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Abstract

We advocate an approach to activity recognition based
on modeling contextual interactions between postured hu-
man bodies and nearby objects. We focus on the difficult
task of recognizing actions from static images and formu-
late the problem as a latent structured labeling problem.
We develop a unified, discriminative model for such context-
based action recognition building on recent techniques for
learning large-scale discriminative models. The resulting
contextual models learned by our system outperform previ-
ously published results on a database of sports actions.

1. Introduction
One of the long standing goals in computer vision is to

build a computer system that can see people and recognize
their activities. There is general agreement that taxonomies
of activities should be hierarchical [2, 13] - complex activi-
ties such as “eating lunch” are composed out of simpler low-
level actions such as “picking up a fork”. Many low-level
actions that form the foundation for such a hierarchy involve
interactions between humans and objects. This work exam-
ines the task of recognizing such interactions from static
images through the use of discriminative models.

One of our motivations for representing actions as con-
textual human/object interactions comes from the medical
literature on nursing and motor rehabilitation [21, 5]. Stan-
dard clinical assessments of motor ability typically define
a set of everyday actions required to perform activities of
daily living, such as picking up a telephone, drinking from
a mug, and turning on a light switch. Such taxonomies sug-
gest that actions are not performed in isolation, but are typ-
ically done with the goal of manipulating nearby objects.

Contextual models for high-level reasoning: There has
been much work on contextual reasoning for object recogni-
tion, typically focused on the task of object detection. While
[25, 28, 18] convincingly demonstrate that context can re-
fine the output of weak local detectors, such improvement
is harder to show for highly-tuned detectors [11, 7, 8]. In
the extreme case, a perfect detector will exhibit no improv-

ment due to contextual reasoning. Even given such perfect
detectors, we argue that context is still necessary for higher-
level inferences such as action recognition. Identifying a
“drinking” action is more subtle than simply finding a bot-
tle because one must verify that a bottle and person satisfy
particular spatial relationships and poses.

Our contributions: In this paper, we demonstrate that
context does provide a strong improvement over the same
state-of-the-art local detectors in [11, 7, 8] when evaluated
for the task of action recognition. Furthermore, while past
work on object-object context model relative locations of
objects [14, 7, 28], we demonstrate that pose is a crucial
component of these relations - a tennis serve is defined not
simply by the location of a person and racket, but also by
their poses. Finally, we introduce a unified, discriminative
action model for simultaneously learning object templates,

tennis−serve tennis−forehandcuttake picture

drink cricket−bowl

Figure 1. On the left, we show examples of everyday actions from
the PASCAL VOC dataset [10] that involve interactions between
postured bodies and objects. We develop discriminative action
models that capture these interactions. To demonstrate our ap-
proach using standard action recognition benchmarks, we evaluate
our models on action categories from the database of [16] (with
example images shown on the right). This database of sports ac-
tions contains images of human bodies interacting with objects.
We show that action models that capture spatial interactions be-
tween bodies and objects outperform state-of-the-art local detec-
tors on this dataset.
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Figure 2. A visualization of our implementation of the spatial his-
togram feature dij from [7]. We consider the location of the center
of window j with respect to a coordinate frame defined by win-
dow i, denoted by the thickly outlined box. The dashed and dot-
ted rectangles represent regions over which the center of window
j are binned. The relative location of j must either be far or
near. For near windows, we consider above, ontop, below,
and symmetric next-to bins as shown. This makes dij a 6 di-
mensional sparse binary vector.

pose-based templates, and their contextual relations.

2. Related work
Actions: The literature on action recognition is too large

to review here - we refer the reader to the recent survey [13].
Many approaches are based on local motion features such as
periodicity [26, 6], spatio-temporal gradients [37], optical
flow [9, 27], or background-subtracted silhouette features
[3, 15]. Local scores from such features are often integrated
across time using a Hidden Markov Model (HMM) [33, 4].

Context: Our contextual approach to action recogni-
tion is heavily motivated by the work of Gupta, Kemb-
havi, and Davis [16] and Laptev and Perez [23]. Both
works focus on contextual analysis of actions in the video-
domain but [16] also present a static-image version of their
model. In concurrent work, Yao and Fei-Fei also exam-
ine the use of contextual models of human-object interac-
tions [35, 34]. In particular, [35] introduce a discriminative
contextual model similar to ours, but defined on articulated
poses rather than discrete mixtures-of-poses. Context in im-
age recognition has been an active area of research in recent
history [28, 25, 14, 17, 18, 1, 22, 7]. These approaches have
typically treated the problem as that of finding a joint label-
ing for a set of pixels, super-pixels, or image segments and
are usually formulated as a CRF.

Still images: Wang et al [31] provide one of the earli-
est examples of static-image action recognition in computer
vision. Ikizler et al [19] present a similar approach to rec-
ognizing actions based on human pose estimation. Gupta
et al [16] examine contextual cues for static-image action
recognition using generative probabilistic models.

3. Model
We propose a unified model for action recognition from

static images based on detecting spatial conjunctions of

multiple objects. Our formulation utilizes the work of [7]
as an internal representation of the contextual relations be-
tween objects. Although we utilize a structured representa-
tion very similar to that in [7], the output of our system is
a K-way classification (action category) rather than a struc-
tured output (collection of object detections). We thus treat
object detections with their relative pose and spatial loca-
tions as a set of latent variables which we maximize over at
test time.

We now review the contextual representation from [7] as
it forms the basis of our action framework.

Image model: Our representation of an image is a col-
lection ofM overlapping windows at various locations. The
location of the ith window is given by its center and scale,
written as li = (x, y, s). The orientation of some manipu-
lable objects may be important to model, in which case one
can augment li to also include orientation θ. Let xi denote
the features extracted from the ith window. We use a his-
togram of oriented gradients (HOG) descriptor. The entire
image will be represented as a collection of feature vectors
X = {xi : i = 1 . . .M}.

Action model: Let Sy(X) be the score associated with
a particular action label for image X , where y takes on one
of K action classes:

y∗ = argmax
y

Sy(X) where y ∈ {0 . . .K} (1)

The score associated with particular action labeling for
an image is obtained by searching over all possible config-
urations of objects consistent with that action model. We
denote the configuration of objects in an image as Z:

Sy(X) = max
Z

Sy(X,Z) (2)

To define Z, we suppose that there exist O different object
models spread over the K actions of interest. We write zi ∈
{0 . . . O} for the label of the ith window, where the 0 label
designates background. Then Z = {zi : i = 1 . . .M} is a
vector of labels that identifies which windows in an image
contain particular objects.

Contextual model: We define the score of labeling im-
age X with object configuration Z given a particular action
y as:

Sy(X,Z) =
∑
i,j

wyzi,zj
· dij +

∑
i

wzi
· xi (3)

Here, wyzi,zj
represent weights that encode valid geomet-

ric configurations of object classes zi and zj for action y,
whereas wzi

represents a local template for object class i.
As in [7], dij is a spatial context feature that bins the rel-
ative location of windows i and j into one of D canoni-
cal relations including above, below, overlapping, next-to,
near, and far (Fig2). Hence dij is a sparse binary vector of
length D with a 1 for the kth element when the kth relation



is satisfied between the current pair of windows. Note that
the contextual model is action-specific, but the local object
templates are not. For example, tennis rackets and tennis
balls both appear in various tennis actions, but their spatial
relationships differ for a “forehand” versus a “serve” action.

Pose model: Intuitively, the pose of the human body
plays a large role in defining a body-object interaction. One
simple mechanism for capturing pose is a mixture model. In
this case, we define a local template for each mixture com-
ponent wzi,θ where θ ∈ {0 . . . T}. We would like to learn a
separate pairwise model wzi,zj

conditioned on the mixture
component for each object. For example, we expect manip-
ulatable objects to be positioned near the outstretched hand
of a person during interactions. We can formalize this in a
straightforward manner by augmenting the label space to be
the cross product of object class labels and mixture compo-
nents:

zi ∈ {0 . . . O} × {1 . . . T} (4)

Given the above extension, we can use the pairwise model
from (3) to capture pose-specific contextual models. From
the point-of-view of the contextual model, different mixture
components can be thought of as different objects. As such,
we henceforth write Ô = OT for the number of distinct
object-mixture combinations. We show in our experimental
results that the extension to pose-specific mixtures, though
somewhat trivial in terms of notation, is crucial for build-
ing accurate action models. This is because human body
posture is a strong cue for action recognition.

Sparsity: As in [7], we constrain local and pairwise
background weights w0 and wyi,0 and wy0,i to be 0. Since the
majority of windows in an image will be labelled as back-
ground, this significantly speeds up computations with the
model.

Action-specific object vocabularies: Only a subset of
objects take part in a particular action - one does not typi-
cally encounter volleyballs in tennis. Similar, only a subset
of poses take part in a particular action - humans do not
stand in a bowling pose while playing croquet. We can en-
force such constraints by fixing wyi,j = −∞ unless both
object-mixture component i and component j occur in at
least one instance of action y in the training data. Though
our learning algorithm can naturally learn such constraints,
we found fixing them to be easier since this (1) simplifies
inference since ony a small number of objects need to be
considered when scoring an action (Sec.4) and (2) signifi-
cantly reduces the number of pairwise parameters that need
to be learned (Sec.5).

Single-instances: In general, images may contain mul-
tiple instances of objects. We will consider a restricted ver-
sion of the action recognition problem where at most a sin-
gle instance of each object is present (e.g., each image has at
most one person). While not crucial to action classification

performance, we found this restriction to greatly improve
quality of detected objects across current action datasets.
In our framework, this restriction can easily be enforced by
settingwyi,i = −∞ for all action labels y and objects classes
i.

4. Inference
Given a collection of detection windowsX for an image,

we want to compute:

y∗ = argmax
y

max
Z

Sy(X,Z) (5)

This requires finding, for each action, the best-scoring con-
figuration of objects for that image. The computational bot-
tleneck is the inner maximization over window labels Z
which is intractable for general pairwise potentials. One
may resort to search techniques such as branch-and-bound
or A* to find the exact maximum, but we find that a simple
greedy forward search is usually sufficient.

Greedy forward selection: We adopt a the procedure
described in [7] which is inspired be greedy algorithms tra-
ditionally used for non-maximum suppression [24]. First,
we initialize Z by labeling each window as background
zi = 0. We then repeat the following:

1. Compute the single window and object-mixture label
z∗i that increases the score Sy(X,Z) by the largest
amount.

2. Update Z with z∗i .

The above is repeated until instancing any other window
decreases the total score. Naively recomputing the scores
associated with instancing all possible remaining windows
takes prohibitively long, but one can incrementally keep
track of the potential gain of turning on a window as de-
scribed in [7]. We have found that in practice this greedy al-
gorithm performs as well as other approximation techniques
(e.g., tree-reweighted belief propagation) and runs very fast.

5. Learning
Max-margin learning: Suppose we are given triples of

{Xn, Zn, yn} collection of training images, object config-
urations, and action labels respectively. We want to train a
model w that given a new image Xn, tends to produce the
true action label. We formulate this as a regularized leaning
problem:

arg min
w,ξn≥0

1
2
wTw + C

∑
n

ξn (6)

s.t.∀n, y 6= yn Syn
(Xn, Zn)− Sy(Xn) ≥ l(yn, y)− ξi



where we recall that Sy(Xn) = maxZ Sy(Xn, Z). The
constrained optimization from (6) has the following inter-
pretation: Consider the nth training image. We want the
score of the true action model yn and object configuration
Zn to dominate the score of any alternative action model
y, over any object configuration Z. However, not all al-
ternative actions are equally bad. One may wish to pay
a higher penalty for mislabeling a “tennis-forehand” as a
“volleyball-smash” rather than a “tennis-serve”. The loss
function l(yn, y) measures the cost for mislabeling action
yn as y, and penalizes the slack variable ξn in propor-
tion. This manner of loss augmentation is known as margin-
rescaling [30].

We use a simple 0-1 loss:

l(yn, y) = 1[yn 6=y]

where 1 is the standard identify function. Note that since
we are performing classification rather than structured pre-
diction, there is no requirement that the loss function de-
compose over detection windows (as in the model of [7]).

Linear score: Our method for learning the parameters
uses the fact that the score in (5) can be written as a single
inner product of a weight vector and feature vector. Let us
re-write the scoring function from (3) by introducing unary
as well as pairwise potential functions as follows:

Sy(X,Z) =
∑
i,j

wys · ψ(zi, zj , dij) +
∑
i

wa · φ(xi, zi)

where wys are the weights on the pairwise potentials for ac-
tion y and wa are the weights on the unary potentials. The
length of vectors wys and ψ() is DÔ2, and wa and φ() are
vectors of length ÔF , where D is the number of spatial re-
lations, Ô is the number of object-mixture combinations,
and F is the length of feature vector xi. The vector ψ() will
contain at most D nonzero entries and the vector φ() will
contain F nonzero entries. We can now write the score for
object configuration Z under action y as an inner product:

Sy(X,Z) = w ·Ψ(X,Z, y) where (7)

w =


w1
s

w2
s
...
wKs
wa

 and Ψ(X,Z, y) =



...
0∑

ij ψ(zi, zj , dij)
0
...∑

i φ(xi, zi)


is a long vector with zeros everywhere except for the “slot”
corresponding to the yth action, which will contain the pair-
wise potentials corresponding to the yth action, and the last
element which will contain the unary potentials.

Structural SVM: The constraints from (6) are nonlinear
in the parameters w (since they contain an embedded max

over Z). To make them conceptually easier to work with,
we can rewrite each single constraint as a set of linear con-
straints by enumerating all possible Z’s from the max over
object configurations:

arg min
w,ξn≥0

1
2
wTw + C

∑
n

ξn (8)

s.t.∀n,Z,y 6= yn, w · [Ψ(Xn, Zn, yn)−Ψ(Xn, Z, y)]
≥ l(yn, y)− ξi

Note that (8) and (6) represent equivalent problems. The
training problem specified in (8) is a quadratic program
with an exponential number of linear constraints known as
a structural SVM [29].

Cutting-plane optimization: Even though (8) has an
exponential number of constraints, there tends to be a small
number of active constraints at the optimum solution – the
“support vectors”. One can use the excellent public package
SVMStruct [20] to compute such solutions. We found it
more convenient to implement our own cutting plane solver.
The computational bottleneck of the optimization is the step
that computes the most violated constraint for an imageXn:

(y∗, Z∗) = argmax
y 6=yn,Z

l(yn, y) + w ·Ψ(Xn, Z, y)

(9)

The above argmax can be computed as follows: For each
action class y other than the true action yn, we com-
pute the score of the best object configuration maxZ w ·
Ψ(Xn, Z, y) using the greedy procedure from Sec.4, add
the cost l(yn, y), and finally return the class y∗ and object
configurationZ∗ that produce the maximum score. The pair
(y∗, Z∗) represents the false action, configuration combina-
tion that is most likley to be selected by the action classifier
– in structural SVM terms, the most-violated constraint for
image Xn given the current model w.

Because greedy algorithms are an under-generating ap-
proximation [12], we loose formal guarantees of optimality
at convergence of the cutting plane algorithm outlined in
[20]. However, we observe that in practice the greedy for-
ward search tends to produce scores similar to brute-force
solutions, suggesting that we may still learn models that are
close to optimal in practice.

Latent Structural SVMs: Because we are scoring our-
selves in multi-way classification, the action configurations
{Zn} are auxiliary labels that do not directly affect our loss
function. Put in other words, one can treat the ground-truth
action configuration {Zn} as latent variables that can also
be estimated during learning so as to minimize the overall
loss. Such a model is known as a latent structural SVM
[36] or a max-margin hidden conditional random field [32].
Because the formulation is no longer convex, the training



procedure is sensitive to initialization. However, it is nat-
ural to initialize action configurations to the given labels
{Zn}. Our experiments so far have suggested that such a
procedure results in overfitting, as training error always de-
creased but testing error increased. We see this avenue as
an important direction for future exploration.

6. Experimental results
It appears difficult to build large, realistic datasets of

interesting actions. Most video action datasets are rela-
tively contrived, consisting of actors performing scripted
actions on simplistic backgrounds. This is one of our mo-
tivations for exploring image-based action representations
rather than video-based representations. We only know of
one publically available image-based action dataset used in
the recent work of [16]. This dataset contains images of
humans engaged in 6 different sports actions, defined by
a variety of body postures and contextual object relations.
Although this dataset is small by contemporary standards
(50 images per action, split into a train and test set), it pro-
vides a good starting point for this new problem. [16] de-
scribe a fairly complex graphical model defined on local
HOG detectors and segmentation masks, which is trained
on human silhouettes and additional images not included
in the benchmark. We will show that our simpler, unified
model achieves significantly better performance using only
the given benchmark training data.

Training: Rather than learning the local templates in
our framework, we used the scores output by the Felzen-
wzwalb et al. [11] detector as a single feature. Recent
benchmarks [10] indicate this system is the current state-
of-the-art object detection system. To learn biases between
different object classes, we append a constant 1 to make xi
two-dimensional.

Results: Figure 5 presents the performance of our sys-
tem on the benchmark dataset of [16]. Our contextual action
model achieves an average classification score of 82.5%,
outperforming the best reported score of 78.7%. We also
compare our system to a simple “bag of objects” action
model built using appropriately bias-aligned local detectors.
Such a baseline actually performs reasonably well, beating
all of the baselines presented in [16]. Some example re-
sults of the activity classification and latent object labels are
shown in Figure 6.

Importance of pose: We also compare against a base-
line that doesn’t include object pose. As shown in Fig.5,
action representations of object configurations that ignore
body pose perform quite poorly, scoring 42%. This fact sug-
gests that spatial interaction models of objects should not be
built from pose-invariant detectors! A tennis-forehand ac-
tion is not defined purely by the relative location of a racket
and human, but also by the orientation of the racket and
the posture of the body. While it may be difficult to design

representations that factor into account continuous notions
of pose, we show that a simple mixture-model captures a
considerable amount of information.

The power of context: Our performance results are
noteworthy as they demonstrate that contextual models of
spatial interaction provide a stark improvement over the
state-of-the-art local models from [11] - our average clas-
sification rates improve from 70% to 82%.

While our action-specific contextual models utilize the
discriminative contextual features of Desai et al. [7] as a la-
tent or auxiliary component, we get far larger gains in per-
formance (they report an improvement from 26% to 27% in
average precision). Indeed, many recent benchmark evalu-
ations of context in object detection, such as [8, 14], sug-
gest that there is relatively little to be gained by contextual
reasoning when compared to highly-tuned local detectors.
Our results indicate that such context is indeed helpful for
higher-level inferences beyond object detection.

7. Conclusion
Most existing models of actions examine body posture.

We argue that interactions of nearby objects should also be
modeled for action recognition, as such contextual informa-
tion helps uncover the low-level goals and purpose of the
performed action. We have developed a simple but accu-
rate discriminative model of human-object interactions, and
demonstrated that it clearly outperforms highly-tuned local
detectors for the task of action recognition.
Acknowledgments Funding for this research was provided
by NSF Grant IIS-0954083 and NSF Grant IIS-0812428.
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we only use the given bounding-box data, while [35] requires articulated body labels and [16] require human silhouette segmentations as
well as additional images of objects to train their local detectors. We also show results for a “bag-of-objects” action model obtained by
omitting the pairwise terms from (3). This model achieves a score of 70.5% (center), outperforming the scene and pose-based baselines
of [16] (scoring 65.83% and 57.5% respectively). Finally, we show an additional baseline (right) obtained by a naive implementation
of [7] that learns a contextual action model built on a single pose-invariant human detector across all classes. The single detector is still
formulated as a mixture model over poses, but the contextual pairwise weights wy

ij are not learned separately for each mixture component.
It performs significantly worse, indicating that body pose is an important cue for capturing spatial interactions.

Figure 6. We show results of our system. The top 2 rows show correct predictions and the 3rd row shows incorrect predictions. Many
of the mistakes can be corrected with improved local detectors. For the 1st and 2nd mistakes, the bowler’s hand getting confused with
a tennis racquet and the absence of cricket stump detections leads to the human bowler pose being incorrectly detected as a tennis serve
pose. For the 3rd misclassification, the volleyball getting confused with a small ball and the absence of a volleyball net detection lead to
the volleyball smash action being misclassified as a human bowling action. For the 4th mistake, the tennis racquet firing near the hand and
the volleyball not being detected lead to the human volleyball pose being detected as a human forehand pose.
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