
Using Temporal Coherence to Build Models of Animals

Deva Ramanan and D. A. Forsyth
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720

ramanan@cs.berkeley.edu, daf@cs.berkeley.edu

Abstract

This paper describes a system that can build appearance
models of animals automatically from a video sequence of
the relevant animal with no explicit supervisory informa-
tion. The video sequence need not have any form of special
background. Animals are modeled as a 2D kinematic chain
of rectangular segments, where the number of segments and
the topology of the chain are unknown. The system detects
possible segments, clusters segments whose appearance is
coherent over time, and then builds a spatial model of such
segment clusters. The resulting representation of the spatial
configuration of the animal in each frame can be seen either
as a track — in which case the system described should be
viewed as a generalized tracker, that is capable of modeling
objects while tracking them — or as the source of an ap-
pearance model which can be used to build detectors for
the particular animal. This is because knowing a video
sequence is temporally coherent — i.e. that a particular
animal is present through the sequence — is a strong su-
pervisory signal. The method is shown to be successful as
a tracker on video sequences of real scenes showing three
different animals. For the same reason it is successful as a
tracker, the method results in detectors that can be used to
find each animal fairly reliably within the Corel collection
of images.

1. Introduction

In learning circles, supervised data is usually thought of
as data where each data item comes with information iden-
tifying its class. However, useful supervisory information
can come in a variety of important forms — for example,
in multiple instance learning, one is given a collection of
packets of examples, and told which packets contain posi-
tive examples, but not which example is positive. It is still
possible to learn under these circumstances [9, 10]. It has
been shown that, given sentences in two languages, where
one knows the sentences are translations of one another but
not the exact correspondence between words, one can build

a lexicon [11]. Similarly, given bags of data that consist
of representations of image regions and words — here one
knows that the words come from some subset of the regions
but not which word comes from which — it is possible to
learn to map words onto regions [4]. All this follows from
observations that really useful supervisory information can
appear in hidden forms [14, 16].

It is commonly the case that, when building models of
objects from images, it is relatively easy to associate objects
with names but relatively difficult to determine which pix-
els in the image are associated with the object. This is why,
for example, it is quite common to model objects by plac-
ing them on known, simple backgrounds. This isn’t always
possible, but we do not wish to have to manually segment
the relevant object in a large set of training examples. This
manual segmentation is an important, often forgotten, part
of the supervision process. In this paper, we show that tem-
poral coherence can be used as supervisory information to
supersede the manual segmentation process.

1.1. Tracking as Model Building

An alternative view of this paper is that it describes a
generalized tracker, which is able to build models of ob-
jects automatically and then track the object by detecting the
presence of the model. In this respect, our work exposes a
connection between tracking and object detection; namely,
tracking an object is easier if we can detect it. Conversely,
a good tracker should yield a good object detector.

The tracking literature is too large to review in detail
here; a brief discussion and review appears in [6, 7]. Typ-
ically, current trackers have a dynamical model which is
applied to object appearance and movement, and use this
model to obtain some maximum a posteriori (MAP) es-
timate of object appearance and pose in each frame. The
dynamical model of appearance is Markovian, which is ex-
tremely convenient for inference but a poor model of ac-
tual object appearance — more consistent with experience
is a model that says that, expressed in appropriate coordi-
nates, appearance hardly changes at all over a motion se-

1

quence. We examine this constant appearance model fur-
ther in section 1.2. Inference is now harder because one
needs to determine a single appearance that works for most
or all frames. However, approximate inference is possible,
as described in [13]. We repeat some information here for
the convenience of the reader. The basic assumption of this
tracker is that appearance is a stronger cue to the configu-
ration of a person in the next frame than dynamics, because
the body can move very fast but it takes some time to change
clothes. This tracker assumes that the image of the body
consists of some set of segments of known scale, assembled
according to a known plan (i.e. lower leg attached to upper
leg attached to torso, etc.). The tracker works by building
an appearance model of putative actors, detecting instances
of that model, and linking the instances across time.

The appearance model approximates a view of the body
as a puppet built of colored, textured rectangles. The model
is built by applying detuned body segment detectors to some
or all frames in a sequence. These detectors respond to
roughly parallel contrast energies at a set of fixed scales
(one for the torso and one for other segments). A detector
response at a given position and orientation suggests that
there may be a rectangle there. For the frames that are used
to build the model, we cluster together segments that are
sufficiently close in appearance — as encoded by a patch of
pixels within the segment — and appear in multiple frames
without violating upper bounds on velocity. It is possible to
determine whether these bounds are violated from minimal
camera calibration information (the scale in a scaled ortho-
graphic model). Clusters that contain segments that do not
move at any point of the sequence are then rejected. The
next step is to build assemblies of segments that lie together
like a body puppet. The torso is used as a root, because our
torso detector is quite reliable. One then looks for segments
that lie close to the torso in multiple frames to form arm
and leg segments. Note that this procedure does not require
a particularly reliable initial segment detector, because we
are using many frames to build a model — if a segment is
missed in a few frames, it can be found in others which will
yield the appearance model. We are currently assuming that
each individual is differently dressed, so that the number of
individuals is the number of distinct appearance models, a
reasonable assumption for many but not all application do-
mains. It is straightforward to instance the model, though
this complicates counting people and separating individual
tracks.

Detecting the appearance model is straightforward,
and uses the method of Felzenschwalb and Hutten-
locher [5]. This yields, for each frame in the sequence, the
best match to each known individual, laid out as a puppet.
If the match cost exceeds some threshold, we assume that
the individual is absent.

In this paper, we show that it is not necessary to know

anything about the segment model to track an object with
this scheme (section 2). Once one has done so, one pos-
sesses an appearance model of the object that can be used
to detect it in other images (section 4). As a result, the as-
sumption of motion coherence is being used as supervisory
information to identify which pixels in the image belong to
the object being learned.

1.2 Constant Appearance Model

The constant appearance model from [13] is unusual
in the tracking literature; most trackers assume a Marko-
vian appearance model to make inference easier (by condi-
tioning on the current frame, we can forget about the past
when predicting the future). We argue this is wrong be-
cause all past frames tell us something about the under-
lying appearance of the object. Consider drawing sam-
ple trajectories from two toy models of state; Markov
{xi∼N(xi−1, σ2), x1∼N(0, σ2)} versus i.i.d. from a con-
stant distribution {xi∼N(0, σ2)}. The former is essentially
a random walk where our final state might be arbitrarily far
from our initial one. If our state encodes position, this is
perfectly reasonable – given the absence of image observa-
tions, we might believe an object travels far from its start-
ing point. If our state encodes appearance, this is a poor
model because it allows a blue shirt to turn yellow. In prac-
tice, with good image observations, we can constrain this
random walk by reweighting samples with the image like-
lihood. But once we hit a frame with an ambiguous image
observation, the random walk tendency resumes, causing
the track to drift (an illustrative example is figure 6 from
Sickenbladh et al [15]). With a constant appearance model,
we force our initial and final appearance to be similar – the
blue shirt stays blue, even given an ambiguous image.

Turning to our analogy between tracking and object de-
tection, we find our constant appearance model is quite stan-
dard in the detection literature. Implicit in most unsuper-
vised learning algorithms is the claim that images of differ-
ent objects from the same class look similar [4, 14, 16]. One
learns what a zebra looks like by finding the common bits in
a collection of images of different zebras. We observe the
same applies for a collection of images of the same zebra.
A convenient place to find such data is a video of a zebra,
where in fact we get the added constraint that the configura-
tion of zebra bits from one frame to the next cannot change
too fast.

1.3. General Approach

Assume we are given a video sequence and told that, say,
a zebra is present. We wish to build a visual model of a ze-
bra that can be used to find zebras in this sequence — so the
animal can be tracked — and to find zebras in other images.
We would like to do so using the minimum of information

(a)

valid tracks prune tracks

(b) (c) (d) (e)

cluster

Figure 1. Learning an object model by clustering. We first search for candidate segments using local detectors (we show 3
sample frames in (a)). We cluster the image patches together in (b). From each cluster we extract a valid sequence obeying
our motion model in (c). We prune away the short tracks to retain the final segments in (d). We are left with the final object
model in (e), consisting of the head, neck and body of the zebra.

about zebras, so that the method can be used for other ani-
mals. If we know that the zebra is the only animal present,
there are two powerful cues that can be used to establish
what it looks like: First, the zebra is, rather roughly, assem-
bled out of body segments. Second, the segments will look
the same from frame to frame — their appearance is coher-
ent in time. This suggests the following strategy:
Detect candidate segments with a detuned segment detec-
tor.
Cluster the resulting segments to identify body segments
that look similar across time
Prune segments that move too fast in some frames.
Assemble a spatial model from these segments.
In what follows, we show that this results in a satisfactory
model for a variety of animals.

2. Detecting and Clustering Segments

We model segments as cylinders and generate candidates
by convolving the image with a template that responds to
parallel lines of contrast (at a variety of orientations and
scales), suppressing the non-maximum responses. We used
15 orientations, and 25 scales (5 lengths crossed with 5
widths). We expect our low-level segment detectors to per-
form poorly with many false positives and missed detec-
tions, such as those in figure 1-(a).

2.1. Clustering Segments

Since we do not know the number of segments in our
model (or for that matter, the number of segment-like things
in the background), we do not know the number of clusters

a priori. Hence, clustering segments with parametric meth-
ods like gaussian mixture models or k-means is difficult.
We opted for the mean-shift procedure [2], a non-parametric
density estimation technique.

We create a feature vector for each candidate segment,
consisting of a normalized color histogram in the Lab color
space, appended with shape information (in our case, sim-
ply the length and width of the candidate patch). Note that
this feature vector is to be used for clustering, for which it
is sufficient. The representation of appearance is not limited
to this feature vector.

The color histogram is represented with projections onto
the L, a, and b axis, using 10 bins for each projection. Hence
our feature vector is 10 + 10 + 10 + 2 = 32 dimensional.
We scale the histogram and scale dimensions so as to obtain
a meaningful L2 distance for this space. Further cues — for
example, image texture — might be added by extending the
feature vector, but appear unnecessary for clustering.

Identifying segments with a coherent appearance across
time involves finding points in this feature space that are (a)
close and (b) from different frames. This is difficult to do;
we drop requirement (b), which can be imposed on clusters
post hoc, and concentrate on (a). The mean-shift procedure
is an iterative scheme where we find the mean position of
all feature points within a hypersphere of radius h, recenter
the hypersphere around the new mean, and repeat until con-
vergence. We initialize this procedure at each original fea-
ture point, and regard the resulting points of convergence as
cluster centers. For example, for the zebra sequence in fig-
ure 1, starting from each original segment patch yields five
points of convergence (denoted by the centers of the five

Figure 2. Our activities could be viewed as building a generalized kinematic tracker, using temporal coherence in segment
appearance. From this view, they are successful, as the figure indicates. Each row shows four frames from a sequence of
a moving animal. Superimposed on each frame is a segment model, the color of the block indicating the temporal corre-
spondence of segments. Notice that these segments stay in about the right place, and correspond appropriately, despite the
animal’s movement. The appearance model is built automatically, and is shown on the right.

clusters in (b)).
As a post-processing step we merge clusters which con-

tain members located within h of each other (in a greedy
fashion, starting with the two closest clusters). We account
for over-merging of clusters by extracting multiple valid se-
quences from each cluster during step (c) (for each cluster
during the third step in figure 1, explained further in the fol-
lowing section, we keep extracting sequences of sufficient
length until none are left). Hence for a single arm appear-
ance cluster, we might discover two valid tracks of a left
and right arm.

2.2. Velocity Bounds and Track Requirements

As figure 1 indicates, not every coherent patch is associ-
ated with a moving figure. The second column of clusters in
1-(b) are background regions. However, at this point clus-
ter elements are neither constrained to move with bounded
velocity nor required to form a sequence — there might be
several elements from the same frame.

We now find the most likely sequence of candidates for
each cluster that obeys the velocity constraints. By fitting
an appearance model to each cluster (typically a Gaussian,
with mean at the cluster mean and standard deviation com-
puted from the cluster), we can formulate this optimization
as a straightforward dynamic programming problem. Let
P i be the position of a segment in the ith frame. Since

these variables represent position (rather then appearance),
we can model them as Markovian; i.e. Pr(P i|P 1:i−1) =
Pr(P i|P i−1). The reward for a given candidate is its like-
lihood under the gaussian appearance model, and the tem-
poral rewards are ’0’ for links violating our velocity bounds
and ’1’ otherwise. We add a dummy candidate to each
frame to represent a “no match” state with a fixed charge.
By applying dynamic programming, we obtain a sequence
of segments, at most one per frame, where the segments are
within a fixed velocity bound of one another and where all
lie close to the cluster center in appearance. As figure 1-
(c) demonstrates, this results in a somewhat smaller set of
segments associated with each cluster, particularly the sec-
ond column of background clusters. Background segments
which happen to cluster together often do not move like true
segments.

We now discard those tracks which are not long enough.
In figure 1-(c), this results in pruning away the second two
clusters. Note we could impose other tests of validity be-
yond the length of a track; we might require that a segment
move at some point, and so we would prune away a track
which is completely still. Alternatively, if we are given two
different videos of the same animal, we might prune away
those clusters which do not appear in both.

The segments belonging to the remaining three clusters
are shown in Fig 1-(d). These constitute our learned object
model depicted in (e); we can now learn the spatial con-

straints between the three segments and a more precise tem-
poral motion model (along with the appearance model from
the clustering step).

2.3. Building a Spatial Model

We now have a set of spatio-temporal tracks. Each track
contains instances of a segment of known appearance —
obtained from the clustering — where the instances appear
in many frames and move with bounded velocity. This set of
tracks is a track of the animal (figure 2), established without
information about its appearance.

This set of tracks can also be seen as a set of segment
groups, one in each frame, where frame to frame correspon-
dence is known (figure 2). Each track is a candidate segment
for a body model; currently, we simply accept all tracks.

We build a spatial model using the same procedure as [8].
Note in our case, we obtain the set of hand-labeled training
examples automatically from the tracker; it outputs a va-
riety of valid configurations of the zebra head, neck, and
body (we do not need the precise segment labels so long
as we know their correspondence between frames). For the
readers convenience, the procedure is briefly outlined here.
We can imagine a fully connected graphical model of seg-
ment positions, Phead, Pneck, Pbody . Each link represents a
joint distribution Pr(Pseg1, Pseg2) of pairwise segment po-
sitions, to which we fit a gaussian using the tracker data. We
then find the minimum entropy spanning tree, disregarding
the extraneous edges. This yields a tree spatial model of
segment positions ([8] used a mixture of trees, but we found
a simple tree model to suffice).

Using the learned spatial model and the appearance
model from the clustering, we now have a zebra detector.
We use the method of Felzenschwalb and Huttenlocher [5]
to find the best match for a given image efficiently. We
can use our zebra detector on the original tracked frames to
yield more accurate tracks [13], or use it to query a collec-
tion of images to find zebra pictures.

3. Clustering as Approximate Inference

The algorithm discussed above is, in fact, an approxi-
mate inference procedure for the graphical model shown
in Fig 3. For simplicity, assume we are dealing with only
one segment. We write the 32 dimensional feature vector
extracted from the patch centered at pixel (x, y) from the
ith image, oriented at angle θ with length l and width w
as Imi(x, y, θ, l, w). Hence we can interpret the ith im-
age as a set of feature vectors Im

i = {Imi(. . .)}; this is
the only observed quantity in our model (Fig.3-a). We as-
sume there is an unobserved variable encoding the configu-
ration of the true segment patch at frame i, which we write
as P i = [xiyiθiliwi] (we also call this the segment “po-
sition”). Let C be the true, constant underlying segment

1Im

P 1 P 2

2Im
frame2

P 3

3Im
frame3

C

frame1

P 1

C

P 32P

(a) (b)

Figure 3. The graphical model for segment inference. The
model in (a) encodes the fact that each image instance of a
segment has the same appearance (encoded in C) but ap-
pears at different places. In (b), the simplified undirected
form of the model.

appearance and shape (represented as a 32 dimensional fea-
ture vector). Hence we can say that Imi(P i) is distributed
as

φ(||Imi(P i) − C||) (1)

where φ is a kernel capturing appearance variation. We
use the Epanechnikov (triangle) kernel with bandwidth h.
We assume the background image patches are unstructured
(i.i.d. uniform).

We emphasize that our model still allows segment ap-
pearance to change (slightly) from frame to frame – the ap-
pearance in each frame is an i.i.d. sample from a distribution
which is constant (equation 1). Most other trackers model
temporal changes in appearance by replacing the constant
C in figure 3 with a temporally varying copy C i in each
frame plate. We argued in section 1.2 that this Markovian
appearance model is a poor choice.

We can simplify our model by turning to the undi-
rected case in Fig.3-b. Note that since we observe Im

i we
only use a 2-dimensional slice of the 3-dimensional “table”
Pr(Imi|P i, C). Hence the image observations specify a
particular potential between P i and C (i.e., this is the stan-
dard moralization that results from conversion of a directed
graphical model to an undirected one). Note our image ob-
servations are now implicitly represented in the potentials
ψi(C,P

i), while our motion model lives in the potentials
ψlink(P i, P i−1).

The algorithm described in section 2 is a loopy-type in-
ference procedure for the model in Fig.3-b (see also [13, 3,
12]). In particular, we are passing messages along a set of
different subtrees of this model. The first subtree is shown
in figure 4.

While clustering does not immediately seem like an in-
ference procedure, it is an approximate procedure to ob-
tain likely values of C. In particular, the domain of C is
continuous, which is awkward for inference. Assume that
we wish to obtain good values of C from the tree of fig-

1P

C

2P P 3

C

P 3P 1 P 2

(a) (b)

Figure 4. Approximate inference on the model of figure 3
proceeds by inference on embedded trees, as in [12]. We use
two; tree (a) is the most difficult, as it is practically very dif-
ficult to apply dynamic programming becauseC is a contin-
uous variable. Instead, we use an approximation by cluster-
ing, described in greater detail in the text, which identifies
the appearance of segments that occur many times; such
segments are likely to be close to extrema of the dynamic
programming criterion, which would look for a value of C
that was like many image instances. OnceC has been deter-
mined, we must do inference on tree (b), which is relatively
straightforward.

ure 4-(a). We wish to obtain values of C and P i that maxi-
mize ψ1(C,P

1)ψ2(C,P
2) . . . ψk(C,P k), where the image

information is implicit in the ψi’s (whence the subscript).
Now this corresponds to choosing a C and a set of P i

such that the image segments identified by P i all look like
C. If C was defined over a discrete domain, all we’d be
doing is dynamic programming: for each value of C, we’d
choose the best P i for each i, form the product, and then
choose the C with the best product — we label this Ĉ. This
search is not easy for a continuous domain (e.g. [1]).

However, we know that we are looking for, in essence,
a point in the domain of C such that there are many im-
age segments that look like that point. Now assume we
have a detuned but usable segment detector. It will then
detect many, but not all, instances of the relevant segment
and some background segments too. The instances of the
relevant segment will look like one another. This means
that, by clustering the representations of the segment ap-
pearances, we are obtaining a reasonable approximation to
Ĉ. In particular, finding local modes of the posterior on C
using a Parzen’s window estimate with a kernel φ is equiva-
lent to the mean-shift algorithm. Using a more sophisticated
appearance kernel φ reduces to using a weighted mean in
each iteration of the mean-shift procedure. We possess no
formal information on the quality of the approximation.

3.1. Multiple Segments

We now incorporate a multi-segment object model by in-
terpreting each cluster as a unique segment, instantiating
multiple copies of the model Fig 3-(b), one for each cluster.
We can partly justify this procedure by our aggressive post-
clustering merging of clusters; any left-over clusters which

remain separate are likely to be different segments, and not
multiple modes of a single segment.

The mean-shift procedure yields, in addition to likely
values of C, a collection of nearby good values; these are
the clusters corresponding to each convergence point. We
exploit this fact to learn a new appearance kernel φ fit to
the clustered points; this was our previous step of learn-
ing a gaussian for each cluster. We now can treat C as an
observed quantity, for each instantiation of figure 3-(b). In-
ferring {P i} from such a model (figure 4-(b)) is straight-
forward; this is just our dynamic programming solution to
find the most likely sequence of candidates given a known
appearance. Note our initial claim of segment positions
{P i} being Markovian is only true when we condition on
C. Finally, we disregard those instantiations we deem in-
valid (i.e., not existing for enough frames).

4. Results

Tracking: Our activities could be described as build-
ing a generalized kinematic tracker. Taking this view, our
system is successful, as figure 2 indicates. These show typi-
cal frames for three sequences depicting different moving
animals. The same program was used in each case. In
each case, the tracks were not hand initialized; the program
builds an appearance model and a spatial model for the an-
imal automatically, then identifies instances automatically.
In each sequence, the animal’s body deforms considerably,
the zebra because it is moving very fast, the giraffe and
the tiger because giraffes and tigers deform a lot when they
move. Nonetheless, the program is able to build an appear-
ance model that is clearly sufficient to capture the essence
of the moving animal, but lacks some details. In particular,
legs are narrow and fast, and very difficult to track. Fur-
thermore, the temporal correspondences for the segments
— which are indicated by colored outlines in the figures
— are largely correct. Finally, the tracker has been able to
identify the main pool of pixels corresponding to the animal
in each frame.

Following [13], we evaluate our tracker using detection
rates (figure 5) obtained from the original video. Our algo-
rithm builds a representation of each animal as a collection
of segments. We define a correct detection for a segment
to occur when it is found anywhere on the animal body.
Defining precise ground truth for segment location is hard
because many segments do not correspond to actual animal
limbs. In practice, the tracked segments tend not to drift on
the animal body, so we believe the localization to be largely
accurate. Our correct detection and false positive rates are
quite good for all the segments for the 3 animals.

Object Detection: Our activities could be described as
using motion coherence information to build an appearance
model of an animal. Taking this view, our system is success-
ful, as figure 6 demonstrates. We took the appearance mod-

.84
.94

.34

.52

.50

.58

.52
.84

.84

.99

.61
.62

.55

Zebra Tiger Giraffe
.94

Figure 5. As in [13], we evaluate our trackers using de-
tection rates for the original videos. Our algorithm builds
representations of animals as a collection of segments. We
overlay the probability of correct detection over each seg-
ment. We define a correct detection to occur when a segment
is found on the animal body. Since all our tracked segments
lie on the animal, our false positive rate for each segment is
0. Our correct detection rates are also quite good.

els and the spatial models built during the tracking phase
and used them to match to images of the relevant animals
from the Corel collection of royalty-free images. We built
a test pool with 100 random images, not labeled with either
“zebra”, “tiger”, or “giraffe” plus 50 “zebra”, 120 “tiger”,
and 34 “giraffe” images. To test a given detector, we use
all the corresponding animal images as positives, and ran-
domly select 100 images from those remaining in the pool
as negatives. We repeat this experiment 200 times, each
time sampling with replacement, to generate the mean per-
formance curves and standard deviation error bars. The red
(dashed) line suggests that the segment appearance repre-
sentation used for clustering (a color histogram) many not
be sufficient for building an animal detector.

Our model building algorithm tracks the animal in a
video sequence. This means we know where the animal pix-
els are in each frame of that sequence, and can use them to
build more sophisticated representations. By appending our
color histogram with a texture descriptor learned from the
pools of animal pixels, we can increase our performance.
This is particularly true for the zebra. We use a texture
model similar to [14], which is discussed further in upcom-
ing work. We train this model using 100 random Corel
images (not in our test set) as negatives. Our tiger detec-
tors perform reasonably well and equivalently to each other,
probably because color is a sufficient cue for detection. The
giraffe detectors perform poorly, because the color and tex-
ture models learned from the washed-out giraffe video are
quite bad. In order to build good detectors we need video
with resolution and spatial frequency content similar to our
test images.

4.1. Evaluation of detection results

The error bars for our operating curves are quite large,
indicating performance is heavily dependent on the test

set. Telling zebras apart from other striped animals such
as tigers is much harder than telling zebras apart from cars.
There is no standard test set for animal detection; the best
comparison is with the work of Schmid [14], who shows
precision vs. recall for an automatically constructed model
of a zebra (and cheetah). Comparing performance is hard
because the test set is different, Schmid does not show er-
ror bars, and selects negative training images by hand. In
particular (1) zebras co-occur frequently with grass back-
grounds in the training set, and so Schmid uses negative
training images with grass to disambiguate the two; and (2)
the negative training images reflect the statistics of the neg-
ative test images. They include cheetahs and other animals.
Our model building algorithm by itself does not require any
negative training samples. The texture models we add to the
detectors need a baseline of “non-zebra” textures, so we ob-
tain a negative training set by randomly selecting 100 Corel
images (not in our test set). We seem to obtain a comparable
zebra detector; this is in part because temporal coherence
naturally segments out the zebra, circumventing the first is-
sue. Results for tigers and giraffes were not shown in [14].

5. Discussion

We have shown there exists a strong analogy between
tracking and object detection; both involve exercises in
model building.

Tracking: This paper has shown that the constant ap-
pearance model introduced in [13] can be used to learn spa-
tial models on-the-fly. The ability to create a data-driven
spatial model might prove useful for tracking people wear-
ing long skirts or other difficult clothing.

We demonstrate that constant state models can be use-
ful for tracking. We show an approximate inference proce-
dure for a constant model which naturally recasts tracking
as model building (inferring a MAP estimate of appearance)
followed by detection (using the model to infer a MAP es-
timate of segment configuration).

Object Detection: This paper has also demonstrated
that videos are a useful source of data for the unsupervised
learning of object models. By learning with videos as op-
posed to image collections [14, 16], we exploit the addi-
tional constraint that object parts cannot move too fast from
image to image. This constraint helps address one notable
difficulty with unsupervised learning – disambiguating ob-
jects that co-occur frequently [4]. We can disambiguate ze-
bra and grass image patches using motion constraints.

Our temporal coherence criterion also produces object
models with appealing spatial qualities. Building a kine-
matic model for a giraffe is difficult (even given a collec-
tion of giraffe pictures with the background masked out)
because a giraffe deforms non-rigidly. Our algorithm sug-
gests a good kinematic model is one where the segments
appear in a lot of giraffe pictures. This is why one should

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

zebra

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

tiger

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

giraffe

recall

pr
ec

is
io

n

color+texture
color
Random

Figure 6. Our activities could be viewed as automatic production of segment models using the implicit supervisory informa-
tion in temporal coherence of appearance. In this view, our work is successful, too. We took the animal models (consisting
of an appearance model for each segment and a spatial model between the segments) built during the tracking phase and
used them to match to images of the relevant animals from Corel. Our testing pool consists of 100 random (not labeled with
“zebra”, “tiger” or “giraffe”) plus 50 “zebra”, 34 “giraffe”, and 120 “tiger” images. We show precision/recall curves for
2 types of detectors, comparing them with a baseline of random guessing (the black dotted line). We plot error bars repre-
senting the standard deviation in precision for a given recall rate by repeatedly sampling (with replacement) 100 negative
images from our image pool when testing each detector. In the red (dashed) line, we model segment appearance with a color
histogram, the same representation used for clustering. Since our algorithm identifies pools of animal pixels in each video,
we can learn more sophisticated appearance models. The blue (solid) line is a detector which adds a texture descriptor to
each segment feature vector. We use 100 random Corel images (not in our test set) as negative examples to train the descrip-
tors. Our zebra detector performs significantly better when texture is used. Our tiger detectors both perform moderately well
and near equivalent to each other, indicating color is sufficient for detection. Our giraffe detectors are poor, performing at
chance. Even though our giraffe shape model seems accurate (as suggested by figure 2), the video is washed out and gener-
ates a poor appearance model. To build good detectors, we need video with resolution and spatial frequency content similar
to our test images. The large error bars in all cases indicate performance can heavily depend on the negative test pool,
implying comparisons of experiments on different data sets [14] need to made cautiously. Our zebra detector performance
seems to be equivalent to [14], without the need for hand picked negative training images.

model the giraffe neck as three segments rather than one;
some of the giraffe pictures have a deformed neck.

Acknowledgments
This work was supported by NSF award no. 0098682 and by

Office of Naval Research grant no. N00014-00-1-0890, as part of
the MURI program. D. R. is supported by a NSF fellowship.

References

[1] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Program-
ming. Athena Scientific, 1996.

[2] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis. IEEE T. Pattern Analysis and
Machine Intelligence, 24(5):603–619, 2002.

[3] J. Coughlan and S.J. Ferreira. Finding deformable shapes
using loopy belief propogation. In Proc ECCV, 2002.

[4] P. Duygulu, K. Barnard, N. de Freitas, and D.A. Forsyth. Ob-
ject recognition as machine translation. In Proc. European
Conference on Computer Vision, pages IV: 97–112, 2002.

[5] P. Felzenschwalb and D. Huttenlocher. Efficient matching of
pictorial structures. In Proc CVPR, 2000.

[6] D.A. Forsyth and J. Ponce. Tracking with non-linear dy-
namic models, online chapter http://www.cs.berkeley.edu/
∼daf/bookpages/pdf/.

[7] D.A. Forsyth and J. Ponce. Computer Vision: a modern ap-
proach. Prentice-Hall, 2002.

[8] S. Ioffe and D. Forsyth. Human tracking with mixtures of
trees. In Int. Conf. on Computer Vision, 2001.

[9] O. Maron. Learning from Ambiguity. PhD thesis, MIT, 1998.

[10] O. Maron and A.L. Ratan. Multiple-instance learning for
natural scene classification. In The Fifteenth International
Conference on Machine Learning, 1998.

[11] I. Dan Melamed. Empirical Methods for Exploiting Parallel
Texts. MIT Press, 2001.

[12] M.Wainwright, T. Jaakola, and A.Willsky. Tree-based repa-
rameterization for approximate inference on loopy graphs. In
NIPS, 2001.

[13] D. Ramanan and D.A. Forsyth. Finding and tracking people
from the bottom up. In Proc CVPR, 2003.

[14] C. Schmid. Constructing models for content-based image
retrieval. In Proc CVPR, 2001.

[15] H. Sidenbladh, M. J. Black, and L. Sigal. Implicit proba-
bilistic models of human motion for synthesis and tracking.
In European Conference on Computer Vision, 2000.

[16] Markus Weber, Max Welling, and Pietro Perona. Unsuper-
vised learning of models for recognition. In ECCV (1), pages
18–32, 2000.

