points. Note that this is a subset

of the 30 joints in our original motion capture skeleton (see Figure 5.2). Hence our matching

process also recovers extra degrees of freedoms that are difficult to directly estimate from

video. Computing the matching 3D pose reduces to the well-studied problem of matching

a 3D point cloud to a 2D point cloud, where correspondences are known [46, 47].

To incorporate local dynamics (such as velocities and accelerations), we represent all

poses by a point cloud of joint positions collected from 15 frame (1
2 second) windows. We

write the 2D point cloud extracted from the tth frame as mt, a 2X(12 ∗ 15) matrix. We

compute mt at every frame, and so the windows overlap. Similarly, we represent our motion

capture library as a collection of 3D point clouds Mi (where i varies over the 11000 poses

in our database). For convenience, we subtract out the centroids and subsample the clouds

to be equal to the video frame rate.

Alignment: An important issue when comparing point clouds is that of alignment

[46, 47]. We find the transformation that best aligns the 3D pose Mi with the 2D pose mt,

in terms of minimizing the reprojection error. We search over scaled-Euclidean transforma-

tions; a rotation, translation, and an isotropic scale. We explicitly search over rotations,

rendering Mi from different orthographic cameras. We assume that the camera is at 0◦

elevation, and explicitly search over 20 azimuth (φ) values. Since the camera is fixed over

a sequence, we can interpret φ as the orientation of the root body (i.e. the center torso) of
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Mi with respect to the camera. Given a pose Mi and orthographic camera matrix Rφ, we

compute a 2D rendered point cloud RφMi. Aligning two 2D point clouds is straightforward

[46]; we translate and scale RφMi so that its centroid and variance match that of mt.

Reprojection error: We write the squared reprojection error after alignment as

||RφMi − mt||2. We cannot directly compute this error because of left/right ambiguities.

The pictorial structure model cannot distinguish between left and right arms because they

look similar. This means that correspondence is not fully known. Interestingly, the align-

ment procedure described thus far still applies; the centroid and variance of a point cloud

do not change when points are permuted. We compute a final reprojection error by finding

the left/right assignment that minimizes the reprojection error:

||RφMi −mt||2lr =
15∑

j=1

min
k
||RφMi(j)−mt(j)Fk||2, (5.1)

where we write Mi(j) for the joint positions from the jth frame in the 15-frame window. We

write Fk for a 12X12 binary matrix that permutes the left/right leg/arm joints of mt(j);

hence k ∈ {1, 2, 3, 4}.

Missed Detections: In most frames, our pictorial structure will not recover all the

limbs. We would like to omit any missing joint positions from the 2D and 3D clouds

when performing alignment and computing the reprojection error. However, missing limbs

complicate alignment; if we detect only one leg in a frame of mt, we do not know whether

to align it to a left or right reference leg in Mi (if we detect two legs, correspondence

doesn’t matter as explained above). We explicitly search over the 4 left/right labelings of
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the center frame for alignment. To avoid searching over labelings for the remaining frames

in our window, we only use unambiguous points for computing alignment (points from

the center frame, points on the torso, and points from limbs for those frames when both

limbs are detected). After alignment, we use all detected joint positions to compute the

reprojection error, as in Equation 5.1.

Alternatives: One could build an aspect model exploiting missed detections. If the

left side of a person is not detected, this suggests something about his/her orientation with

respect to the camera. We can formalize this notion by computing the visibility of joint

positions of the rendered 3D point clouds RφMi. When matching to a specific mt with a

given set of detected (i.e., visible) limbs, we add a penalty for mis-matched visibility flags

(because they suggest a false positive or missed limb detection). In our experience, this

aspect model did not significantly improve results.

Rather than computing strict L2 reprojection error, one might want to compute a

weighted error where joint positions from the center frame are weighted more heavily. All

our steps (our alignment procedure and reprojection error computation) still follow; in our

experience this did not significantly change the final results.

5.4.2 Synthesis by Dynamic Programming

Given the matching procedure from Section 5.4.1, one might find the pose Mi that best

matches mt for each frame independently. For some poses, such as lateral views of the

stance phase of a walk, it is hard to estimate both the torso orientation and left/right

assignment from the 2D stick figure mt. If someone supplied the correct camera azimuth
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(or equivalently the torso orientation) and left/right assignment, the recovered pose Mi

would match mt rather well. We propagate information temporally to achieve this effect;

we find a sequence of poses Mi that match mt and that change smoothly from frame to

frame.

For each frame t, let us compute the best matchMi given a particular camera orientation

{1, 2, . . . , 20} and given a particular left/right assignment of the center frame. This yields

a pool of 20 × 4 = 80 3D point clouds rotated, translated, and scaled to align with mt.

Let us write these aligned point clouds as Mt(lt) and their reprojection error as εt(lt) where

lt ∈ {1, 2, . . . , 80}.

We now want to find a sequence of 3D point clouds that all match the image data well

and that match future and past 3D estimates well. We can efficiently compute this by

dynamic programming. Let us define

f(l1:T ) =
∑

t

εt(lt) + w||Mt(lt)−Mt−1(lt−1)||2o, (5.2)

where ||.||2o is the squared error of the points that overlap temporally (the first 14 frame

window in Mt and the last 14 frame window in Mt−1). The user-defined weight w controls

how closely the synthesized motion should follow the image data (the first term) versus how

continuous it should be (the second term). We use w = .1.

Estimating Depth: Aligning our point clouds Mt(lt) in the out-of-image plane direc-

tion is difficult; this is a well-known difficulty of estimating depth from a single camera.

In theory, one could use the recovered scale (a person becomes bigger when he/she moves
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closer to the camera). In many practical sequences, people’s changes in depth are small

relative to the distance to the camera, resulting in little scale change. As such, we do not

try to explicitly recover the dZ movement, but rather make the continuity cost ||.||2o depth-

invariant. We do this by z-translating each cloud Mt(lt) so that its centroid lies on z = 0

[46].

We compute the sequence of l̂t that minimizes Equation 5.2 by dynamic programming.

Doing so recovers a sequence of 3D clouds Mt(l̂t) that all match the image data, and that

temporally match each other well.

5.4.3 Smoothing

For each frame t, the recovered point cloud Mt(l̂t) spans a 15 frame window. This means, for

each frame t, we have 15 possible poses, obtained from neighboring frames with overlapping

windows. Since our 3D point clouds Mt(l̂t) are subsampled representations of larger point

clouds (constructed from skeletons with additional joints), we align the full point clouds to

the images using the recovered scaled-Euclidean transformations. To compute a final 3D

pose, we average the joint positions from the 15 skeleton poses that overlap frame t.

Recall that each 3D pose was labeled off-line with a binary vector of 13 flags representing

an annotation. To compute an activity vector for the tth frame, one might be tempted to

average the binary vectors of the overlapping poses. However, this might produce a final

annotation where both run and stand are ‘on’. To respect the constraints implicit in the

off-line labeling, we use a weighted voting scheme. Each overlapping pose votes for 1 of the

213 possible annotation vectors, and we finally choose the annotation vector with the most
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votes. In practice, we precompute all valid annotation vectors from the database (of which

there are 46), and only record votes for one of them.

5.5 Experimental Results

We use a motion database of 118 motions of football players. Each frame was annotated

using the procedure and vocabulary of section 5.3 by a user who had not seen the videos

to be annotated. We test our system on three sequences; a video of a person walking back

and forth, a video a person performing jumping jacks (or star jumps), and finally a video of

three people passing a ball back and forth. For each video, our system automatically built

a pictorial structure for each figure using the clustering method of Section 4.2. Our system

then detects the pictorial structure(s) in each frame following the procedure of Section 4.4.

Next, our system synthesizes a 3D motion by matching annotated motion clips to the 2D

detections (Section 5.4).

Evaluation of general-purpose activity recognition systems is difficult precisely because

there is no canonical vocabulary. Given a test video, we manually annotate it with labels

appropriate for that video. For example, given a video of a figure performing jumping jacks,

we use the labels closed and extended to describe phases of the jump. These labels need

not correspond with those used to describe a collection of football motions. This makes

applying standard evaluation criteria such as ROC curves or confusion matrices awkward,

since there is no clear correct detection. Furthermore, there is no meaningful standard with

which to compare.
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Scoring by plotting signals: Qualitatively, we lay out a visual comparison between

the human and automatic annotations signals. We show an example in Figure 5.3, which

displays annotation results for a 91-frame jumping jack sequence. The top 4 lower case

annotations are hand-labeled over the entire 91 frame sequence. Generally, automatic an-

notation is successful: the figure is detected correctly, oriented correctly (this is recovered

from the torso orientation estimates φ), and the description of the figure’s activities is

largely correct.

Scoring by conditional entropy: We quantify the degree to which the user and

automatic signals agree (without explicit correspondence) by computing the mutual infor-

mation, or reduction in entropy. We interpret the user annotation as a (bit) vector valued

random variable U observed at every frame t. It takes on one of the finite set of values

observed for that sequence. We likewise define A to be a random variable capturing the

automatic annotation signal. Mutual information captures the reduction in uncertainty of

U given A, or M(U,A) = H(U)−H(U |A), where

H(U) =
∑

i

Pr(U = i) log Pr(U = i)

H(U |A) =
∑
i,j

Pr(U = i, A = j) log Pr(U = i|A = j),

where the probabilities are computed by counting co-occurrences throughout a given

video sequence. Given a test video with user annotation U , the entropy H(U) is equivalent

to the number of bits required to encode U . Given knowledge of some other signal A,

the entropy (or uncertainty) in U can only decrease. We evaluate different automatic
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Entropy H(U) and Mutual Information (H(U)−H(U |A))
Sequence H(U) H(U |A) H(U)−H(U |A)

Jumping Jacks .5862 .4800 .1062
Walk 2.7358 1.6336 1.1022

Weave (Fig. 1) 2.2450 .9618 1.2832
Weave (Fig. 2) 2.1940 1.3188 0.8752
Weave (Fig. 3) 2.4011 1.1380 1.2631

Table 5.1: We score our performance using the reduction in entropy of (manually-labeled) user
annotations U given the output of our automatic system A. For the ‘Jumping Jack’ sequence,
we did not allow null annotations. For the ‘Weave’ sequence, we evaluate results for the three
tracked figures. In almost all cases, the automatic system reduces the entropy by a factor of
2. The user annotations for the Jumping Jack sequence prove too simple; there is less than
a bit of uncertainty in them (since they are nearly constant), and so our system provides little
improvement.

annotations A for a given U by computing which reduces the entropy H(U |A) the most.

We tabulate results in Table 5.1.

Is temporal consistency required? Figure 5.4 compares two versions of our system

on a 288 frame sequence of a figure walking back and forth. The annotations on the left were

obtained by matching poses Mi independently for each frame t. Note that the automatic

LFace and RFace signals flip back and forth – it is difficult to estimate the orientation of

the figure when he is in the stance phase of a lateral walk. By performing explicit motion

synthesis (ensuring the poses Mi are smooth over time, as in Section 5.4.2), orientation is

estimated much more reliably. We quantify this by computing the conditional entropy of

each set of automatic annotation signals. The smoothed annotation signal correlates better

with the ground-truth user signal.

Annotating multiple people interacting: In Figure 5.6, we show annotations for

three figures from one sequence passing a ball back and forth. Each actor is correctly
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detected, and the system produces largely correct descriptions of the actor’s orientation

and actions. The inference procedure interprets a run as a combination of run and walk.

Quite often, the walk annotation will fire as the figure slows down to turn from face

right to face left or vice versa. When the figures use their arms to catch or throw, we

see increased activity for the similar annotations of catch, wave, and reach.

Annotating novel motions: When a novel motion is encountered, we want the system

to either respond by (1) recognizing that it cannot annotate this sequence, or (2) annotating

it with the best possible label. We can implement (2) by throwing out those poses Mi that

are annotated with a ‘null’ bit vector (all flags are off) when matching (Section 5.4.1).

Interestingly, almost 1
4 of the 3D poses in our library have a null label. This implies our

original annotation vocabulary is still too small for our motion library. In Figure 5.3, we use

our football library to annotate a jumping jack sequence. Our library does not contain any

jumping jack motions, and lacks a jumping jack annotation label. System (1) responds

with a stand label when the figure is near a closed stance. By forcing the annotations to

come from non-null poses, we see an additional walkwave label toward the extend phase,

with the occasional turn. Quantitatively, (2) results in better annotations as seen by a

lower conditional entropy score. Note the entropy estimates for this sequence are quite

small; this is because the sequence is short and the user signal U is almost constant.
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5.6 Discussion

In this chapter, we describe a method for automatically annotating a video of everyday

movements. We do this by taking an “analysis by synthesis” approach; we first estimate

the configurations of a figure over time, and then we re-create that estimate by matching

to an existing set of examples. If the examples are labeled, we generate labels for free.

This approach requires a method that can reasonably estimate the configurations of the

body over time; we demonstrate that a pictorial structure can generate such configuration

reports. By using real data as opposed to hand-labeled body estimates [27, 64, 65], we

find that our synthesis engine must compensate for ambiguities such as torso orientation,

left/right labelings, and missed detections.

We introduce mutual information as a scoring criteria. Evaluation is hard because there

is no canonical vocabulary for describing everyday behavior (see Figure 5.1). Our measure

provides a reasonable scheme for ranking different systems given labeled test footage.

Our analysis-by-synthesis approach appears to label small-scale activities reasonable

well. We hope the analogy can apply to large-scale actions as well. It suggests one approach

for authoring complex models; we find rules that synthesize complex actions realistically,

and apply them to analyze such actions from video.
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Figure 5.3: Unfamiliar configurations can either be annotated with ’null’ or with the closest
match. We show annotation results for a sequence of jumping jacks (sometimes known as star
jumps) from two such annotation systems. In the top row, we show the same two frames run
through each system. The recovered 3D pose from Section 5.4.3 has been reprojected back
to the image. In the bottom, we show signals representing annotation bits over time. The
manual annotator records whether or not the figure is present, front faceing, in a closed
stance, and/or in an extended stance. The automatic annotation consists of a total of 16 bits;
present, front faceing, plus the 13 bits from the annotation vocabulary of Section 5.3. In
first dotted line, corresponding to the image above it, the manual annotator asserts the figure is
present, frontally faceing, and about to reach the extended stance. The automatic annotator
asserts the figure is present, frontally faceing, and is not standing, not jumping, etc. The
annotations for both systems are reasonable given there are no corresponding categories available
(this is like describing a movement that is totally unfamiliar). On the left, we freely allow ‘null’
annotations (where no annotation bit is set). On the right, we discourage ‘null’ annotations as
described in Section 5.5. Configurations near the extend stance are now labeled as walkwave, a
reasonable approximation. We quantitatively show this approach results in better annotations, by
computing the reduction in entropy of the user signal given the automatic reports (as described
in Section 5.5.).
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Figure 5.4: We show annotation results for a walking sequence from two versions of our system
using the convention of Figure 5.3. Null matches are allowed. On the left, we infer the 3D pose
Mi (and associated annotation) independently for each frame. On the right, we synthesize
a smooth set of poses (and associated annotations) by dynamic programming (Section 5.4.2).
Each image is labeled with an arrow pointing in the direction the inferred figure is facing,
not moving. By enforcing smoothness, we are able to fix spurious run’s and incorrect torso
orientations present on the left (i.e., the first image frame and the automatic left faceing
and right faceing annotation bits). The system on the right correlates better with the user
annotations, as shown by a lower conditional entropy score.
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30 44 62

103 160 241

tracker miss
leaving frame correct recovery

localization error

Figure 5.5: Frames sampled from a 21 second sequence of three actors playing with a ball. The
numbers on each frame give the order in which the frame appears in the sequence; the spacing
is roughly even. The white annotations are automatically generated by our system (we manually
add the black words for clarity). Overlaid on each frame is the best configuration chosen for
the body of each of the three actors detected — both number and appearance are obtained
automatically — using camera consistency as in Section 5.4.2. Individuals are associated with
a color and a fixed-height annotation label to show the tracker has consistently identified them.
We see two tracks interrupted, one because of a missed detection and the other because the
figure leaves the view. Both tracks are recovered, but we see an incorrect pose estimation
because of a missed leg detection.
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Figure 5.6: Annotations of 3 figures from a video sequence of the three passing a ball back
and forth using the conventions of figure 5.3. Null matches are allowed. The dashed vertical
lines indicate annotations corresponding to the frames shown. The automatic annotations are
largely accurate: the figures are correctly identified, and the direction in which the figures are
facing are largely correct. Most of the time, people are running, but slow down to walk when
turning or passing the ball. Throws appear to be mislabeled as catches. Generally, when the
figure has the ball (after catching and before throwing, as denoted in the manual annotations),
he is annotated as carrying, though there are some missed detections. There are no spurious
crouches, waves, etc.
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