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Abstract
We present an approach to detecting and analyzing the 3D configuration of objects
in real-world images with heavy occlusion and clutter. We focus on the application
of finding and analyzing cars. We do so with a two-stage model; the first stage
reasons about 2D shape and appearance variation due to within-class variation
(station wagons look different than sedans) and changes in viewpoint. Rather
than using a view-based model, we describe a compositional representation that
models a large number of effective views and shapes using a small number of
local view-based templates. We use this model to propose candidate detections
and 2D estimates of shape. These estimates are then refined by our second stage,
using an explicit 3D model of shape and viewpoint. We use a morphable model
to capture 3D within-class variation, and use a weak-perspective camera model
to capture viewpoint. We learn all model parameters from 2D annotations. We
demonstrate state-of-the-art accuracy for detection, viewpoint estimation, and 3D
shape reconstruction on challenging images from the PASCAL VOC 2011 dataset.

1 Introduction

Figure 1: We describe two-stage models for detecting and analyzing the 3D shape of objects in
unconstrained images. In the first stage, our models reason about 2D appearance and shape using
variants of deformable part models (DPMs). We use global mixtures of trees with local mixtures
of gradient-based part templates (top-left). Global mixtures capture constraints on visibility and
shape (headlights are only visible in certain views at certain locations), while local mixtures capture
constraints on appearance (headlights look different in different views). Our 2D models localize
even fully-occluded landmarks, shown as hollow circles and dashed lines in (top-middle). We feed
this output to our second stage, which directly reasons about 3D shape and camera viewpoint. We
show the reconstructed 3D model and associated ground-plane (assuming its parallel to the car body)
on (top-right). The bottom row shows 3D reconstructions from four novel viewpoints.

A grand challenge in machine vision is the task of understanding 3D objects from 2D images. Clas-
sic approaches based on 3D geometric models [2] could sometimes exhibit brittle behavior on clut-
tered, “in-the-wild” images. Contemporary recognition methods tend to build statistical models of
2D appearance, consisting of classifiers trained with large training sets using engineered appear-
ance features. Successful examples include face detectors [30], pedestrian detectors [7], and general
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object-category detectors [10]. Such methods seem to work well even in cluttered scenes, but are
usually limited to coarse 2D output, such as bounding-boxes.

Our work is an attempt to combine the two approaches, with a focus on statistical, 3D geometric
models of objects. Specifically, we focus on the practical application of detecting and analyzing
cars in cluttered, unconstrained images. We refer the reader to our results (Fig.4) for a sampling of
cluttered images that we consider. We develop a model that detects cars, estimates camera viewpoint,
and recovers 3D landmarks configurations and their visibility with state-of-the-art accuracy. It does
so by reasoning about appearance, 3D shape, and camera viewpoint through the use of 2D structured,
relational classifiers and 3D geometric subspace models.

While deformable models and pictorial structures [10, 31, 11] are known to successfully model ar-
ticulation, 3D viewpoint is still not well understood. The typical solution is to “discretize” viewpoint
and build multiple view-based models tuned for each view (frontal, side, 3/4...). One advantage of
such a “brute-force” approach is that it is computationally efficient, at least for a small number of
views. Fine-grained 3D shape estimation may still be difficult with such a strategy. On the other
hand, it is difficult to build models that reason directly in 3D because the “inverse-rendering” prob-
lem is hard to solve. We introduce a two-stage approach that first reasons about 2D shape and appear-
ance variation, and then reasons explicitly about 3D shape and viewpoint given 2D correspondences
from the first stage. We show that “inverse-rendering” is feasible by way of 2D correspondences.

2D shape and appearance: Our first stage models 2D shape and appearance using a variant of
deformable part models (DPMs) designed to produce reliable 2D landmark correspondences. Our
approach differs from traditional view-based models in that it is compositional; it “cuts and pastes”
together different sets of local view-based templates to model a large set of global viewpoints. We
use global mixtures of trees with local mixtures of “part” or landmark templates. Global mixtures
capture constraints on visibility and shape (headlights are only visible in certain views at certain
locations), while local mixtures capture constraints on appearance (headlights look different in dif-
ferent views). We use this model to efficiently generate candidate 2D detections that are refined
by our second 3D stage. One salient aspect of our 2D model is that it reports 2D locations of all
landmarks including occluded ones, each augmented with a visibility flag.

3D shape and viewpoint: Our second layer processes the 2D output of our first stage, incorporat-
ing global shape constraints arising from 3D shape variation and viewpoint. To capture viewpoint
constraints, we model landmarks as weak-perspective projections of a 3D object. To capture within-
class variation, we model the 3D shape of any object instance as a linear combination of 3D basis
shapes. We use tools from nonrigid structure-from-motion (SFM) to both learn and enforce such
models using 2D correspondences. Crucially, we make use of occlusion reports generated by our
local view-based templates to estimate morphable 3D shape and camera viewpoint.

2 Related Work

We focus most on recognition methods that deal explicitly with 3D viewpoint variation.

Voting-based methods: One approach to detection and viewpoint classification is based on bottom-
up geometric voting, using a Hough transform or geometric hashing. Images are first processed to
obtain a set of local feature detections. Each detection can then vote for both an object location
and viewpoint. Examples include [12] and implicit shape models [1, 26]. Our approach differs in
that we require no initial feature detection stage, and instead we reason about all possible geometric
configurations and occlusion states.

View-based models: Early successful approaches included multivew face detection [24, 17]. Recent
approaches based on view-based deformable part models include [19, 13, 10]. Our model differs in
that we use a single representation that directly generates multiple views. One can augment view-
based models to share local parts across views [27, 21, 32]. This typically requires reasoning about
topological changes in viewpoint; certain parts or features can only be visible in certain view due
to self-occlusion. One classic representation for encoding such visibility constraints is an aspect
graph [5]. [33] model such topological constraints with global mixtures with varying tree structures.
Our model is similar to such approaches, except that we use a decomposable notion of aspect; we
simultaneously reason about global and semi-local changes in visibility using local part mixtures
with global co-occurrence constraints.
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3D models: One can also directly reason about local features and their geometric arrangement in
a 3D coordinate system [23, 25, 34]. Though such models are three-dimensional in terms of their
underlying representation, run-time inference usually proceeds in a bottom-up manner, where de-
tected features vote for object locations. To handle non-Gaussian observation models, [18] evaluate
randomly sampled model estimates within a RANSAC search. Our approach is closely related to the
recent work of [22], which also uses a deformable part model (DPM) to capture viewpoint variation
in cars. Though they learn spatial constraints in a 3D coordinate frame, their model at run-time is
equivalent to a view-based model, where each view is modeled with a star-structured DPM. Our
model differs in that we directly reason about the location of fully-occluded landmarks, we model
an exponential number of viewpoints by using a compositional representation, and we produce con-
tinuous 3D shapes and camera viewpoints associated with each detection using only 2D training
data. Finally, we represent the space of 3D models of an object category using a set of basis shapes,
similar to the morphable models of [3]. To estimate such models from 2D data, we adapt methods
designed for tracking morphable shapes to 3D object category recognition [29, 28].

3 2D Shape and Appearance
We first describe our 2D model of shape and appearance. We write it as a scoring function with
linear parameters. Our model can be seen as an extension of the flexible mixtures-of-part model
[31], which itself augments a deformable part model (DPM) [10] to reason about local mixtures.
Our model differs its encoding of occlusion states using local mixtures, as well as the introduc-
tion of global mixtures that enforce occlusions and spatial geometry consistent with changes in 3D
viewpoint. We take care to design our model so as to allow for efficient dynamic-programming
algorithms for inference.

Let I be an image, pi = (x, y) be the pixel location for part i and ti ∈ {1..T} be the local mixture
component of part i. As an example, part i may correspond to a front-left headlight, and ti can
correspond to different appearances of a headlight in frontal, side, or three-quarter views. A notable
aspect of our model is that we estimate landmark locations for all parts in all views, even when they
are fully occluded. We will show that local mixture variables perform surprisingly well at modeling
complex appearances arising from occlusions.

Let i ∈ V where V is the set of all landmarks. We consider different relational graphs Gm =
(V,Em) where Em connects pairs of landmarks constrained to have consistent locations and local
mixtures in global mixture m. We can loosely think of m as a “global viewpoint”, though it will be
latently estimated from the data. We use the lack of subscript to denote the set of variables obtained
by iterating over that subscript; e.g., p = {pi : i ∈ V }. Given an image, we score a collection of
landmark locations and mixture variables

S(I, p, t,m) =
∑
i∈V

[
αt

i

i · φ(I, pi)
]

+
∑
ij∈Em

[
βt

i,tj

ijm · ψ(pi − pj) + γ
ti,tj
ijm

]
(1)

Local model: The first term scores the appearance evidence for placing a template αtii for part i,
tuned for mixture ti, at location pi. We write φ(I, pi) for the feature vector (e.g., HOG descriptor
[7]) extracted from pixel location pi in image I . Note that we define a template even for mixtures
ti corresponding to fully-occluded states. One may argue that no image evidence should be scored
during an occlusion; we take the view that the learning algorithm can decide for itself. It may
choose to learn a template of all zeros (essentially ignoring image evidence) or it may find gradient
features statistically correlated with occlusions (such as t-junctions). Unlike the remaining terms in
our scoring function, the local appearance model is not dependent on the global mixture/viewpoint.
We show that this independence allows our model to compose together different local mixtures to
model a single global viewpoint.

Relational model: The second term scores relational constraints between pairs of parts. We write
ψ(pi − pj) =

[
dx dx2 dy dy2

]
, a vector of relative offsets between part i and part j. We

can interpret βti,tjijm as the parameters of a spring specifying the relative rest location and quadratic
spring penalty for deviating from that rest location. Notably, this spring depends on part i and j,
the local mixture components of part i and j, and the global mixture m. This dependency captures
many natural constraints due to self-occlusion; for example, if a car’s left-front wheel lies to the
right of the other front wheel (in image space), than it is likely self-occluded. Hence it is crucial that
local appearance and geometry depend on each other. The last term γ

ti,tj
ijm defines a co-occurrence

score associated with instancing local mixture ti and tj , and global mixture m. This encodes the
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constraint that, if the left front headlight is occluded due to self occlusion, the left front wheel is also
likely occluded.

Global model: We define different graphs Gm = (V,Em) corresponding to different global mix-
tures. We can loosely think of the global variable m are capturing a coarse, quantized viewpoint. To
ensure tractability, we force all edge structures to be tree-structured. Intuitively, different relational
structures may help because occluded landmarks tend to be localized with less reliability. One may
expect occluded/unreliable parts should have fewer connections (lower degrees in Gm) than reliable
parts. Even for a fixed global mixture m, our model can generate an exponentially-large set of ap-
pearances |V |T , where T is the number of local mixture types. We show such a model outperforms
a naive view-based model in our experiments.

3.1 Inference
Inference corresponds to maximizing (1) with respect to landmark locations p, local mixtures t, and
global mixtures m:

S∗(I) = max
m

[max
p,t

S(I, p, t,m)] (2)

We optimize the above equation by enumerating all global mixtures m, and for each global mixture,
finding the optimal combination of landmark locations p and local mixtures t by dynamic program-
ing (DP). To see that the inner maximization can be optimized by DP, let us define zi = (pi, ti) to
denote both the discrete pixel position and discrete mixture type of part i. We can rewrite the score
from (1) for a fixed image I and global mixture m with edge structure E as:

S(z) =
∑
i∈V

φi(zi) +
∑
ij∈E

ψij(zi, zj), (for a fixed I and m) (3)

where φi(zi) = αtii · φ(I, pi) and ψij(zi, zj) = β
ti,tj
ijm · ψ(pi − pj) + γ

ti,tj
ijm

From this perspective, it is clear that our model (conditioned on I and m) is a discrete, pairwise
Markov random field (MRF). When G = (V,E) is tree-structured, one can compute maxz S(z)
with dynamic programming [31].

3.2 Learning
We assume we are given training data consisting of image-landmark triplet {In, pin, oin}, where
landmarks are augmented with an additional discrete visibility flag oin. With a slight abuse of nota-
tion, we use n to denote an instance of a training image. We use oin ∈ {0, 1, 2} to denote visible,
self-occlusion, and other-occlusion respectively, where other occlusion corresponds to a landmark
that is occluded by another object (or the image border). We now show how to augment this train-
ing set with local mixtures labels tin, global mixtures labels mn, and global edge structures Em.
Essentially, we infer such mixture labels using probabilistic algorithms for generating local/global
clusters of 2D landmark configurations. We then use this inferred mixture labels to train the linear
parameters of the scoring function (1) using supervised, max-margin methods.

Learning local mixtures: We use the clustering algorithm described in [8, 4] to learn local part mix-
tures. We construct a “local-geometric-context” vector for each part, and obtain landmark mixture
labels by grouping landmark instances with similar local geometry. Specifically, for each landmark
i and image n, we construct a K-element vector gin that defines the 2D relative location of a land-
mark with respect to the other K landmarks in instance n, normalized for the size of that training
instance. We construct sets of features Setij = {gin : n ∈ 1..N and oin = j} corresponding to
each part i and occlusion state j. We separately cluster each set of vectors using K-means, and then
interpret cluster membership as mixture label tin. This means that, for landmark i, a third of its T
local mixtures will model visible instances in the training set, a third will model self-occlusions, and
a third will capture other-occlusions.

Learning relational structure: Given local mixture labels tin, we simultaneously learn global mix-
tures mn and edge structure Em with a probabilistic model of zin = (pin, tin). We find the global
mixtures and edge structure that maximizes the probability of the observed {zin} labels. Proba-
bilistically speaking, our spatial spring model is equivalent to a Gaussian model (who’s mean and
covariance correspond to the rest location and rigidity), making estimation relatively straightfor-
ward. We first describe the special case of a single global mixture, for which the most-likely tree E
can be obtained by maximizing the mutual information of the labels using the Chow-Liu algorithm
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[6, 15]. In our case, we find the maximum-weight spanning tree in a fully connected graph whose
edges are labeled with the mutual information (MI) between zi = (pi, ti) and zj = (pj , tj):

MI(zi, zj) = MI(ti, tj) +
∑
ti,tj

P (ti, tj)MI(pi, pj |ti, tj) (4)

MI(ti, tj) can be directly computed from the empirical joint frequency of mixture labels in the
training set. MI(pi, pj |ti, tj) is the mutual information of the Gaussian random variables for the
location of landmarks i and j given a fixed pair of discrete mixture types ti, tj ; this again is readily
obtained by computing the determinant of the sample covariance of the locations of landmarks i and
j, estimated from the training data. Hence both spatial consistency and mixture consistency are used
when learning our relational structure.

Learning structure and global mixtures: To simultaneously learn global mixture labels mn and
edge structures associated with each mixture Em, we use an EM algorithm for learning mixtures of
trees [20, 15]. Specifically, Meila and Jordan [20] describe an EM algorithm that iterates between
inferring distributions over tree mixture assignments (the E-step) and estimating the tree structure
(the M-step). One can write the expected complete log-likelihood of the observed labels {z}, where
θ are the model parameters (Gaussian spatial models, local mixture co-occurrences and global mix-
ture priors) to be maximized and the global mixture assignment variables {mn} are the hidden
variables to be marginalized. Notably, the M-step makes use of the Chow-Liu algorithm. We omit
detailed equations for lack of space, but note that this is a relatively straightforward application of
[20]. We demonstrate that our latently-estimated global mixtures are crucial for high-performance
in 3D reasoning.

Learning parameters: The previous steps produces local/global mixture labels and edge structures.
Treating these as “ground-truth”, we now define a supervised max-margin framework for learning
model parameters. To do so, let us write the landmark position labels pn, local mixtures labels
tn, and global mixture label mn collectively as yn. Given a training set of positive images with
labels {In, yn} and negative images not containing the object of interest, we define a structured
prediction objective function similar to one proposed in [31]. The scoring function in (1) is linear
in the parameters w = {α, β, γ}, and therefore can be expressed as S(In, yn) = w · Φ(In, yn). We
learn a model of the form:

argmin
w,ξi≥0

1
2
wT · w + C

∑
n

ξn (5)

s.t. ∀n ∈ positive images w · Φ(In, yn) ≥ 1− ξn
∀n ∈ negative images,∀y w · Φ(In, y) ≤ −1 + ξn

The above constraint states that positive examples should score better than 1 (the margin), while
negative examples, for all configurations of part positions and mixtures, should score less than -1.
We collect negative examples from images that does not contain any cars. This form of learning
problem is known as a structural SVM, and there exist many well-tuned solvers such as the cutting
plane solver of SVMStruct in [16] and the stochastic gradient descent solver in [10]. We use the
dual coordinate-descent QP solver of [31]. We show an example of a learned model and its learned
tree structure in Fig.1.

4 3D Shape and Viewpoint
The previous section describes our 2D model of appearance and shape. We use it to propose detec-
tions with associated landmarks positions p∗. In this section, we describe a 3D shape and viewpoint
model for refining p∗. Consider 2D views of a single rigid object; 2D landmark positions must obey
epipolar geometry constraints. In our case, we must account for within-class shape variation as well
(e.g., sedans look different than station wagons). To do so, we make two simplifying assumptions:
(1) We assume depth variation of our objects are small compared to the distance from the camera,
which corresponds to a weak-perspective camera model. (2) We assume the 3D landmarks of all
object instances can be written as linear combinations of a few basis shapes. Let us write the set of
detected landmark positions as p∗ as a 2×K matrix where K = |V |. We now describe a procedure
for refining p∗ to be consistent with these two assumptions:

min
R,α
||p∗ −R

∑
i

αiBi||2 where p ∈ R2×K , R ∈ R2×3, RRT = Id,Bi ∈ R3×K (6)
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Here, R is an orthonormal camera projection matrix and Bi is the ith basis shape, and Id is the
identity matrix. We factor out camera translations by working with mean-centered points p∗ and let
α directly model weak-perspective scalings.

Inference: Given 2D landmark locations p∗ and a known set of 3D basis shapes Bi, inference
corresponds to minimizing (6). For a single basis shape (nB = 1), this problem is equivalent to
the well-known “extrinsic orientation” problem of registering a 3D point cloud to a 2D point cloud
with known correspondence [14]. Because the squared error is linear in ai and R, we solve for the
coefficients and rotation with an iterative least-squares algorithm. We enforce the orthonormality
of R with a nonlinear optimization, initialized by the least-squares solution [14]. This means that
we can associate each detection with shape basis coefficients αi (which allows us to reconstruct
the 3D shape) and camera viewpoint R. One could combine the reprojection error of (6) with our
original scoring function from (1) into a single objective that jointly searches over all 2D and 3D
unknowns. However inference would be exponential in K. We find a two-layer inference algorithm
to be computationally efficient but still effective.

Learning: The above inference algorithm requires the morphable 3D basis Bi at test-time. One
can estimate such a basis given training data with labeled 2D landmark positions by casting this as
nonrigid structure from motion (SFM) problem. Stack all 2D landmarks from N training images
into a 2N ×K matrix. In the noise-free case, this matrix is rank 3nB (where nB is the number of
basis shapes), since each row can be written as a linear combination of the 3D coordinates of nB
basis shapes. This means that one can use rank constraints to learn a 3D morphable basis. We use the
publically-available nonrigid SFM code [28]. By slightly modifying it to estimate “motion” given a
known “structure”, we can also use it to perform the previous projection step during inference.

Occlusion: A well-known limitation of SFM methods is their restricted success under heavy occlu-
sion. Notably, our 2D appearance model provides location estimates for occluded landmarks. Many
SFM methods (including [28]) can deal with limited occlusion through the use of low-rank con-
straints; essentially, one can still estimate low-rank approximations of matrices with some missing
entries. We can use this property to learn models from partially-labeled training sets. Recall that
our learning formulation requires all landmarks (including occluded ones) to be labeled in training
data. Manually labeling the positions of occluded landmarks can be ambiguous. Instead, we use the
estimated shape basis and camera viewpoints to infer/correct the locations of occluded landmarks.

5 Experiments
Datasets: To evaluate our model, we focus on car detection and 3D landmark estimation in cluttered,
real-world datasets with severe occlusions. We labeled a subset of 500 images from the PASCAL
VOC 2011 dataset [9] with locations and visibility states of 20 car landmarks. Our dataset contains
723 car instances. 36% of landmarks are not visible due to self-occlusion, while 21% of landmarks
are not visible due to occlusion by another object (or truncation due to the image border). Hence
over half our landmarks are occluded, making our dataset considerably more difficult than those
typically used for landmark localization or 3D viewpoint estimation. We evenly split the images
into a train/test set. We also compare results on a more standard viewpoint dataset from [1], which
consists of 200 relatively “clean” cars from the PASCAL VOC 2007 dataset, marked with 40 discrete
viewpoint class labels.

Implementation: We modify the publically-available code of [31] and [28] to learn our models,
setting the number of local mixtures T = 9, the number of global mixtures M = 50, and the
number of basis shapes nB = 5. We found results relatively robust to these settings. Learning our
2D deformable model takes roughly 4 hours, while learning our 3D shape model takes less than
a minute. Our model is defined at a canonical scale, so we search over an image pyramid to find
detections at multiple scales. Total run-time for a test image (including both 2D and 3D processing
over all scales) is 10 seconds.

Evaluation: Given an image, our algorithm produces multiple detections, each with 3D landmark
locations, visibility flags, and camera viewpoints. We qualitatively visualize such output in Fig.4.
To evaluate our output, we assume test images are marked with ground-truth cars, each annotated
with ground-truth 2D landmarks and visibility flags. We measure the performance of our algorithm
on four tasks. We evaluate object detection (AP) using using the PASCAL criteria of Average
Precision [9], defining a detection to be correct if its bounding box overlaps the ground truth by
50% or more. We evaluate 2D landmark localization (LP) by counting the fraction of predicted

6



0 50 100 150
0

20

40

60

80

degrees

 

 
Our model

Arie−Nachimson and Basri

Glasner et al.

0 10 20 30

Our Model

Arie−Nachimson and Basri

Glasner et al.

Median Degree Error

Figure 2: We report histograms of viewpoint label errors for the dataset of [1]. We compare to the
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(a) Baseline comparison (b) Diagnostic analysis
Figure 3: We compare our model with various view-based baselines in (a), and examine various
components of our model through a diagnostic analysis in (b). We refer the reader to the text for
a detailed analysis, but our model outperforms many state-of-the-art view-based baselines based on
trees, stars, and latent parts. We also find that modeling the effects of shape due to global changes
in 3D viewpoint is crucial for both detection and landmark localization.

landmarks that lie within .5x pixels of the ground-truth, where x is the diameter of the associated
ground-truth wheel. We evaluate landmark visibility prediction (VP) by counting the number
of landmarks whose predicted visibility state matches the ground-truth, where landmarks may be
“visible”, “self-occluded”, or “other-occluded”. Our 3D shape model refines only LP and VP, so
AP is determined solely by our 2D (mixtures of trees) model. To avoid conflating the evaluation
measures, we evaluate LP and VP assuming bounding-box correspondences between candidates and
ground-truth instances are provided. Finally to evaluate viewpoint classification (VC), we compare
predicted camera viewpoints with ground-truth viewpoints on the standard benchmark of [1].

Viewpoint Classification: We first present results for viewpoint classification in Fig.2 on the bench-
mark of [1]. Given a test instance, we run our detector, estimate the camera rotationR, and report the
reconstructed 2D landmarks generated using the estimated R. Then we produce a quantized view-
point label by matching the reconstructions to landmark locations for a reference image (provided
in the dataset). We found this approach more reliable than directly matching 3D rotation matrices
(for which metric distances are hard to define). We produce a median error of 9 degrees, a factor of
2 improvement over state-of-the-art. This suggests our model does accurately capture viewpoints.
We next turn to a detailed analysis on our new cluttered dataset.

Baselines: We compare the performance of our overall system to several existing approaches for
multiview detection in Fig.3(a). We first compare to widely-used latent deformable part model
(DPM) of [10], trained on the exact same data as our model. A supervised DPM (MV-star) consid-
erably improves performance from 63 to 74% AP, where supervision is provided for (view-specific)
root mixtures and part locations. This latter model is equivalent in structure to a state-of-the-art
model for car detection and viewpoint estimation [22], which trains a DPM using supervision pro-
vided by a 3D CAD model. By allowing for tree-structured relations in each view-specific global
mixture (MV-tree), we see a small drop in AP = 72.3%. Our final model is similar in term of
detection performance (AP = 72.5%), but does noticeably better than both view-based models for
landmark prediction. We correctly localize landmarks 69.5% of time, while MV-tree and MV-star
score 65.7% and 64.7%, respectively. We produce landmark visibility (VP) estimates from our mul-
tiview baselines by predicting a fixed set of visibility labels conditioned on the view-based mixture.
We should note that accurate landmark localization is crucial for estimating the 3D shape of the de-
tected instance. We attribute our improvement to the fact that our model can model a large number
of global viewpoints by composing together different local view-based templates.
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Figure 4: Sample results of our system on real images with heavy clutter and occlusion. We show
pairs of images corresponding to detections that matched to ground-truth annotations. The top image
(in the pair) shows the output of our tree model, and the bottom shows our 3D shape reconstruction,
following the notational conventions of Fig.1. Our system estimates 3D shapes of multiple cars
under heavy clutter and occlusions, even in cases where more than 50% of a car is occluded. Our
morphable 3D model adapts to the shape of the car, producing different reconstructions for SUVs
and sedans (row 2, columns 2-3). Recall that our tree model explicitly reasons about changes in
visibility due to self-occlusions versus occlusions from other objects, manifested as local mixture
templates. This allow our 3D reconstructions to model occlusions due to other objects (e.g., the rear
of the car in row 2, column 3). In some cases, the estimated 3D shape is misaligned due to extreme
shape variation of the car instance (e.g., the folding doors on the lower-right).

Diagnostics: We compare various aspects of our model in Fig.3(b). “Local” refers to a single tree
model with local mixtures only, while “Global” refers to our global mixtures of trees. We see a
small improvement in terms of AP, from 69% for “Local” to 72.5% for “Global”. However, in terms
of landmark prediction, “Global” strongly outperforms “Local”, 69.4% to 57.2%. We use these
predicted landmarks to estimate 3D shape below.

3D Shape: Our 3D shape model reports back a z depth value for each landmark (x, y) position.
Unfortunately, depth is hard to evaluate without ground-truth 3D annotations. Instead, we evaluate
the improvement in re-projected VP and LP due to our 3D shape model; we see a small 2% improve-
ment in LP accuracy, from 69.4% to 71.2%. We further analyze this by looking at the improvement
in localization accuracy of ground-truth landmarks that are visible (73.3 to 74.8%), self-occluded
(70.5 to 72.5%), and other-occluded (22.5 to 23.4%). We see the largest improvement for occluded
parts, which makes intuitive sense. Local templates corresponding to occluded mixtures will be less
accurate, and so will benefit more from a 3D shape model.

Conclusion: We have described a geometric model for detecting and estimating the 3D shape of
objects in heavily cluttered, occluded, real-world images. Our model differs from typical multiview
approaches by reasoning about local changes in landmark appearance and global changes in visi-
bility and shape, through the aid of a morphable 3D model. While our model is similar to prior
work in terms of detection performance, it produces significantly better estimates of 2D/3D land-
marks and camera positions, and quantifiably improves localization of occluded landmarks. Though
we have focused on the application of analyzing cars, we believe our method could apply to other
geometrically-constrained objects.
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