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Abstract

We present a new method for training deformable mod-

els. Assume that we have training images where part lo-

cations have been labeled. Typically, one fits a model by

maximizing the likelihood of the part labels. Alternatively,

one could fit a model such that, when the model is run on the

training images, it finds the parts. We do this by maximizing

the conditional likelihood of the training data.

We formulate model-learning as parameter estimation

in a conditional random field (CRF). Initializing parame-

ters with their maximum likelihood estimates, we reach the

global optimum by gradient ascent. We present a learning

algorithm that searches exhaustively over all part locations

in an image without relying on feature detectors. This pro-

vides millions of examples of training data, and seems to

avoid over-fitting issues known with CRFs.

Results for part localization are relatively scarce in

the community. We present results on three established

datasets; Caltech motorbikes [8], USC people [19], and

Weizmann horses [3]. In the Caltech set we significantly

outperform the state-of-the-art [6]. For the challenging

people dataset, we present results that are comparable

to [19], but are obtained using a significantly more generic

model (devoid of a face or skin detector). Our model is

general enough to find other articulated objects; we use

it to recover poses of horses in the challenging Weizmann

database.

1. Introduction

Deformable models have a long-standing history in the

vision community beginning with pictorial structures [10]

and deformable templates [11], and also include the recent

active appearance models [5] and constellation models [4].

These models represent an object as a collection of parts,

explicitly encoding both the appearance of a part and its

spatial arrangement.

There have been numerous approaches that use these

models for detection. They address questions of the form:

given an image, is there a motorbike or not? Surprisingly,

one can obtain state-of-the-art detection performance by ig-

noring spatial constraints (the so-called “bag of feature”

models). We believe this fact suggests that: (1) shape is

hard to learn with current methods and (2) one should con-

sider more difficult recognition tasks such as localization:

where is the motorbike, which way is it facing? Our work

focuses on methods for learning and evaluating deformable

models, given the task of localization.

A natural method of learning a deformable model is to

fit the model to some observed instances. This is often

formulated as maximum likelihood (ML). Given a collec-

tion of images where part locations have been labeled, one

computes sample means and variances (assuming gaussian

models). Even non-probabilistic approaches such as exem-

plar matching implicitly do this; here the mean is encoded

by the exemplar.

An alternative is to tune parameters so that the model

does well at a task (in our case, localization). Intuitively,

we want to tune parameters so that the model, when run

on a training image, recovers the labeled part locations. We

show that by formulating our model as a conditional random

field (CRF), we naturally optimize this criteria.

We demonstrate the resulting models on three datasets;

Caltech motorbikes [8], USC people [19], and Weizmann

horses [3]. The Caltech set is known to be easy for detec-

tion, but we use it to evaluate part localization. We sur-

pass the best-reported results in [6]. We present an articu-

lated model for human pose estimation that is comparable

to [19] on their challenging set of people images. In con-

trast to [19], we use a generic articulated model devoid of a

face detector or skin model. To demonstrate its generality,

we train it to localize deforming horses in the challenging

Weizmann dataset.

2. Related Work

Approaches for learning parts-based models can loosely

be divided into generative, semi-supervised, and discrimi-

native. Given labeled training data, generative methods fol-

low the ML framework described above [5, 6, 7, 11, 14, 15,

20]. Alternatively, Weber et al. and Fergus et al. use EM

to learn models from partially-labeled data [8, 27]. Their
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Figure 1. Our approach to model building. Assume we are given a collection of training images Im with labeled part locations L (we

show 2 images on the left). Classic approaches learn the model Θ that maximizes the joint likelihood Pr(Im, L|Θ). Assuming gaussian

models, one does this by computing sample means and variances. We show the mean pose in the top middle. If we use the model to infer

the pose in each training image, we often get incorrect localizations; the arm gets confused with the body (bottom middle). In this work,

we learn a model that is trained to infer the correct poses in the training images. We do this by maximizing the conditional Pr(L|Im, Θ).

We show the new learned mean pose on the right top. By pulling the arm away from the body, the resulting model infers poses that are

closer to the labeled training set (bottom right).

approach required knowing an image contains a motorbike,

but not where its parts are located. Although our work here

learns in a supervised framework, there is a close connec-

tion between our CRF optimization and EM (we look at this

in Sec. 4).

Discriminative training of deformable models dates back

to at least decision trees [1], convolutional neural nets [18],

and include recent approaches such as [12, 13, 22]. In these

cases, models are optimized for detection and not localiza-

tion. Kumar and Hebert introduced CRFs for low-level vi-

sion [16]. They infer pixel labels from a loopy grid (and so

require approximations for inference and learning), while

we infer part locations on a tree-structured model.

There exist relatively few published results for localiza-

tion of deformable models [6, 23]. One notable exception

is human pose estimation. Most work involves tracking in

video sequences, although approaches for pose estimation

in static images exist [14, 19, 21, 24]. The unconstrained

nature of the problem typically requires some limiting as-

sumption such as uncluttered backgrounds, visible faces,

and/or visible skin regions.

3. Deformable Part Model

We use a parts and structure model framework common

in the previously mentioned approaches. Let us write the

location of part i as li = (xi, yi). We later extend li to en-

code part orientation for articulated models. We denote the

configuration of a K part model as L = (l1 . . . lK). Given

model parameters Θ, the joint probability of a configuration

L in an image Im is

Pr(Im, L|Θ) = (1)

∏

(i,j)∈E

Pr(li|lj)

K
∏

i=1

Pr(Im(li)|li)
∏

l∈bg

Pr(Im(l|bg))

The first term captures part geometry, while the second term

models the local image patch at each part. The last term

models the image patches in the background. We assume

the local probability functions are gaussian:

Pr(li|lj) = N(li − lj ;µi,Σi) (2)

The geometric model in Eq.2 has an intuitive interpretation

as a “spring” that connects part i to part j. The spring has

a rest position of µi and a stiffness encoded by Σi. We

assume E is a known tree (see Sec. 4.2), and so each part i

is connected to one parent j. We will often write the relative

location of part i simply as ri = li − lj .

Pr(Im(li)|li) = N(Im(li);αi,Γi). (3)

The appearance model in Eq.3 is defined with a feature vec-

tor Im(li) describing the image patch centered at (xi, yi).
We can think of αi as an image template for part i. We

describe our feature vector representation in Sec. 6. Our

final model is defined by the parameters of each gaussian

Θ = {µi,Σi, αi,Γi, αbg,Γbg}.

Inference: In order to use the model to localize an object

in an image Im, we need the posterior over part locations

L:



Pr(L|Im, Θ) ∝
∏

(i,j)∈E

Pr(li|lj)

K
∏

i=1

Pr(Im(li)|li)

Pr(Im(li)|bg)

(4)

LMAP = argmaxL Pr(L|Im, Θ) (5)

LBayes = EΘ[L] =
∑

L

LPr(L|Im, Θ) (6)

We use EΘ[·] to denote an expectation with respect to the

posterior defined by model Θ. Given an image, one can lo-

calize an object by either computing the maximum a poste-

riori estimate (LMAP ) or the average location with respect

to the posterior (the Bayesian estimate LBayes). If E is tree,

both are computable by fast variants of dynamic program-

ming [7]. One can also use the MAP estimate as a detector

by thresholding the unnormalized posterior.

Learning: Assume we are given training images Imt

where part locations Lt have been labeled. (As a notation

convention, we use subscripts to denote part numbers and

superscripts to denote image numbers). The classic criteria

for learning a model is to maximize the joint likelihood of

the labeled data

ΘML = max
Θ

∏

t

Pr(Imt, Lt|Θ) (7)

= max
µ,Σ

∏

t

Pr(Lt|µ,Σ) max
α,Γ

∏

t

Pr(Imt|Lt, α,Γ)

(8)

In the literature, this is often called maximum likelihood

(ML) learning. Since the likelihood factors into Eq. 1, it

suffices to find the ML estimates of the individual gaussian

terms. This is done by independently computing sample

means and variances. For example, we set µi to be the av-

erage position of part i with respect to part j.

In some ways, this independence is unintuitive. Suppose

we learn a very accurate appearance template αi. This sug-

gests we do not need a strong spatial prior Σi (since we

can find the part simply by matching the template αi). This

inter-dependence implies ΘML may not be optimal.

What is wrong with ΘML? Consider Fig.1. The mean

pose in a collection of labeled people images tends to have

the arms lying alongside the body. This is because, on aver-

age, a person tends to keep their arms there. However, such

a pose may not be useful for localizing people because the

estimated arms will be confused with the body. We do not

want the most likely pose, but rather the pose that produces

the best estimates when used for inference. We argue that

ML may be the wrong criteria because it is not directly tied

to inference.

The posterior in Eq. 4 is the precise quantity used for

inference. We will show that learning a Θ which maxi-

mizes Pr(L|Im, Θ) produces a model well-suited for lo-

calization. We call such a model ΘCL because it maxi-

mizes the conditional likelihood of labels given the image.

Computing ΘCL is difficult because Eq.4 is not normalized.

The implicit normalization factor is actually a function of

all the parameters Θ. This means that, unlike ML learning,

we cannot fit each parameter independently. Our resulting

model, however, is equivalent to a tree-structured Condi-

tional Random Field (CRF) [17]. We apply standard algo-

rithms from that literature to learn ΘCL.

4. Maximizing the conditional likelihood

Since are working directly with Eq.4, it will be conve-

nient to simplify our appearance model by assuming both

parts and the background have the same covariance Γbg . In

that case we can write:

Pr(Im(li)|li)

Pr(Im(li)|bg)
∝ expwT

i ·Im(li) (9)

where

wi = Γ−1
bg (αi − αbg). (10)

Given a set of labeled poses L̃t, let us write the (log) condi-

tional likelihood:

L(Θ) =
∑

t

log Pr(L̃t|Imt,Θ). (11)

We find the ΘCL that maximizes Eq.11 by gradient ascent.

Decomposing Σ−1
i = CT

i Ci, we calculate the gradient as

follows:

dL

dµi

= CT
i Ci{

∑

t

r̃t
i −

∑

t

EΘ[rt
i ]} (12)

dL

dCi

= Ci{
∑

(r̃t
i − µi)

2 −
∑

t

EΘ[(rt
i − µi)

2]} (13)

dL

dwi

=
∑

t

Imt(l̃ti) −
∑

t

EΘ[Imt(lti)] (14)

where we recall ri = li − lj . These updates are similar to

the standard equations found in the CRF literature. The first

summation in each term computes “empirical averages” of

our sufficient statistics. The second summation computes

the expected statistics by averaging over the posterior under

the current model Θ (Eq. 6). At the optimal setting ΘCL,

the two terms are equal (the gradient is 0). This implies

∑

t

r̃t
i =

∑

t

EΘCL
[rt

i ]. (15)



This captures our initial intuition: we want a model ΘCL

that, when used to infer the location of part i on a training

image, tends to find the labeled location r̃i.

Optimization: We initialize our model parameters Θ to

ΘML, and then take fixed-size gradient steps until conver-

gence. CRFs are known to be convex, so we are guaranteed

to be at the global optimum upon convergence. In practice,

we encounter stability issues when Ci is close to 0 (since we

must invert it to get Σi). We follow this two-step strategy:

we first optimize µi, wi while holding Ci fixed at its ML

estimate, and then optimize Ci (holding µi, wi fixed) with

very small gradient steps. We suspect more sophisticated

second-order methods (common in CRF optimization [25])

should work better.

Relationship to EM: Although EM optimizes a very dif-

ferent criteria, algorithmically it is quite similar to our gra-

dient procedure. The expected sufficient statistics in the

above equations are the exact same quantities computed

when learning a part model with EM [8]. This implies

that systems which learn part models by EM can also learn

CRFs (with a simple extension). During the E step, one

computes expected sufficient statistics. Given training im-

ages with labeled part locations, one can also compute em-

pirical estimates of those statistics. If the two are equiva-

lent, the learned model is also an optimally trained CRF. If

not, one updates the model Θ by taking a gradient step and

re-computes the expected statistics.

4.1. Computing the expected sufficient statistics

To compute expectations (for either EM or a CRF up-

date), we need to compute conditional marginals Pr(li|Im)
and conditional pairwise marginals Pr(li, lj |Im) from

Eq. 4. If we assume a tree-structured model, we can com-

pute them exactly in O(N2) with belief propagation, where

N = number of part locations. However, since N ≈ num-

ber of pixels, this is still too expensive. Most learning ap-

proaches search over a small set of image locations returned

by a feature detector. However, when training a discrimina-

tive model, we would like lots of data to avoid over-fitting.

We show we can use the framework of Felzenszwalb and

Huttenlocher [7] to compute the expectations over all part

locations in sub-quadratic time. One can replace all N2

computations with convolutions, which are O(N log N).
These results also imply that EM can be performed exhaus-

tively without requiring feature detection (as hypothesized

in [9]).

To avoid numerical issues, we normalize all messages

to sum to 1 as they are computed. The set of “upstream”

messages from part i to its parent j are computed as:

mi(lj) ∝
∑

li

Pr(li|lj)ai(li) (16)

ai(li) ∝ expwT
i ·Im(li)

∏

k∈kidsi

mk(li) (17)

For li = (xi, yi), we can represent messages as 2D im-

ages. The image ai is obtained by multiplying together re-

sponse images from the children of part i and from the ap-

pearance model. Because Pr(li|lj) is a gaussian (Eq. 2),

we can compute message mi by convolving the image ai

with a gaussian of covariance Σi, and shifting the result by

µi (see [6]). At the root r, the image ar is the true con-

ditional marginal Pr(lr|Im). Starting from the root, we

pass messages downstream (from part j to i) to compute

the remaining marginals. We also simultaneously compute

expectations over pairwise marginals:

Pr(li|Im) ∝ ai(li)
∑

lj

Pr(li|lj) Pr(lj |Im) (18)

EΘ[ri] =
∑

lj

Pr(lj |Im)
∑

li

Pr(li|lj)riai(li) (19)

EΘ[r2
i ] =

∑

lj

Pr(lj |Im)
∑

li

Pr(li|lj)r
2
i ai(li) (20)

We compute Eq. 18 by convolving Pr(lj |Im) with a

gaussian kernel. To compute Eq. 19, note that the prod-

uct Pr(li|lj)ri can be written as a function of the relative

position f(li − lj). We compute the inner summation by

convolving ai with f , a weighted gaussian kernel. We av-

erage the result over Pr(lj |Im) to obtain the final expec-

tation. The same method applies for Eq. 19. Computing

EΘ[Im(li)] is straightforward once we have the conditional

marginal Pr(li|Im).

4.2. Learning the tree structure E

Given labeled data, we would like to find the tree

ECL that maximizes the conditional Pr(L|Im, Θ). Known

methods exist for finding the tree EML that maximizes the

joint Pr(Im, L|Θ). One fits a spring model (µ,Σ) indepen-

dently to each possible pair of parts by computing sample

estimates. One then computes the spanning tree with the

most rigid springs. Recall that model parameters cannot be

fit independently in a CRF. Hence finding ECL is difficult;

in practice, we use EML. However, when restricting E to

be a star graph, the optimal tree is efficiently computable.

For a K part model there are K possible star graphs (each

part taking its turn as the root). For each graph, we learn a

CRF that optimizes Pr(L|Im, Θ), and then select the graph

with the highest probability.
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Figure 2. Given a single labeled example (left), the ML pose is

just the labeled pose (center). The variance estimates are a user-

defined deformation parameter. This is equivalent to building a

deformable horse exemplar from a single image. If we use the

exemplar to re-estimate the pose in the image, the legs are con-

fused with each other because they are nearby and look similar. By

training a pose that maximizes Pr(L|Im, Θ), we learn an exem-

plar with legs that are spread apart (right). Using this caricature

produces better results on image from which it was built.

5. Articulated Models

In this section, we outline the additions needed to learn

articulated people models. We model each body part as an

oriented rectangle of fixed size. We find people at multiple

scales by searching over an image pyramid. We parame-

terize each oriented rectangle by li = [xi, yi, ui, vi] where

xi, yi is the location of the top endpoint, and (ui, vi) is unit

vector that points down into the body. We update our shape

model (Eq. 2) to:

Pr(li|lj) = N(tj(li);µi,Σi), (21)

where tj = represents the relative part location li with re-

spect to the oriented coordinate system of part j. The gaus-

sian distribution on unit vectors is known as a Von Mises

distribution [26]. We assume Σ is a block diagonal matrix

consisting of Σxy and Σuv . Recall we initialize our gradient

descent procedure with ΘML. The ML estimate of µuv is

the renormalized mean of a set of given unit vectors. For

a Von Mises distribution Σuv is a spherical gaussian with

variance 1
2κ

. The ML estimate for κ is also readily com-

puted from labeled training data [26]. The gradient steps

for µuv
i and κi are as follows:

dL

dµuv
i

= κi{
∑

t

[

ũt
i

ṽt
i

]

−
∑

t

EΘ

[

ut
i

vt
i

]

} (22)

dL

dκi

= µuv
i · {

∑

t

[

ũt
i

ṽt
i

]

−
∑

t

EΘ

[

ut
i

vt
i

]

}(23)

After updating µuv
i by a gradient step, we re-normalize

it to unit length. Intuitively, Eq.23 does not contain any

squared terms because the squared difference between two

unit vectors simplifies to their dot product [26]. We apply

the same techniques from Sec.4.1 by using 3D convolutions

to compute the expectations in sub-quadratic time.

Learning from one example: Consider the task of

learning deformable models from a single example. This

+1 0−1 0 +1−1+2−1 −1 +

bar

=

left edge right edge

Figure 3. We define the image feature Im(li) for an articulated

part as the response of an oriented bar detector. A standard bar

template can be written as the summation of a left and right edge

template. The resulting detector suffers from many false positives,

since either a strong left or right edge will trigger a detection. A

better strategy is to require both edges to be strong; such a response

can be created by computing the minimum of the edge responses

as opposed to the summation.

situation is encountered in exemplar-based approaches for

recognition. Such approaches seem to be highly successful

for object recognition [2]. One can view exemplars as ML

estimates fit to one example. The estimated mean is just

the sample itself, while the variance is a user-defined de-

formation parameter. Using the exemplar to re-estimate the

pose in the training image might fail if there are ambiguous

parts or clutter (Fig 2). Intuitively, a good exemplar should

re-estimate the pose it was constructed from. To do this,

we might need a caricature of the original pose that accen-

tuates discriminative characteristics. Fitting a pose to the

conditional likelihood precisely accomplishes this.

6. Appearance descriptor Im(li)

We use two different appearance models in our experi-

mental results; one for 2D models and one for articulated

models.

To facilitate comparison of our 2D models with [6], we

use an implementation of their part model. Here, a part is

represented by 50× 50 pixel patch. To compute Im(li), we

first compute oriented canny edges and separate the result

into 4 orientation planes. We dilate each plane with a mask

with a 2.5 pixel radius. To reduce the size of the descriptor,

we bin each dilated image into an 11×11 grid using soft bin-

ning. The final descriptor is 11×11×4 = 484 dimensional.

This implies that our appearance weights wi are also 484

dimensional. Typically, one might expect over-fitting when

training such a high dimensional model. We appear to avoid

this problem because of the exhaustive search described in

Sec 4.1. We use the training set in [8] which contains 400

images; this means we train wi with more than 10 million

image patches.

For our articulated model, we set Im(li) to be a scalar

representing the response of a bar detector. One might

construct a bar filter using a Haar-like template of a light

bar flanked by a dark background (Fig. 3). To ensure a

zero DC response, one would weight values in white by

2 and values in black by -1. We observe that a bar tem-

plate can be decomposed into a left and right edge template

fbar = fleft + fright. Denoting an entire image with Im



and convolution by ∗, we write the response as

Im ∗ fbar = Im ∗ fleft + Im ∗ fright.

In practice, using this template results in many false pos-

itives since either a single left or right edge triggers a re-

sponse. We found taking a minimum of a left and right edge

template resulted in a better response function:

min(Im ∗ fleft, Im ∗ fright). (24)

With judicious bookkeeping, we can use the same edge tem-

plates to find dark bars on light backgrounds. We compute

the feature Im(li) at all image locations by taking the log

of the response image in Eq.24. We explicitly search over

15 orientations for each fixed-size limb. To find objects at

multiple scales, we search over an image pyramid.

7. Results

Experimental results for part localization is scarce in the

community. We have performed localization experiments

on 3 standard datasets, the Caltech motorbikes [8], USC

people [19], and the Weizmann horse set [3]. Given labeled

training data from each dataset, we build both maximum

likelihood ΘML and conditional likelihood ΘCL models.

We localize parts in a test image by computing the MAP es-

timate of part locations. We use efficient dynamic program-

ming techniques that compute LMAP in a few seconds per

image [7]. We make all of our models translation invariant

by setting Σroot to be very large (we do not optimize Σroot

during learning).

Caltech motorbikes: The Caltech dataset is known to

be relatively easy for detection; we use it as benchmark

for localization. Crandall et al [6] demonstrate quite good

performance on the motorbike set by ML training of star-

like models. We train a star model using the same labeled

training data (kindly provided by the authors). Interestingly,

the means µi and appearance weights wi trained by CL are

equivalent to their ML estimates. However, the covariances

Σi are much larger (Fig.4). This results in localization per-

formance that surpasses the state-of-the-art (Table 1). This

is because the part models are so strong that they need only a

little guidance from a spatial prior. Consider the rear wheel

model: by itself, it is an extremely accurate detector but for

the fact that it is confused by the front wheel. It requires

only a weak spatial prior to resolve this ambiguity. This in-

terdependency between the spatial prior and the part model

is lacking in the ML framework, since the model parameters

for each are fit independently (Eq.8).

USC people: The USC people dataset is challenging set

of 20 pictures of people in various poses [19] (kindly pro-

vided to us by the authors). We split the data in half into

a training and testing set. The ML and CL model learned

from the training images (and their mirror-flipped versions)

ML Model

CL Model

Figure 4. Learning a star model for the Caltech motorbikes. On

the top is our implementation of the ML model learned by [6]

(we assume diagonal Σi and plot ellipses at 1 standard deviation).

On the bottom, the CL model has significantly larger Σi. This is

because the part appearance models are so strong that only little

guidance from a spatial prior is needed. The CL model produces

better localizations as shown Table1.

are shown in Fig.1. The CL model learns a rest pose where

the arms and legs lie away from the body. This helps during

localization because the model will tend to be less confused

by edges near the body. We show results for the test set in

Fig. 5. We quantitatively evaluate results in Tab. 2. The pose

recovery algorithm used by Lee and Cohen is initialized by

a face detector and is tuned to find skin pixels; hence it is

designed for frontally facing people with uncovered limbs.

Our articulated part model from Sec. 6 is quite generic (as

we use it to also find horses). We obtain error rates for cer-

tain body parts that are comparable to [19] (see Table 2).

Weizmann horses: The Weizmann horse dataset is a

well-known collection of images used to evaluate segmen-

tation. We are not aware of any results presented for part lo-

calization. We hand-labeled the first 40 images with ground

truth locations, and learned an articulated model from the

first 20 images. We show the learned models and test image

results in Fig. 6. The CL model almost always localizes the

body and most legs correctly, though it often has difficulties

with the head. These results are impressive given the variety

in appearance and pose for this dataset.

7.1. Discussion

We specifically address the recognition task of localiza-

tion. By focusing on that task, we have developed a new cri-

teria for optimizing part-based models. Instead of learning

a model that best matches some labeled poses, we learn the

model that best localizes those poses. This subtle difference

often leads to very different models because the objective
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Figure 5. Finding people in the USC dataset. On the top, we show poses localized by ΘML. On the bottom, we show poses localized by

ΘCL. This data is quite challenging. Many images contain other people in the background (A,C), limb-like clutter (C), and self-occlusion

(B,D). The CL model performs better than the ML model because it is less confused by edges close to the body. An exception is (C),

where the spread-eagle spatial prior (from Fig. 1) forces the CL model to snap onto limb-like clutter in the background. In general, the CL

model does well at finding the torso and legs, but often misses the arms. We show in Table 2 that we localize torsos and legs just as well as

specialized approaches that exploit face and skin detection [19].

Figure 6. We can localize horses with our articulated model. On the top, we show poses localized by ΘML. On the bottom, we show poses

localized by ΘCL. Looking at the learned models (left), we see the CL model learns a more spread out rest pose (similar to Fig 1). This

dataset is known to be challenging because of the variation in appearance and pose. Our CL model consistently achieves good localizations;

the body and many of the legs are almost always correctly localized (although the estimates for left/right limbs can be incorrect). We look

at quantitative results in Table 3.

is discriminative (rather than generative) and the model pa-

rameters are jointly learned (rather than independently). We

demonstrate these models on challenging datasets, achiev-

ing or surpassing state-of-the-art results.

Acknowledgments: Thanks to David Crandall, Pedro

Felzenszwalb, and Mun Wai Lee for helpful discussions



Localization Results for Caltech Motorbikes
Rear Front Head Tail Seat Seat

wheel wheel light light Back Front

ML 4.19 3.22 13.97 11.58 13.17 9.46

CL 2.88 2.44 12.49 7.95 10.39 6.77
Table 1. To evaluate localization, we look at the (90% alpha-

trimmed) mean euclidean error of each part, measured with respect

to a canonical car width of 200 pixels (as in [6]). Our average error

across all parts for the CL model is 7.15. This compares favorable

with the best-reported error of 12.9 [6]. This significant reduc-

tion seems to stem from the looser spatial model learned by the

conditional likelihood model.

Localization Results for USC People

Sho. Elbow Wrist Hip Knee Ankle

ML 21.2 21.4 38.3 11.2 15.3 21.5

CL 17.9 21.9 39.7 7.8 12.3 17.2
Table 2. Our error rates in (pixel) root mean squared error for the

USC dataset. Our models struggle to find arms, but the CL model

localizes torsos and legs fairly well. Our error rates for those body

parts are comparable to the average error of 14.9 reported in [19]

(error for individual body parts were not given). Our results are

impressive given that [19] uses a face detector and a skin model.

Our part appearance models are quite generic; we show they can

also be used to find other articulated objects such as horses in

Fig. 6.

Localization Results for Weizmann horses
Nose Ear Sho. Knee Hoof Rear

ML 50.9 38.6 24.4 24.7 27.13 25.7

CL 45.9 34.2 19.1 19.8 22.72 20.0
Table 3. Our error rates in (pixel) root mean squared error for the

Weizmann dataset. These are computed with respect to a canonical

horse width of 300 pixels. The average error for the ML model is

27.9, while the CL model is 23.1. Given the variety in appearance

and pose in the dataset, we do quite well at localizing the main

body and legs. The head proves difficult; we might do better by

learning a specific head model rather than using our generic limb

model.

about their work.
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