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Abstract

This paper introduces and analyzes the novel task of
categorical classification of cuboidal objects - e.g., distin-
guishing washing machines versus filing cabinets. To do so,
it makes use of recent methods for automatic alignment of
cuboidal objects in images. Given such geometric align-
ments, the natural approach for recognition might extract
pose-normalized appearance features from a canonically-
aligned coordinate frame. Though such approaches are ex-
traordinarily common, we demonstrate that they are not
optimal, both theoretically and empirically. One rea-
son is that such approaches require accurate shape align-
ment. However, even with ground-truth alignment, pose-
normalized representations may still be sub-optimal. In-
stead, we introduce methods based on pose-synthesis, a
somewhat simple approach of augmenting training data
with geometrically perturbed training samples. We demon-
strate, both theoretically and empirically, that synthesis
is a surprisingly simple but effective strategy that allows
for state-of-the-art categorization and automatic 3D align-
ment. To aid our empirical analysis, we introduce a novel
dataset for cuboidal object categorization.

1. Introduction
This paper examines geometric representations for 3D

shape categorization, focusing on cuboidal object categories
such as washing machines, cabinets, etc. We specifically fo-
cus on the task of categorization (“is this a washing machine
or a cabinet?”), but demonstrate that our developed repre-
sentation also produce competitive estimates of 3D shape
(“where are the corners of its faces?”) Cuboidal objects are
interesting since they share the same basic shape, allowing
one to explicitly explore the interplay of geometry and ap-
pearance.

Alignment: Aligning 3D models to images is a classic
problem in computer vision, dating back to model-based
techniques such as geometric hashing [19]. Combining
such approaches with data-driven statistical models have
proven quite effective [28, 23, 39, 17, 24, 29]. Most related
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Figure 1. We examine categorization of cuboidal objects (left) into
washing machines, cabinets, etc. Such objects share similar shape,
so conventional wisdom might advocate the use of shape-invariant
(or pose-normalized) representations for recognition (top). Such
approaches are attractive because they (1) factor out shape (which
seems uninformative when classifying objects with similar shape)
and (2) can generalize to novel shapes not encountered in train-
ing data. We show that this strategy is not optimal. One reason
is that current methods produce small errors in geometric align-
ment, which can result in large fluctuations in the pose-normalized
appearance. However, even with ground-truth alignment, pose-
normalization is still not optimal. We demonstrate that pose-
synthesis (bottom), a simple approach of augmenting training data
with geometrically perturbed training samples, is a surprisingly ef-
fective strategy that allows for state-of-the-art categorization and
automatic 3D alignment.

to us are methods that focus on cuboidal objects, motivated
by their generality and usefulness for describing many com-
mon objects [11, 35, 10, 14]. Interestingly, cuboidal align-
ment has also proven helpful for analyzing indoor scenes
of cuboidal rooms [8, 6, 26, 9]. We build on such work
by attempting the natural “next step”: how should one use
one of the aforementioned geometric-alignment engines to
recognize different categories of cuboidal objects?

Pose-normalization: Perhaps the most natural ap-
proach would use the estimated alignment to extract pose-
normalized appearance features. For a cuboidal object, one
might represent the appearance of each cuboidal face in a
fronto-parallel view (Fig. 1). Many state-of-the-art systems
for recognition (such as faces [31, 16], cars [17], animal
species [2, 7], or general attributes [37]) similarly normalize
landmarks/keypoints into a canonical coordinate frame dur-
ing training and or testing. For example, the vast majority
of face recognition systems work by detecting landmarks,
warping the image such that landmarks are aligned into a
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Figure 2. Proposed image-based rendering engine takes an image
I , a set of 2D landmarks P and a set of target 2D landmark loca-
tions T as input, then it renders the cube in target view by warping
each surface using a homography warp.

canonical frontal view (sometimes known as frontalization),
and classifying the pose-normalized appearance [38, 13].
Importantly, normalization allows one to (1) factor out “nui-
sance” variables such as viewpoint and aspect/shape during
recognition, and (2) generalize to viewpoints/poses not seen
in training data.

Pose-retargeting: First and foremost, we demonstrate
that pose-normalization is not the optimal strategy for deal-
ing with appearance variation due to pose. One explana-
tion maybe the inaccuracy of current systems for pose es-
timation - small misalignments in the predicted pose may
cause large errors in the pose-normalized appearance. Sur-
prisingly, we show that even with ground-truth alignment
on test images, pose-normalization is still not optimal. In
short, pose-normalization (a) removes geometric cues that
maybe helpful for recognition (washing machines may have
differing aspect ratio from microwaves) and (b) artificially
re-weights foreshortened regions of the objects. To address
these limitations, we describe a novel approach that retar-
gets training examples by warping them “on-the-fly” to the
shape and viewpoint of a particular detected instance, and
performs recognition using this retargeted training set.

Pose-synthesis: While pose-retargeting is optimal given
ground-truth alignment, its performance suffers when us-
ing an automated alignment that may contain some errors.
To allow for imprecise alignment, we evaluate another ap-
proach that pre-synthesizes a large set of possible target
poses. The synthesized set is used to train a practical system
that jointly performs categorization and 3D alignment. Per-
haps surprisingly, we demonstrate that such methods even
outperform state-of-the-art systems for 3D alignment. Im-
portantly, synthesis also allows our system to generalize
to unseen viewpoints and shapes without requiring pose-
normalization.

3D data-augmentation: Our proposed approaches are
inspired by learning architectures that apply synthetic per-
turbations to training data. Such “data-augmentation” ap-
pears to be crucial components of state-of-the-art methods
like deep learning [22, 18]. However, instead of apply-
ing simple perturbations like rotations, we make use of an
image-based rendering engine to generating new 3D shapes
and viewpoints (using piecewise-constant homographies
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Figure 3. The image-based rendering engine works in three steps:
(a) extracting background from the image. (b) rendering object in
different poses using homography warps on object surfaces. (c)
pasting the warped object on the background and filling the the
holes using interpolation.

and affine transformations). With a rich enough synthesis
engine, the resulting learning algorithm does not need to
generalize to unseen test poses (because they can be directly
synthesized). Indeed, we show that highly-invariant appear-
ance features based on contemporary CNNs [27] may not
outperform traditional gradient orientation histograms [5]
when used with large synthetic training sets.

Model-based synthesis: Our retargeting and synthesis
approaches can be seen as the “data-driven” counterpart
to “model-based” approaches that warp a 3D categorical
model to match an image [1, 34, 11, 12, 25]. But instead
of performing a search over 3D model parameters at test
time (which is often gradient-based and maybe prone to lo-
cal minima [20]), we compile 3D models into an augmented
training set of 2D images. In that respect, our approach is
similar to those that train on synthetically-rendered images
of 3D CAD models [21, 28]. But crucially, we make use
of “image-based” synthesis [15], making it easier to gener-
ate realistic-looking synthetic images. Indeed, we see 3D
data-augmentation as one simple avenue for injecting 3D
knowledge into data-driven architectures such as CNNs.

Our contributions: We compare, both theoretically and
empirically, different representations for the novel task of
categorizing cuboidal objects. We begin with a baseline
pose-“agnostic” approach (that trains a categorical classi-
fier agnostic to the pose of training/test data). We compare
such a method with pose-normalization, pose-synthesis,
and pose-retargeting (which to our knowledge, is novel).
We provide two salient conclusions: (1) The novel prob-
lem of categorical cuboid classification provides an inter-
esting testbed for solving a practical task while investigat-
ing the role of shape and geometry. To spur future re-
search in this area, we re-purpose an existing dataset [35]
(designed for for cuboidal detection and alignment) for the
task of cuboidal category recognition by making use of cat-
egory labels and adding 3D landmark annotations. (2) Pose-
retargeting, both at test and train-time (through synthesis),
provides a simple approach for dealing with geometric vari-
ation that significantly outperforms the widely-used pose-



normalization technique.
This paper is organized as follows. Section 2 describes

our image-based rendering engine. Section 3 discusses our
four representations in detail and theoretical motivation for
Pose-Retargeted and Pose-Synthesis. Section 4 concludes
with our experimental results.

2. Image-based rendering
The core computational engine of all our studied ap-

proaches is an image-based renderer that takes an H ×W
input image I , a set of N 2D landmarks P , and produces
a warped image with a retargeted set of N landmarks T
(Fig. 2). We write this engine as a function that returns an
image:

Φ(I, P, T ), I ∈ RH×W×3, P, T ∈ R2×N (1)

Importantly, landmarks and their associated faces are as-
sumed to have a semantic ordering. For example, the first
face is the front of the washing machine, while the second
is the top, etc. The warped image Φ is synthesized in three
stages: foreground synthesis, hidden surface synthesis, and
background synthesis. Figure 3 illustrates each step of our
rendering process.

Foreground: By triangulating the points, one could gen-
erate a retargeted image by applying affine warps to each
triangle. Instead, we assume that the points will always be
corners of a cuboidal object, and so can be connected onto
quadrilateral faces instead of triangles. Our rendering en-
gine applies a homography (which can be estimated by the
4 corners of a quadrilateral) to each quadrilateral face.

Hidden-surfaces: If target pose is very different from
the input pose, then previously occluded cube faces may
now become visible. We assume that objects are symmetric
in appearance, and use the texture map from the opposite
face as a replacement.

Background: We only warp pixels inside the input ob-
ject to the target pose, leaving background pixels intact.
This will result in holes in the background of the target im-
age. We use standard hole-filling algorithms [4].

Our image-based-synthesis engine is fairly straightfor-
ward, similar in complexity to a typical homework assign-
ment in an undergraduate computer vision course! [30].
Nevertheless, it produces startlingly photo-realistic images
of cuboidal objects (Fig. 1). We use it to explore a variety
of representations for geometric-invariant recognition.

3. Approaches
In this section, we describe a simple mathematical for-

malism for unifying all the geometric representations that
we will consider. Throughout this section, we visualize
the function Φ as a warped image, but to simplify notation,

we assume that Φ directly extracts a N -dimensional feature
vector extracted from the warped image. We will explore
oriented gradient features and deep features. Though these
features will be used in a variety of classification engines –
including nearest neighbor (NN) matching and SVMs – we
write out the mathematical formulation for a simpler NN
classifier below. We assume that we have a training set of
real images where the ith image is associated with a cate-
gory label yi and ground-truth landmarks Pi. We also as-
sume that we have a real query image at test-time I , with
an associated set of test-time landmarks P :

Training images:{(Ii, yi, Pi)} Test image:(I, P ) (2)

Test-time landmarks are typically provided by an automatic
system [11], though we crucially also consider ground-truth
landmarks. Finally, we also consider representations that
do not require 2D landmarks. To denote such methods, we
use the notation of Φ(I, P, P ) = Φ(I, ·, ·) to specify an
identity warp (where in fact, the set of points P need not be
specified).

The simplest approach would be to simply ignore pose
as an explicit confounding factor, and match using features
extracted from un-warped images, as shown in the first row
of Fig. 4:

Pose-Agnostic(I) = yi∗

i∗ = arg min
i
‖Φ(Ii, Pi, Pi)− Φ(I, P, P )‖2

= arg min
i
‖Φ(Ii, ·, ·)− Φ(I, ·, ·)‖2

(3)

where we use the second line to emphasize the fact the iden-
tity warp computed by Φ did not require the knowledge of
any landmarks. The first line will be useful for comparison
with other approaches that do make use of landmarks. Such
agnostic approaches can still be successful if the training set
of images spans enough variations in pose. However, such
methods fundamentally cannot generalize to novel poses at
test-time, unless a highly invariant feature descriptor is used
(e.g., bag-of-word representations [36]), in which case dis-
criminability may suffer.

Pose-normalization warps both the training and query
images into a canonical configuration of N landmarks C:

Pose-Normalized(I) = yi∗

i∗ = arg min
i
‖Φ(Ii, Pi, C)− Φ(I, P, C)‖2 (4)

We visualize our canonical configuration of cuboid face
landmarks in Fig. 7. Pose-Normalized explicitly factors
out viewpoint and shape (which is helpful if they serve as
nuisance variables for categorization), and trivially gener-
alizes to novel viewpoints and shapes not seen in the train-
ing set, illustrated in the second row of Fig. 4. Our ex-
periments will show that normalization performs well when
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Figure 4. We visualize various strategies for achieving geometric-invariance in recognition. Please refer to the text for a detailed description
of each strategy.
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Figure 5. Given an image of an object, we show novel synthesized
views generated by Pose-Synthesis (left) and the normalized view
used by Pose-Normalized (right). Synthesized views look fairly
realistic (because we can explicitly control and limit the degree of
view synthesis), while the normalized views often have pixelation
artifacts. The artifacts can arise from extrapolation of heavily-
foreshoretened cube faces (middle row) or small mistakes in the
predicted 2D landmarks (bottom row).

given highly accurate alignments. Small errors in the esti-
mated pose may cause large distortions in the normalized
image (Fig. 8). However, even given ground-truth land-
marks, pose-normalization may still artificially re-weight
foreshortening portions of the object, sometimes resulting
in image distortion due to pixelation artifacts (Fig. 7).

Instead of warping each training image to a canoni-
cal landmark configuration C, pose-retargeting warps each
training image to the target landmarks P found on a query
image I , as shown in Fig. 4:

Pose-Retargeted(I) = yi∗

i∗ = arg min
i
‖Φ(Ii, Pi, P )− Φ(I, P, P )‖2 (5)

In some sense, pose-retargeting creates an “on-the-fly”
custom-training set for this particular query image by warp-
ing the training set into the viewpoint and shape of the
query. This tends to produce less distortions because warps
are applied to training images (which tend to be cleaner
and more accurately labeled landmarks) rather than a test-
image. However, retargeting still requires accurate align-
ment landmarks at test-time, and more-over, may be slower
since it requires generating a custom training set for each
query.

Finally, we also consider an alternative that pre-warps all
training images to set of possible target shapes and view-
points. Pose-synthesis representation is based on augment-
ing the train set with new views of the training images
(Fourth row in Fig. 4):

Pose-Synthesis(I) = yi∗

i∗ = arg min
i

min
Pk

i ∈G(Pi)
‖Φ(Ii, Pi, P

k
i )− Φ(I, P, P )‖2

(i∗, P k∗
i ) = arg min

i,Pk
i ∈G(Pi)

‖Φ(Ii, Pi, P
k
i )− Φ(I, ·, ·)‖2

(6)

where G(Pi) = {P 1
i , . . . P

K
i } generates a set of can-

didate target landmarks. We refer to this function as a
landmark-synthesis engine, described further below. We
rewrite the matching function as (6) to emphasize that (1)
Pose-Synthesis does not require landmarks to be annotated
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Figure 6. Our dataset of cuboidal object categories, re-purposed from the SUN Primitive database [35]. This dataset includes variation in
shapes (aspect ratios), viewpoint, backgrounds and clutter.

on test images and (2) Pose-Synthesis can also be used for
3D landmark prediction (P k∗

i ).
Landmark synthesis: Landmark synthesis is used to

generate a set of reasonable target landmarks for each train-
ing image Ii, to be used by Pose-Synthesis. We assume
that each training image is labeled with 3D landmarks (in
camera coordinates) and a focal length f . Specifically, 2D
landmarks P are assumed to be perspective projection of
the 3D points:

Pi = Project(Si, fi)

Pi ∈ R2×N , Si ∈ R3×N , fi ∈ R

We use nonrigid structure-from-motion [11, 32] to infer 3D
landmarks (and affine camera parameters) from 2D anno-
tations. We use these estimates to then infer a perspective
camera calibration to produce fi. Given 3D shape and cam-
era parameters, we generate rotations along the camera x
and z axis:

G(Pi) = {Project(RkSi, fj)
K
k=1}

Rk ∈ R3×3, RT
kRk = I

In our experiments, we uniformly sample Rk = RzRx by
rangingRx andRz over increments of (−15, 0, 15) degrees.

Other synthesis strategies: We explored other synthe-
sis strategies for Pose-Synthesis. For example, one could
generate aspect ratio variations in the set of shapes G. More-
over, one could extend the notion of data augmentation into
the appearance domain as well as shape. For example, we
could synthesize hidden cube surfaces or backgrounds by
swapping out surfaces and backgrounds from other train-
ing examples. Our experiments focus on viewpoint synthe-
sis, but our encouraging results suggest that other synthesis
techniques are worth exploring.

Theoretical analysis: We now provide a simple theo-
retical motivation of Pose-Retargeted and Pose-Synthesis.
Consider a generative model of an image as

Pr(Image, Pose) = Pr(Pose)Pr(Image|Pose) (7)

which is equal to

Pr(Pose)N (Image; Φ(I, C, Pose), σ2Id)

for N (x;µ,Σ)

where I is image of the cuboidal faces in a canonical train-
ing view C and Id is the identity matrix. The above model
generates a (pose,image) pair by warping a fronto-parallel
view of a cube to a random pose and adding Gaussian noise
to the warped image.

It is straightforward to show that Pose-Synthesis matches
an image using the log-probability of that image under (7),
(max) marginalizing over an uninformative pose prior:

I∗, Pose∗ = arg max
I∈train,Pose

Pr(Image, Pose) (8)

The category label is defined by label of I∗ available in
training and estimated pose is Pose∗. Pose-Retargeted uses
the log-probability of P (Image|Pose), conditioning on the
known pose:

I∗ = arg max
I∈train

Pr(Image|Pose) (9)

Intuitively, both Pose-Retargeted and Pose-Synthesis score
an image reconstruction error that searches over candidate
poses or conditioned on a known pose.

4. Experimental Results
Dataset: We re-purpose the SUN Primitive dataset

[35], containing 1269 cuboid objects (annotated with 2D
corners) in 785 images. SUN Primitive was proposed to
study cuboid detection and 2D alignment. We use a sub-
set of 543 cuboids that have category labels, spanning a set
of 9 categories (Fig. 6). To apply our synthesis algorithms,
we generate 3D landmark annotations for this dataset using
the method described above. We use a 50-50 split for train-
ing and testing. While somewhat small by contemporary
standards, this dataset provides a starting point for evaluat-
ing this novel problem, while allowing us to compare with
previous published systems that were used to benchmark
cuboid detection and alignment accuracy. We will release
our 3D annotations to spur further research. Due to space
restrictions, we provide additional diagnostic analysis (such
as class-confusion matrices and localization results) in sup-
plementary material.

Features: We evaluate oriented gradient descriptors
(HOG) [5] and state-of-the-art convolutional neural net
(CNN) features [18] when defining our final image descrip-
tors Φ. We resize images to 128x128 pixels before extract-
ing features. For Pose-Normalized, we extract a feature de-



Figure 7. 3D landmarks predicted from Pose-Synthesis, following
(6)

scriptor for each face of the normalized cuboid (concatenat-
ing them together to produce Φ). We use standard imple-
mentations of HOG and Oxford’s Deep19 CNN model [27],
as implemented in the MatConvnet library [33]. We exper-
iment with features extracted from different neural layers,
finding the third convolutional layer to perform best.

Classifiers: We describe our representations using a
nearest-neighbor (NN) formulation (Sec. 3), but the as-
sociated feature vectors Φ can be used with any classifi-
cation system. We explore SVMs as an alternate state-
of-the-art classifier, considering both linear and Gaussian
kernels where hyperparameters are selected through 5-fold
cross-validation. We make use of the LIBSVM [3] li-
brary. When the category model need not generalize across
different poses (which is true for Pose-Normalized and
Pose-Retargeted), linear classifiers appear to suffice. Pose-
Agnostic and Pose-Synthesis must reason across view-
points, and so Gaussian kernels were vital for good perfor-
mance.

Landmark prediction: We use a state-of-the-art cuboid
landmark detection method [11] to estimate 2D land-
marks at test-time (needed for Pose-Normalized and Pose-
Retargeted). Importantly, this system has been shown to
produce state-of-the-art alignment results on the SUN Prim-
itive dataset, outperforming prior work such as [10, 35]. We
show that some of our simple methods even outperform this
body of work, in terms of landmark predictions. To simplify
our analysis, we assume that a ground-truth bounding-box
is provided at test-time for all experiments (including when
running the system of [11]).

Categorization: Fig. 9 evaluates all approaches for ob-
ject categorization accuracy, for both sets of features (CNN
and HOG) and classifiers (SVM and NN). We plot confu-
sion matrices and example mistaken images in the supple-
mentary material. We discuss some conclusions below.

Normalization: Pose-Normalized performs the worst of
all methods, no matter the feature or classifier. One im-
mediate explanation could be that the predicted landmarks
of [11] are not of sufficient accuracy. To test this hypothesis,
we also evaluate accuracy given ground-truth landmarks. In

this setting, Pose-Normalized does perform the best out of
all methods. Hence one immediate conclusion is that cur-
rent alignment systems are not of sufficient accuracy to re-
alize the benefits of a pose-normalized representation. In
general, we see a significant 11% drop in accuracy in using
predicted versus ground-truth landmarks.

Retargeting: However, in almost all cases, Pose-
Retargeted outperformed Pose-Normalized, validating our
initial hypothesis that normalization (1) is more suscep-
tible to errors in landmark predictions and (2) artificially
weights/distorts foreshortened regions of the object. One
might think of Pose-Retargeted with ground-truth (GT)
landmarks as an upper bound of Pose-Synthesis, because
a perfect synthesis strategy should generate exactly those
shapes that align with test images. Interestingly, Pose-
Synthesis outperforms Pose-Retargeted-GT with CNN fea-
tures. Because CNN features are invariant to large spatial
deformations, we posit that the learned model can still ben-
efit from a larger training set that includes shapes outside
the testset.

Agnostic vs Synthesis: Overall, we find that Pose-
Agnostic performs quite well, consistently outperform-
ing Pose-Normalized and Pose-Retargeted when using pre-
dicted landmarks. We attribute this behavior again to the
fact that highly accurate landmarks are needed for reliable
alignment. However, Pose-Agnostic will struggle to gener-
alize to a viewpoint or shape not seen in the training set.
Pose-Synthesis is attractive because it offers generalization
without sensitivity to geometric mis-alignment.

Training data: Because Pose-Normalized may perform
relatively better with limited training data (making gener-
alization to unseen views more important), Fig. 10 plots
the accuracy of all methods for differing amounts of real
training images. As expected, all methods do better with
more data. Pose-Synthesis makes the most of additional
data, producing a 15% improvement on average (probably
because each additional training sample effectively adds 9
more view-perturbed examples). Agnostic, Retargeting and
Normalized see average improvements of 12.7%, 9.8% and
6.5% respectively.

Landmark localization: To evaluate landmark local-
ization, we use standard approach of counting the number
of correctly localized landmarks. A landmark is correctly
localized if it lies within t pixels of the ground-truth lo-
cation, where t = 15% of the square root of the area of
the ground-truth box. We use NN-variants of our Pose-
Agnostic and Pose-Synthesis models to generate landmark
predictions, simply reporting back landmarks associated
with the closest-matching training image (be it a real image
or a synthesized one). Fig. 11 and Fig. 12 shows the result
of our proposed approaches compared to the state-of the art.
Both Pose-Agnostic (84.2%) and Pose-Synthesis (83.2%)
significantly outperform the state-of-the-art method of [11]
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create significant fluctuations in pose-normalized image, causing wrong NN-matches. Provided ground-truth alignment, pose-retargeting
performs the best, while pose-synthesis performs best using automatic alignment. We inclue additional such visualizations in supplemen-
tary material.

Feature HOG HOG CNN CNN
Classifier NN SVM NN SVM

Pose-Agnostic 43.3 58.9 42.6 56.3
Pose-Normalized 36.3 48.1 35.9 41.9
Pose-Retargeted 43 54.4 38.1 43.7
Pose-Synthesis 47.4 57.3 47 59.6

Pose-Normalized (GT) 46.7 63 44.4 54.1
Pose-Retargeted (GT) 54.8 62.2 45.9 56.7

Figure 9. Categorization accuracy of various approaches. Chance
performance on this 9-class task is roughly 11%. The top-four
methods are fully automatic, making use of predicted landmarks
from Hejrati and Ramanan [11] when needed. The bottom-two
make use of ground-truth (GT) landmarks.

(77.5%), which itself outperformed numerous other ap-
proaches on this dataset [10, 35]. With enough (real) train-
ing images, simply using real training data (Pose-Agnostic)
performs quite well. But with a small number of real images
(10) per category, Pose-Synthesis significantly outperforms

both Pose-Agnostic and prior art.
Conclusion: We provided theoretical and empirical

analysis of different representations for the novel task of
categorizing cuboidal objects, examining Pose-Agnostic,
Pose-Normalized, Pose-Retargeted, and Pose-Synthesis-
based models. We show that the problem of categorical
cuboid classification is a useful testbed for investigating the
interplay of shape and geometry while solving a practical
task. Our theoretical and empirical analysis reveals the sur-
prising result that Pose-Retargeting and Pose-Synthesis pro-
vides a simple approach for dealing with geometric varia-
tion that significantly outperforms the common-place tech-
nique of Pose-Normalization.

References

[1] V. Blanz and T. Vetter. A morphable model for the synthesis
of 3d faces. In Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, pages 187–
194. ACM Press/Addison-Wesley Publishing Co., 1999.
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