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ABSTRACT

Image interpolation is an issue which has recently received great attention.
The interpolation of images is a process which arises in many current applications,
such as the Internet and high definition television, whether it be within an image
zooming context or within a decompression phase of a data compression system.
This thesis considers various interpolation schemes, particularly focussing on non-
linear methods because of their inherent ability to preserve sharp edges and detail.
Simulation results are presented comparing and demonstrating various schemes,
offering a variety of performance levels at the expense of added computational com-

plexity and memory.

X



Chapter 1

AN INTRODUCTION TO IMAGE INTERPOLATION

Digital image interpolation is an issue that has recently received great atten-
tion. With the continued development of data communication schemes for image
transmission over the Internet and image/video coding for high definition television
(HDTV), novel and efficient techniques for digital image down-sampling and image
interpolation are more sought after than ever before. This thesis focuses on the more
involved interpolation phase, an area which provides much room for development of

new methods.

1.1 Digital Image Processing: Background Information

A digital image is essentially a table of numbers. A grayscale image is a
straightforward (x,y) table where a given value represents the intensity, or bright-
ness, at that (x,y) position. Color images are defined by 3 tables, each representing
the intensity of the red, green, and blue hues [5]. Processing a digital image is ac-
complished by simply applying an algorithm to a table of numbers to yield a new
table of numbers. This is commonly implemented in a raster scan fashion by passing
an observation window over an image, processing the central pixel of the given cur-
rent window. For example, for a 3 x 3 pixel-dimension observation window, there are
a total of 9 pixels; the 8 neighboring samples, plus the central pixel to be processed
(Fig. 1.1). We can generate an observation vector based on those nine pixels, and
feed that vector into an algorithm, which will in turn produce a new value for the

central pixel in the window. This window is passed along all areas of the image until
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Figure 1.1: The 3 x 3 observation window encompassing X*, the current pixel to
be filtered.

we have filtered all the pixels. Common applications of digital image processing are
noise-filtering and edge enhancement. In noise-filtering, the filtering algorithm tries
to identify certain image pixels which have a strikingly different intensity value from
their neighbors, and processes them to yield a better fitting value. In edge enhance-
ment, the filter attempts to find edges, or patterns of sharp intensity changes among

neighboring pixels, and enhances them.

1.1.1 Frequency Domain Analysis

A digital image can also be interpreted in the frequency domain, as opposed
to a spatial domain described by the table analogy. This is similar to viewing a
auditory signal from the time domain (a one-dimensional domain, as opposed to the
two dimensional spatial one) versus the frequency domain. Lower frequency signals
manifest themselves in the spatial domain as regions of flat or gradual intensity
changes, while the higher frequency signals manifest themselves in regions of sharp
intensity changes. Thus high frequency components of an image include both noise
pixels and edges. Noise-removing filters tend to reduce the high-frequency artifacts
of an image, while edge-enhancing tends to accentuate the high-frequency artifacts

of an image.



_ Interpolation

Figure 1.2: A generic interpolation scheme where a smaller image is enlarged, or
interpolated.

1.2 Image Interpolation: An Extension of Image Filtering

Digital image interpolation can now be defined as an extension of digital
image filtering. In any given interpolation scheme, a smaller image is the input, and a
larger version is the desired output (Fig. 1.2). The input image can initially be filled
or interlaced with zero pixels representing unknown values at specific locations to
yeild the desired output-sized image. The specific locations to insert the zero pixels
depends upon the method used to produce the smaller image; if it was created using
a specific sub-sampling lattice, the zero pixels must be inserted in accordance with
that lattice (Fig. 1.3). The zero-interlaced image can now be considered a noisy
image, where the noise consists of the zero pixels that were just inserted. Thus the
problem of image interpolation can essentially be reduced to the problem of noise
filtering. However, since the exact location of the noisy, or zero, pixels are known,
we only need to filter the effected pixel locations. This allows us in turn to be
more aggressive in our filter algorithms since we know the pixels we are filtering are
indeed noisy, and furthermore, we know which of the surrounding pixels are clean

(i.e., were present in the original smaller image).
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Figure 1.3: A typical image interpolation progression based on the Fvery Other
Row and Column (EORC) sub-sampling lattice. (a)Original image.
(b)EORC sub-sampled image (one quarter the size of the original im-
age).(c) Zero-Interlaced image (same size as original).

1.2.1 Traditional Noise-Reducing Filters

Treating interpolation as a noise-reducing problem, we can immediately apply
traditional noise filters to process the zero pixels. Applying a traditional linear
filter to the observation vectors generated by the filter windows exploits the spatial
ordering of the neighboring pixels by outputting a weighted sum combination of
them. However this method will tend to reduce most high-frequency signals of an

image, producing blurred edges and smoothed details in the final interpolated image.

1.2.2 Median-Based Filters

Nonlinear filters, however, have proven more successful in the area of edge
preservation. Zeng examined a series of median filters, in which the observation
set includes four neighboring samples [14] of the central pixel to be interpolated.
He further investigated extending the observation vector to include mean statistics
based on the four samples, generally seeing improved results. However, median fil-
tering itself can eliminate other high-frequency artifacts such as sharp corners and
narrow lines because the rank-based filtering process neglects any spatial neighbor-
hood information. We propose to couple both the rank and spatial ordering of the

samples by using weighted median (WM) filters [2], which outputs a median based



on spatially-assigned weights to the observation samples. Allowing the weights of
the observation sample to be spatially determined allows us to output a weighted

median where, for example, the center sample has a greater weight.

1.2.3 Permutation-Based Rank Selection Filters

We then consider rank conditioned rank selection (RCRS) and extended per-
mutation rank selection (EPRS) filters, which fully integrate the rank and spatial
orderings by using a permutation of the samples to map the spatial domain ordering
to a rank domain one [6], [7], [3]. RCRS filters are a class of filters based upon the
partitioning of an observation space using rank permutations of samples from the
current filter window. A rank selection filtering operation is defined over each indi-
vidual partition, allowing the RCRS filter to output one of the original samples from
the filter window. The observation vector used to generate the permutations consist
of the original N observation samples. EPRS filters use an extended observation
vector that also includes K statistics based upon those N observation samples, simi-
lar to the extended vectors Zeng used [14]. This allows the rank selection operation
of the EPRS filter to output not only one of the N original samples, but one of the K
statistics as well. By selecting the appropriate N original samples and K statistics,

both RCRS and EPRS filters can be applied to image interpolation.

1.3 Organization of Thesis

This remainder of this thesis is organized as follows. In Chapter 2, the
quincunz sub-sampling lattice is presented. In Chapter 3, we consider methods
for extracting and extending observation vectors from various-sized filter windows.
We then apply these observation vectors to traditional linear and median filters in
Chapter 4. In Chapter 5, we apply these observation vectors to the more com-

plex permutation-based rank filters. We define an optimization procedure for the



rank filters in Chapter 6. In Chapter 7, we present experimental results from the

application of the quincunx-based interpolators.



Chapter 2

QUINCUNX SUB-SAMPLING LATTICE

This chapter introduces the quincunx sub-sampling lattice and outlines the

basic interpolator structure associated with the lattice.

2.1 Transmission Channel

An important characteristic of any communication channel is the ability to
transmit accurate images at a low bit rate. This is typically accomplished with
the compression of the image data at the source end, a transmission of the data
through a communication channel, and a decompression of the image at the re-
ceiver. One implementation of this system is using a sub-sampling/interpolation
based coding/decoding procedure shown in Fig. 2.1. The coder and the decoder op-
erations are a communication issue which falls outside the scope of this work. We will
closely examine the sub-sampling and interpolation operations. There are many sub-
sampling schemes possible; our research focused on the sub-sampling lattice. This
lattice allows for a simpler interpolation phase needing only one interpolator struc-
ture, as opposed to the EORC lattice, in which multiple structures are needed to
accomodate the three types of zero-pixels in the interlaced image (Fig. 1.3-c). This
restriction to a single sub-sampling lattice allowed for a full examination of many
interpolation schemes. However, our methods can be applied to other sub-sampling
lattices as well, such as the EORC lattice.

The initial stage of the quincunx sub-sampling/interpolation progression can

be seen in Fig. 2.2. The quincunx lattice reduces the number of samples by 2
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Figure 2.1: A typical image transmission channel implementing the sub-
sampling /interpolation protocol.
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Figure 2.2: Sampling lattices. (a) Original. (b) Quincunx sub-sampled. (¢) Quin-
cunx zero-interlaced.
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[14], [11]. It can subsequently be zero-interlaced to produce the original size image
(Fig. 2.2-c) [2]. The next step in the interpolation progression is to filter the zero
pixels in the zero-interlaced image, producing the completely reconstructed image.
One preliminary point to consider is whether the original image should be low-pass
filtered before it is subsampled to avoid any aliasing. We decided against this option
since the low-pass filter would remove the high frequencies and sharp quality that we
are trying to preserve through nonlinear interpolation. Additionally, many practical
systems fail to include an antialiasing filtering operation. It should be noted that
while eliminating this filtering step does preserve edges, it does introduce image

distortions.



Figure 2.3: Interpolator structure for quincunx zero-interlaced image.

2.2 Interpolator Structure

The basic interpolator structure for the quincunx zero interlace is shown in
Fig. 2.3. In this case, the central zero is the pixel to be filtered, or interpolated. The
inner diamond encompasses the four adjacent neighboring samples, while the outer
diamond encompasses the next set of known samples. Thus, using the given inter-
polator structure, there are up to 16 known samples that we can use to interpolate
the value for the central zero pixel.

With the sub-sampling lattice and corresponding interpolator structure de-
fined, the following chapter describes the procedure to extract observation vectors

from the zero-interlaced image (Fig. 2.2-c) using the interpolator structure (Fig. 2.3).



Chapter 3

OBSERVATION VECTOR GENERATION

This chapter defines a set of observation vectors used for interpolation schemes
based on the quincunx sub-sampling lattice and interpolator structure defined in the
previous chapter.

We can represent the original image (Fig. 2.2-a) and the zero-interlaced ver-
sion (Fig. 2.2-c) with the 2—-dimensional discrete sequences {d(n)} and {z(n)}, re-
spectively. Note that from this point on, the index n is assumed and is used explicitly
only when needed.

We will implement our filters in a raster-scan fashion, passing an observation
window over the zero-interlaced image (Fig. 2.2-c), filtering only the zero pixel loca-
tions. At each zero pixel location, we must extract an observation vector consisting

of the known surrounding samples.

3.1 Extracting the Observation Vector

Consider a 2-dimensional window function that spans /N original samples.
Note we are defining the size of our window based on the number of original samples
it encompasses, not including the zero pixels covered by the window. Thus even if
we used all 16 neighboring samples from the interpolator structure shown in Fig. 2.3,

we are defining our window size to be 16, rather than 25 (16 original and 9 zero

10



pixels). For the central zero pixel being filtered, we consider the surrounding non-
zero samples to create an observation window of N samples, defining a corresponding
observation vector of

Xy = [T1,T2,...,TN]. (3.1)

Using the interpolator structure from Fig. 2.3, we can extract the observation vector
X1 = [%1, T2, ..., Z16] to create a 16 element filter window.

We can pass the observation vector xy through any filter, using the output
as the value for the center zero pixel. A typical linear scheme would exploit the
spatial ordering of the observed samples by outputting a weighted average of xy.
Increasing the computation and complexity, we could exploit the rank ordering of
the samples by choosing the median of xy. We will, however, propose schemes

combining both the rank and spatial orderings of the samples.

3.2 Extending the Observation Vector

Additional information about the window can be extracted by extending
the observation vector to include K characteristic statistics. Thus, we define an

extended observation vector as

iN,K = [51552:"'5'%1\7—}—1(]’ (32)

= [.’El,mg, A ,.CEN,Fl(XN), FQ(XN), .. -,FK(XN)]-

where Fj(xy) is some function of the original observation vector. Note that the

standard observation vector xy is simply a special case of Xy g, for K = 0.

3.3 Implemented Observation Vectors
To examine the effects of N and K on the performance of various filters, define
two sets of observation vectors. In the initial set, consider the original observation

vector for K = 0. Define 9 observation vectors for N = 2.3,...,8,12,16.

11



X9 = [.’L‘l,xg].
X3 = [xla Z2, 353]-
X4 = [l‘l,$2,$3,$4].

X5 = [$1,$2,$3,x4,$5].

X7 = [$1,$2,$3,.T4,.T5,I6,{I)7].
Xg = [$1,$2,$3,x4,.’E5,.’E6,l'7,$8].
X1y = [T1,%2, T3, T4, Ts, Te, T7, Tg, T9, T10, T11, T12]- (3.10

(3.3)

(3.4)

(3.5)

(3.6)

X¢ = |[T1,T2,T3,Ts,T5, Te). (3.7)
(3.8)

(3.9)

3.10)

)

X116 = [$1,$2,$3,$4,.’13'5,.’1;6,1'7,.’13'8,379,%'10,1'11,.7712,./1713,1'14,.7715,.’1'16] (311

To examine the effect of adding statistics, define a set of extended observation
vectors based on the original vectors above. Noting the success of adding an overall
mean to EPRS filters as an edge enhancement mechanism [7], we will also extend
our filters with linear averaging statistics as well. However, to derive increased
statistical information about our observation window, we will add directional means
of samples positioned along lines which pass through the center sample. For example,
for x4, we will extend the vector by two elements; the average of x; and x4, and the
average of x5 and z3. Note from Fig. 3.1-a that 1 and x4 are positioned along a
horizontal line crossing the center pixel, and x5 and x3 are positioned along a similar
vertical line. Since our directional mean statistics are exploiting the symmetry of
the original observation window, we will only extend the observation windows which
are inherently symmetric. Thus, for the vectors x4, Xg, X712, and x4, we will add
analogous directional mean statistics (Fig. 3.1) to define the corresponding extended

vectors

12



Xi2 = [X4,T{14), T3, (3.12)

Xgo = [X8,%{1,2,3457}> T{1,2,3,4,68}) (3.13)

X122 = [X12,%{1,2,3,4,5,7,10,12}» £{1,2,3,4,6,8,9,11} ] (3.14)

X164 = [X16,T{1,2,3,4,5,7,10,12} T{1,2,3,4,6,8,9,11}> L{2,3,14,16}, T{1,4,13,15})s  (3-1D)

where Z10,..in} = mean(;1, Tig, - - ., Tin). Note that because of the added symme-

try in x14, we were able to directly extend the vector by four averaging statistics
denoting the four main directional lines passing through the center pixel (Fig. 3.1-c).

We can now perform our filtering operation directly on the defined observa-
tion vectors. For example, in a simple linear or median scheme, we output the mean
or median of the vector, respectively. The next two chapters define a series of filters
which operate on one or both sets of vectors defined above. Since the original ob-
servation vector xy is simply a special case of the extended observation vector Xy,
for K = 0, filters used for both vectors are only explicitly defined for the extended

vector Xy k-

13
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denoted for (a)x4,2, (b)XS,Q, (C)Xlg’z, and (d)X16,4.



Chapter 4

TRADITIONAL FILTERS

In this chapter, we describe traditional filters for the various observation
vectors defined in the previous chapter. Prior to the filter definitions, we first outline

our criteria of evaluating their performance.

4.1 Error Criteria

Since some filters are designed to be optimized over a certain error criteria, we
will explicitly define the Mean Squared Error (MSE) and the Mean Absolute Error
(MAE) between the original {d(n)} and reconstructed image, denoted {d(n)}. Here,
our reconstructed image is our original zero-interlaced image {z(n)} after the zero-
pixels have been filtered.

During the raster-scan progression of the filter window, a sequence of ob-
servation vectors will be encountered for each zero pixel filtered. We can de-
note this sequence Xy g (n1), Xy x(n2), ..., Xy x(n,), where A is equal to the num-
ber of zero pixels in the zero-interlaced image {z(n)} to be filtered. Similarly,
we can write the corresponding desired values and filtered estimates as the se-
quences d(ny),d(ns),...,d(n,) and F(Xy x(n1)), F(Xn,x(n2)), ..., F(Xn, k(1)) re-
spectively. We can now characterize the sample MAE of the reconstructed image

as

MAE = 13| d(n)— d(mi) | (4.)



= > dm) = Faac(mi)) | (4.2)

The corresponding sample MSE between the original and reconstructed image is
J 3 )
i=1

Note that both these values are averaged only over the filtered pixels, not

the entire image (ie, the original pixels preserved during the sub-sampling are not

included).

4.2 Linear Filters
Consider a distribution analysis of the pixel samples in the observation vector.
In a purely randomly generated image, the distribution can be modeled by the

standard Gaussian distribution
f(:L') = C€(|w7ﬂ|/0’)2’ (44)

where (3 is the mean and o is the standard deviation (Fig. 4.1-a). It can be shown
that the Maximum Likelihood(ML) estimate of location of the distribution is the
sample mean [1]. Thus if we interpret our filtered pixel as the ML estimate of the ob-

servation window, we can define our first linear filter Lin1 to be the straightforward

mean.
1 N

FLin1(XN) = N Zﬂ% (4-5)
i=1

where z1,Z9,...,xx are the samples from the observation vector. Note in this

section we are only defining our linear filters for the original observation vector x,
since extended the vector by linear statistics provides no performance gains for linear
filters.

We can extend the filter to a broader class if allow the observation samples to
be independent, but not identically distributed. Consider the generalized Gaussian

distribution where the samples still have a common location parameter 3, but each x;
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has a unique standard deviation o;. The samples spatially closer to the central zero
pixel would have a smaller associated deviation from the ML estimate. These unique
o values manifest themselves in the filter as weights for the associated observation
samples when calculating the weighted mean. Thus we can define our next linear
filter to be

POARRTIRE

Shn (4.6)

where w; can be set according to the particular application. Specifically, for FJ s,

F; Lmz(XN) =

they will be set to the inverse of the Euclidean distance from center zero pixel to z;.
An optimal weight vector w* can be calculated using the Weiner filter [8].
This filtered method optimizes linear weights under the MSE statistical criterion.

In this case, the filter output is given by

N *
LLw!
FLin3 (XN) = 2_11\[71*, (47)
i=1 W;
= W xXy. (4.8)

4.2.1 Optimization of Weiner Coefficients
Substituting the matrix notation form in Eq. 4.8 into the MSE definition from

Eq. 4.3, we can we can define the error of the filtered estimate for this observation

vector as
1A
MSE = < Y1 d(n;) = Fring(xn(ni)) |7 (4.9)
i=1
12 T 2

1

-
Il

We can redefine the MSE in terms of the expected value operator E{} from
standard theory by considering xy(n;) and d(n;) to be specific values of random
variables xy(n) and d(n). Assuming the random variables are Gaussian, the ex-
pected value reduces to the mean [12]. We can now write the MSE as a function of

the weight vector w* to yeild
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MSE(w*) = E{[d(n) —w" +xy(n)"]2}. (4.11)

The minimum M SFE can be derived by differentiating with respect to w* and

setting the the resulting equation to 0 to yeild

w* =R, * Py, (4.12)

where
R,, = FE{xy(n)s*xy(n)"}, (4.13)
P, = E{xy(n)+*d(n)}. (4.14)

The auto-correlation of xx(n), Ry, and the cross-correlation between xy(n) and
d(n), P4, are statistics which can be summed over all the A observation vectors

encountered in the training image.

4.3 Median Filters

The Gaussian distribution, however, is often not an accurate model for a im-
age. Such an image would tend to have blurred edges, no sharp detail and smoothed
over lines; the very cues that the human visual system gravitates toward when look-
ing at an image. Thus, for our application of image interpolation, we want to
maintain the sharp edges and details.

In that case, a better distribution model for the image would account for
sharp changes in pixel values (representing edges and sharp detail) rather than

smooth gradual intensity changes. If we generalize Eq. 4.4 to
f(x) = cellz=Bl/o”, (4.15)

we can model a more impulsive sample distribution be decreasing p (Fig. 4.1). In
fact, the function evaluated at p = 1 is well known as the Laplacian distribution

function.
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Figure 4.1: The generalized Gaussian distribution for p = 2 (standard Gaussian
distribution), p = 1.5, and p = 1 (Laplacian distribution).
The ML estimator for Laplacian distribution is the sample median [1]. Hence

we will define our nonlinear filter to be the median value of the observation vector
FMed(iN,K) - MED[i‘l,iQ,...,fN+K]. (416)

Note that for our median-based filters, we are considering extending the observation
vectors by K linear statistics to determine if a performance gain results. The median
filter, as well as all of the nonlinear filters we will define, require a sorting operation
which is more computationally taxing than calculating a simple linear weighted
combination. However, novel methods for parallel and pipelined sorting algorithms
are becoming more prevalent and will reduce the running times needed for sorting
[15].

We can analogously extend our median filter into a generic class by allowing
the individual observation samples to have a spatially dependent standard deviation

from the center pixel [13]. We can now define a weighted median (WM) filter as

Fwu(Xy,x) = MED[w; 0 Z1,wp ¢ T, -+ -, WN+K © TN4K], (4.17)
w; times
where ¢ is the replication operator defined as w; ¢ x; = x;,z;,---,x;. Note that

these weights often yield the best results when they are identical to the linear filter
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weights; the reason for emphasizing certain samples in determining filter output is
often independent of the filtering scheme. We thus define two WM filters, Fy 51 and
Fy m2 which use the distance-derived and linear-optimized weights respectively (i.e.,
Fy m1 uses weights identical to Fr,o, and Fyy o uses weights identical to Fp,3).
Recall, however, linear weights were only defined for the original observation
vector xy. Since the K additional statistics are all linear averages of select samples
from the vector, we define the associated weights as the inverse of the mean distance
of the averaged samples to the center pixel. Thus, a statistic averaging samples
close to the center pixel would be weighed more than a statistic averaging samples
further away. These position-based weights are only applicable to Fy a1, whose
original sample weights are also position-based. Fyy 0, based on the linear Weiner

statistics, cannot be applied on the extended observation vectors.

4.4 Passband Analysis
The passband signals of a filter are the signals which pass through the filter
unaltered. Passband analysis is a useful tool in determining what the characteristic

behavior of a filter is, i.e., what types of signals will and will not go through.

4.4.1 Linear Filters: Frequency Domain Analysis

The passband of linear filters can easily be characterized by a frequency
domain analysis. All linear filters have one or more passband frequency ranges, and
any input signal within the passband will pass through completely unaltered, while
any input signal outside the passband will be attenuated or will not pass through
at all. Thus, using linear filters, we can isolate the frequencies of signals we wish to
retain in our final image. Linl and Lin2 both behave like low-pass filters, implying
mostly low frequencies will be retained in the filtered image. The low frequency
signals manifest themselves in the regions of solid or slightly changing intensity

values. However, as previously stated, we are interested in preserving the regions
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of sharp intensity changes where edges and small detail occur. These regions are
characterized by a combination of signals of widely varying high and low frequencies.

These are hence not preserved in a linear filtering operation.

4.4.2 Median Filters: Root signal analysis

Frequency analysis is based on the superposition property which only applies
to linear filters [3]. Therefore, a new mechanism for characterizing passband signals
of nonlinear filters must be defined. For our purposes, we will define a mechanism
for characterizing median-based nonlinear filters.

We can define a root image as any image which does not change when median-
filtered. The median filter has a corresponding root set, or set of input signals which
are invariant under the filtering operation. By examining the root set, we can see
the types of image regions which will be preserved under the filtering operation. It
can be shown that the root set consists of signals with constant neighborhoods and
edges only [3]. Here, we are defining a constant neighborhood as any solid region of
constant intensity value which could occupy the majority of the observation window.
Thus, for a 3 X 3 filter window, a solid 2 X 2 or bigger region of constant value
would be considered a constant neighborhood. Similarly, an edge is defined as a
monotonic region between two constant neighborhoods of different value, where the
monotonic region itself cannot contain any constant neighborhoods. Applying the
median operation to both such regions does not change the input image. Hence, we
immediately see one of the benefits of using a median-based filter, i.e., the ability

to completely preserve edges.

4.5 Summary of traditional filters
The linear filters Fr;,1, Fring, and Fp;,s exploit the spatial ordering of the
pixels in the observation window by outputting a weighted sum combination of them.

The basic median filter Fj .4 exploits the rank ordering of the pixels by outputting
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the mean, while the WM filters Fyypn and Fyae partially couple the rank and
spatial ordering by outputting a weighted median.
The next two chapters define Fgprg, which fully integrates the the spatial

ordering of the observation window pixels to their rank ordering.
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Chapter 5

RANK INTERPOLATORS

All of the defined observation vectors and extended observation vectors can
be used as input vectors for more complex filters as well as the simpler linear and
median-based filters. In this chapter, we will introduce the RCRS and EPRS filters,
which both fully use the rank and spatial orderings of the samples by considering
a permutation of the samples from the spatial ordering to the rank ordering. The
RCRS filter is applied on the standard observation vector, while the EPRS filter is
applied on the extended observation vector. However, since xy is simply a special
case of Xy i, for K = 0, the RCRS filter is a limiting case of the EPRS filter using
an extended observation vector of Xy . For the remainder of this chapter, we will

only explicitly define the EPRS filter.

5.1 Creating the Rank Feature Vector

We will collectively refer to all the samples from our extended observation
vector as the sample pool. To create a rank ordering of the sample pool, sort Xy x
by rank to define

Ty S L) < S IN+K)- (5.1)

The ranks of the N samples and K statistics can be related to their spatial

position (within the observation vector) by defining r; to be the rank of the sample
at index ¢ of Xy k. This allows for the creation of the rank pool vector

I‘:[Tl,T’Q,...,TN+K], (52)
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which contains the ranks of the N samples and K statistics. Note that the rank
pool vector can be used to describe the equivalence 7; = Z,).

Due to the factorial growth in the number of permutations as the filter win-
dow size increases, we are often not able to practically use the full permutation
contained in the rank pool vector [3]. Thus, if we extract only the ranks of select
locations from the sample pool, we can reduce the number of permutations we need
to consider and index.

Hence, instead of including all N original samples and K statistics in our
final rank feature vector, include M original samples and L statistics, such that
0<M<Nand 0 <L < K. Typically we will select the closest M samples from
our sample pool along with all of our statistics (such that L = K) to be included in

the final rank feature vector. We can now define the rank feature vector to be

rt = [T’Yl’r’ﬁ’ s Ty Trs Ty - - ’T¢L] € Qa,ﬂ’ (5'3)

where 1 < 7, < N, N+1< ¢; < N+ K. The rank feature vector permutation
space (denoted €2, 3, where o = N+ K and = M + L) consists of all combinations
of ranks that could possibly occur. A further examination of the partitioning of this
permutation space is given in the following optimization chapter.

This rank vector can be used as an input into a selection rule §(-), which will
produce desired rank to output [6]. This allows the center zero pixel to take on any

value in Xy g, which consists of the original samples and statistics.

5.2 Parity of the Extended Observation Vector
We address the issue of the number of elements in the extended observation
vector. Median filters, when faced with an even-numbered Xy x (with no true

median value), will output the average of the two center-ranked samples. This
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behavior proves to be very desirable in many cases. To allow EPRS filters the

ability to do the same, define

iN,K 1fN+KIS odd

>
I

(5.4)
[Xn,k, median(Xy )] if N+ K is even

The vector x is identical to Xy x, except a median value is appended when Xy x

has an even number of elements.

5.3 Completed filter definition
Defining Z(;) as the i*" rank-ordered element of X, the output of filter can
now be defined as
Fpprs(Xn,k) = T(s+)); (5.5)
where S : Q4,5 — {1,2,..., N}. The EPRS selection filter rule S(-) can be optimized
under the least MAE or MSE given the training sequences {d(n)} and {z(n)}. A
detailed definition and optimization procedure for S(-) is presented in the next

chapter.

25



Chapter 6

OPTIMIZATION OF EPRS FILTERS

This chapter describes the basic optimization procedure for EPRS filters. We
can optimize under the MAE or MSE criterion. We will only explicitly define the
optimization procedure for the MAE, but the MSE follows an analogous procedure.

Minimizing the mean error as a function of the selection rule S(-) is analogous
to minimizing the total error as a function of S(-). Hence we will begin by defining
the total absolute error (TAE) as

A A
TAE = ;| d(n;) — Fpprs(Xnk(n;)) | = Z;| d(1;) — Z(s(e=(ny))) |- (6.1)
from Eq. 4.2. The selection rule S(-) which minimizes Eq. 6.1 is referred to as the
optimal selection rule S,y (+). In order to define S,y (-), the rank feature vectors

comprising the feature space {1, 3 must be indexed.

6.1 Permutation Indexing Method

This section provides a theoretical and practical examination of a novel
method to efficiently index the feature vector partitions of the observation space
(2o, used in the rank filters. Kreher outlines a similar method for indexing subsets
[10], which we extend to index permutations. Let « = N + K, representing the
total number of elements in our original pool, and let 3 = M + L, representing
the number of elements we wish to consider. The challenge now becomes to effi-

ciently index all the possible permutations of a elements taken (3 at a time, denoted
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oPp = ;- These permutations represent all the feature vectors which comprise

a!
(a—B)
the feature space €, 3, with cardinality |Q,5| =a Pp-

Define the 8 rank values which comprise a feature vector r* as
vt =[r{,r3,..., 75, (6.2)

where 1 < rf < a. Consider the natural lexographic ordering of the feature vector
permutations where the lowest available number for the 7th vector position is used,
starting from 7 = 0. Such an ordering is shown for the feature space €253 in Table
6.1.

To construct an indexing algorithm, we essentially need to count the number
of permutations that precede a given vector r* in the above ordering. We first
note that there are ,_1Ps_; permutations R € €1, 3 such that Ry = r{, where
R = [Ry, Ry, ..., Rg]. We can generally write for any i < (3 integers r{,r3,...,77,
there are , ;Ps_; permutations R such that Ry =r],Re =73,...,R; =r].

Thus for a given permutation vector r* = [r],73,...,75] we can count all the

permutations preceding it in the ordering as

e The permutations R with R; < ri.
e The permutations R with Ry = r] and Ry < 73.

e The permutations R with Ry =r{,Ry =15 and R3 < rj .

e The permutations R with Ry = r{,Ry =73,...,Rg <7}
Note that as we traverse the r* vector, we must know how many possible

numbers R; < r; which could occupy the ¢th position in the permutation vector.
Following our next-lowest number ordering, the number of possible values for the ith

slot is r; minus the number of values less than r; we have already using previously

in the vector (for rf,r5,...,7%_;). We can write this as a coefficient
i1
Bi:r;“—ZI(r; <r}) (6.3)
=1
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| | Index(r*) |

[1,2,3] 0
[1,2,4] 1
[1,2,5] 2
[1,3,2] 3
[1,3,4] 4
[1,3,5] 5
1,4,2] 6
[1,4,3] 7
[1,4,5] 8
[1,5,2] 9
[1,5,3] 10
[1,5,4] 11
2,1,3] 12
[2,1,4] 13
[2,1,5] 14
2,31] 15
2,3,4] 16
2,3,5] 17
[2,4,1] 18
[2,4,3] 19
[2,4,5] 20
[2,5,1] 21
2,5,3] 22
[2,5,4] 23
3,1,2] 24

Table 6.1: Example feature vector indexing for feature space €2 3.
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fori=1,2,...,0.
The function I(-) in 6.3 is the indicator function defined by

1 if event is true
I(event) = (6.4)
0 if event is false

Using this counting method, we can write the final indexing algorithm as
B
Index(r*) = (Bi)(a—iPs-i) (6.5)

i=1
6.2 Defining Sopt(-)

Now that a method for indexing the feature vectors has been described, the

entire feature space (1, 3 can be expressed as the set of indexed partitions

Qap = {r1,12,---,T)0, 4 }- (6.6)

We can express the sequence of rank feature vectors encountered as the obser-
vation window passes through {z(n)} as r*(Xy x(n1)), 7*(Xn,x(02)), - - -, 7 (Xn,x(1))-
We will henceforth represent the sequence with the simpler notation 7*(n;), r*(ns), . . .,
r*(ny). Let U; = Index(r*(n;)), yielding the equivalence relation ry, = r*(n;). We
can now define I'; \ = {i € {1,2,..., A} : ¥; = j}, which represents the set of all fea-
ture vectors encountered in the zero-interlaced image {z(n)} with index j (following
the defined indexing algorithm).

The total error incurred by selecting the k' order statistic for all the instances
where rank vector r; is observed in the zero-interlaced image is written as

(k)= > | d(m) — By (my) |- (6.7)
i€T; 2
where 1 <k <aandj=1,2,...,|Qg|. Rewriting the total error from Eq. 6.1 as
a sum of errors partitioned according to the feature vector produces
Q0,51

TAE =Y &(S(r))). (6.8)

Jj=1
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Realizing that the total error (Eq. 6.8) will be minimized if and only if the
individual partition errors (Eq. 6.7) are minimized, we can now define the optimal

selection rule as

Sopt(r;) =k : E(k) < &)V I#k (6.9)

for j = 1,2,...,|Q,]. For each rank vector partition in the feature space, the
optimal selection rule will select the the order statistic which will produces the
lowest error for that vector partition.

With this chapter, we culminate the definition of Fgprg, as well as the defi-
nitions of all the filters used in our interpolation schemes. Experimental results for

the various filters are presented in the next chapter.
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Chapter 7

EXPERIMENTAL RESULTS

Experimental results are presented for the test image of Cafe. This grayscale
image of 2560 by 2048 pixels contained many edges. A large image size was needed
to successfully train and optimize the selection rule §. The simulations consisted of
subsampling Cafe using the quincunx lattice without pre-filtering. We interpolated
the sub-sampled image back to its original size using the various linear and nonlinear
filters defined. We tested the applicability of our Cafe-optimized filter data for
Frins, Fware, and Fgprs, by using it to filter another grayscale image. We selected
Aerial, an image of 256 by 256 pixels also with many edges. For these simulation
runs, we interpolated a quincunx-subsampled Aerial back to its original size using
the data from the Cafe images. For comparison, we also interpolated Aerial using
the remaining filters Frn1, FlLin2, Frrea, and Fyagq.

All of the filters defined were applied to the first set of original observation
vectors Xg, X3, ..., Xg, X192, and X;5. However, extending the observation vector for
linear filters with linear statistics provides no real performance increase. Hence the
three linear filters Fy;n1, Frino, FrLins, as well as Fyy a2, based on the linear optimized
weight coefficients, could not be implemented on the extended observation vectors
X42,Xg,2, X12,2, and Xie4. The remaining nonlinear filters Fyseq, Fwami, and Frprs

were applied to extended observation vectors as well as the original ones.
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7.1 Original Observation Vectors

Figure 7.1 through Fig.7.4 presents the results for the original observation
vectors. In Fig.7.1, we consider N = 2,3,...,8. For this simulation run, our initial
sample pool size N was small enough to allow us to rank all the samples in the rank
pool (we could always implement the upper bound of M = N). Figure 7.1-a and
Fig.7.1-b give the MAE and the MSE between the original and the reconstructed
Cafe. Figure 7.1-c and Fig.7.1-d gives the corresponding error for Aerial, using Cafe’s
training data for the Weiner coefficients for F;,3 and Fy o, as well as the rank
optimization table for Fgprs. Two EPRS filters are presented for each observation
vector; one that was optimized under the MAE criterion (Fig.7.1-a and Fig.7.1-c),
and one that was optimized under the MSE criterion (Fig.7.1-b and Fig.7.1-d).

Under both criteria, almost all of the traditional filters’ performances peak
for x4. This suggests that the non-optimized linear filters, as well as the median
and WM filters all cannot handle the increased samples as the window size increases
past 4. In fact, as N is increased beyond 4, only F;,3 and Fgprs perform better.
When executed on Cafe, Frprs performs definitively better than Fp;,3 under the
MAE criterion (Fig. 7.1-a), and nominally outperforms the filter under the MSE
criterion (Fig. 7.1-b). When using Cafe-trained data to interpolate Aerial, all the
filters peak at N = 4 except for Fp;,3. It seems that Fp;,3 is outperforming Fgprs
as NV increases. This is probably due to the over-training of Frpgrs on Cafe; as the
amount of rank order information in the observation vector is increased, the greater
the amount of training needed. However, note when the peak performances of F;,3
at N =8 and Fgpgrs at N = 4 are compared, F;,3 performs only nominally better.

For the observation vectors where N > 8, it often did not prove practical to
rank all the samples in the sample pool for Frprs. Therefore we consider various
orders M =1,2,..., N* such that N* < N. Initialy we considered various ordered
EPRS filters for N = 8 in Fig. 7.2. Note that the upper bound of M = N =8
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was implemented in the previous simulation run in Fig.7.1. All the other filters’
performance are drawn for N = 8. When executed on Cafe, Frprs outperforms
all other filters with increased performance as the order is increased from M =
1,2,...,8. When trained on Cafe and executed on Aerial, Fpprs peaks at order
M =4, even at which FJ;,3 is still outperforming it.

Considering analogous order analysis for N = 12 (Fig.7.3) and N = 16(Fig.7.4),
we see similar results. When executed on the training image, rank interpolation al-
ways performs better than all other methods for order 4 and above. When the
Cafe training data was applied to Aerial, the rank interpolation outperformed all
nonlinear methods for order 4 and above. The only filter to continually outperform
the rank filter when applied to a new image was Fp;,3, the optimized linear filter.
An overall performance versus memory analysis for all the Fgpgg filters is given in
Fig.7.5. We see that the best performance of all our rank filters was for N = 12,
M = 6 when the training image is interpolated. Applying the training data to
Aerial, N = 12, M = 4 was the overall best performer under the MAE criterion,
and N =4 ,M = 4 was the best performer under the MSE criterion. However, even
in the MAE case, the 12 element observation vector nominally outperformed the
much less memory-taxing 4 element observation vector.

Sample figures are presented in Fig. 7.6. Looking at a subset of Cafe, we
consider the difference image between the original and reconstructed images. The
results for the various interpolation schemes are presented for x;5. Similar results for
applying the training data to Aerial are shown in Fig. 7.7. Note when interpolating
the training image, Fy po performed better (Fig. 7.6-e), while interpolating Aerial,
Fyw o performed better (Fig. 7.7-e). We see that the majority of error in all of
the various linear and median interpolation schemes stem from the edges within the
image, which suggests that the rank interpolation successfully interpolates sharper

edges then either method.
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Figure 7.1: Quincunx sub-sampled image interpolation results for original obser-
vation vector schemes trained on Cafe. Graphs (a) and (b) show the
MAE and MSE results for interpolating the original image, Cafe,
using a filter order equivalent to the rank pool size (M = N for
M = 1,2,...,8). Graphs (c¢) and (d) show the equivalent results
for using the training data on the image Aerial.
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Figure 7.2: Quincunx sub-sampled image interpolation results for original obser-
vation vector schemes trained on Cafe. Graphs (a) and (b) show
the MAE and MSE results for interpolating the original image, Cafe,
using a rank pool size N = 8. The rank filter order varied from
M =1,2,...,8. Graphs (c) and (d) show the equivalent results for
using the training data on the image Aerial.
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Figure 7.3: Quincunx sub-sampled image interpolation results for original obser-

vation vector schemes trained on Calfe.

Graphs (a) and (b) show

the MAE and MSE results for interpolating the original image, Cafe,
using a rank pool size N = 12. The rank filter order varied from
M =1,2,...,6. Graphs (c) and (d) show the equivalent results for
using the training data on the image Aerial.
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vation vector schemes trained
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using the training data on the image Aerial.
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Figure 7.6: Interpolated difference images of quincunx sub-sampled Cafe based
on the observation vector xio. (a)Original (b)Frine (¢)FLin3 (d)Fhsed
(e)FWM2 (f)FEPRS with M = 6.
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Figure 7.7: Interpolated difference images of quincunx sub-sampled Aerial based
on the observation vector x;» using training data from Cafe where
applicable. (a)Orlglnal (b)FLGQ (C)FLin3 (d)FMed (e)FWM1 (f)FEpRS
with M = 4.
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7.2 Extended Observation Vectors

Figure 7.8 through Fig.7.10 as well as Table 7.1 present the results for the
original observation vectors. We consider various ordered EPRS filters for N = 4
(Fig.7.8), N = 8 (Fig.7.9),N = 12 (Fig.7.10), and N = 16 (Table 7.1). Note that we
did not include any linear filters in the extended observation vectors progressions
because extending the observation vector by linear statistics provided no perfor-
mance gains. Analogously, we could not apply Fiy e because optimized Weiner
filter coefficients could not be derived. For Fy 1, the weights for the additional
K statistics were equal to the mean distance of the averaged samples to the center
pixel, as mentioned previously.

For N = 4(Fig.7.8), the rank interpolation outperformed all other nonlinear
methods for all cases except Aerial interpolation under the MSE criterion (Fig.7.8-
d). The seemingly sporadic behavior of this graph is due to the fact that the MSE
changed by less than 1% for the various orders. The essentially constant performance
seems unsteady due to the magnification of the y-axis.

For N = 8(Fig.7.9), the rank interpolation was again the best performer
when interpolating the training image. When interpolating Aerial, the rank filters
reached a peak at order M = 4, where they outperformed the other schemes. Sim-
ilar results were obtained for N = 12 (Fig.7.9), except the peak order for Aerial’s
interpolation was M = 3. This can be attributed again to the under-training of the
rank filters at the higher orders. Note that a larger observation window warrants a
larger permutation space (2, s for the same order as a smaller window, which is the
reason why the performance of N = 12 peaked at an earlier order than the N =8
progression.

We were only able to execute the N = 16 progression up to order M =1
due to memory constraints. The results are presented in tabular form in Table

7.1. When executed on training image Cafe, rank interpolation proves to be the
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Cafe interpolation | Aerial interpolation
MAE | MSE MAE | MSE |
Firrea 13.15 591.8 12.22 286.8
Fwn 13.15 553.1 11.81 255.8
Farns, M =1 | 8219 | 246.4 | 13.65| 4253

Interpolation Filter

Table 7.1: Quincunx sub-sampled image interpolation results for xig4 vector
schemes trained on Cafe. The MAE and MSE results are given for
interpolating the original image, Cafe, and the secondary image, Aerial.

optimal nonlinear method, but proves to be the worst when executed on Aerial.
This is due again to the large permutation space associated with x6 4, which needed
correspondingly more training data to avoid over-optimizing on Cafe.

An overall performance versus memory analysis for all the Fgpgrg filters is
given in Fig. 7.11. We see that the best performance of all our rank filters was for
N =12, M = 4 when the training image is interpolated. Applying the training data
to Aerial, N = 8, M = 4 was the overall best performer under the MAE criterion,
and N =4 ,M = 4 was the best performer under the MSE criterion. However, even
in the MAE case, the 8 element observation vector nominally outperformed the much
less memory-taxing 4 element observation vector. Sample figures are presented in
Fig. 7.12. Looking at a subset of Cafe, we consider the difference image between the
original and reconstructed images. The results for the various interpolation schemes
are presented for xi5. Results for applying the training data for xg to Aerial are
shown in Fig. 7.13. Again, we see that the majority of error in the median-based
interpolation schemes stem from the edges within the image, which suggests that

the rank interpolation successfully interpolates sharper edges then either method.
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Figure 7.8: Quincunx sub-sampled image interpolation results for extended ob-
servation vector schemes trained on Cafe. Graphs (a) and (b) show
the MAE and MSE results for interpolating the original image, Cafe,
using a rank pool size N = 4. The rank filter order varied from
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using the training data on the image Aerial.
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Figure 7.9: Quincunx sub-sampled image interpolation results for extended ob-
servation vector schemes trained on Cafe. Graphs (a) and (b) show
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Figure 7.10: Quincunx sub-sampled image interpolation results for extended ob-
servation vector schemes trained on Cafe. Graphs (a) and (b) show
the MAE and MSE results for interpolating the original image, Cafe,
using a rank pool size N = 12. The rank filter order varied from
M =1,2,...,4. Graphs (c) and (d) show the equivalent results for
using the training data on the image Aerial.
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Figure 7.12: Interpolated difference images of quincunx sub-sampled Cafe based
on the observation vector xjso. (a)Original (b)Fea (¢)Fwan
(d)FEpRS with M = 4.
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Figure 7.13: Interpolated differenceimages of quincunx sub-sampled Aerial based
on the observation vector xgo using training data from Cafe where
applicable. (a)Original. (b)Fieq (¢)Fwa (d)Frprs with M = 4.
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7.3 Conclusions

Generally, we can conclude that the rank ordering information is indeed use-
ful. Furthermore, as the amount of rank-ordered information is increased (the fur-
ther Xy g is enlarged by increasing N or extended by increasing K), the better the
performance of the EPRS filter, assuming sufficient training data. In particular, we
note EPRS filters handle the increased sample information better than traditional

linear or median methods.

7.4 Future Work

The interpolation of the EORC sub-sampling lattice can be examined using
the same methodology described in this work. This involves using a polyphase
interpolation scheme using three interpolator structures. The use of color images
also allows for increased rank order information per pixel [5],[9]. Additionally, in a
video transmission scheme, pixels can be rank interpolated along the temporal plane
as well as the spatial plane [4]. Based upon our research, rank-based non-linear filters

appear promising in all of these areas.
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