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Abstract

We investigate the problem of automatically determining what type of shoe left an
impression found at a crime scene. This recognition problem is made difficult by the
variability in types of crime scene evidence (ranging from traces of dust or oil on hard
surfaces to impressions made in soil) and the lack of comprehensive databases of shoe
outsole tread patterns. We find that mid-level features extracted by pre-trained convo-
lutional neural nets are surprisingly effective descriptors for these specialized domains.
However, the choice of similarity measure for matching exemplars to a query image is es-
sential to good performance. For matching multi-channel deep features, we propose the
use of multi-channel normalized cross-correlation and analyze its effectiveness. Finally,
we introduce a discriminatively trained variant and fine-tune our system end-to-end, ob-
taining state-of-the-art performance.

1 Introduction

We investigate the problem of automatically determining what type (brand/model/size) of
shoe left an impression found at a crime scene. In the forensics literature [1], this fine-grained
category-level recognition problem is known as determining the class characteristics of a
tread impression. This is distinct from the instance-level recognition problem of matching
acquired characteristics such as cuts or scratches which can provide stronger evidence that
a specific shoe left a specific mark.

Analysis of shoe tread impressions is made difficult by the variability in types of crime
scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made
in soil) and the lack of comprehensive datasets of shoe outsole tread patterns (see Fig. 1).
Solving this problem requires developing models that can handle cross-domain matching of
tread features between photos of clean test impressions (or images of shoe outsoles) and
photos of crime scene evidence. We face the additional challenge that we would like to use
extracted image features for matching a given crime scene impression to a large open-ended
database of exemplar tread patterns.
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Figure 1: We would like to match crime scene prints to a database of test impressions despite
significant cross-domain differences in appearance. We utilize a Siamese network to perform
matching using a multi-channel normalized cross correlation. We find that per-exemplar, per-
channel normalization of CNN feature maps significantly improves matching performance.
Here U and V are the linear projection parameters for laboratory test impression and crime
scene photo domains respectively. W is the per-channel importance weights. And x and y
are the projected features of each domain used for matching.

Deep convolutional neural net (CNN) features hierarchies have proven incredibly effec-
tive at a wide range of recognition tasks. Generic feature extractors trained for general-
purpose image categorization often perform surprising well for novel categorization tasks
without performing any fine-tuning beyond training a linear classifier [20]. This is often ex-
plained by appealing to the notion that these learned representations extract image features
with invariances that are, in some sense, generic. We might hope that these same invariances
would prove useful in our setting (e.g., encoding the shape of a tread element in a way that is
insensitive to shading, contrast reversals, etc.). However, our problem differs in that we need
to formulate a cross-domain similarity metric rather than simply training a k-way classifier.

We tackle this problem using similarity measures that are derived from normalized cross-
correlation (NCC), a classic approach for matching gray-scale templates. For CNN feature
maps, it is necessary to extend this to handle multiple channels. Our contribution is to pro-
pose a multi-channel variant of NCC which performs normalization on a per-channel basis
(rather than per-feature volume). We find this performs substantially better than related sim-
ilarity measures such as the cosine distance. We explain this finding in terms of the statistics
of CNN feature maps. Finally, we use this multi-channel NCC as a building block for a
Siamese network model which can be trained end-to-end to optimize matching performance.

2 Related Work

Shoeprint recognition: The widespread success of automatic fingerprint identification
systems (AFIS) [11] has inspired many attempts to similarly automate shoeprint recogni-
tion. Much early work in this area focused on developing feature sets which were rotation
and translation invariant. Examples include, phase only correlation [6], edge histogram DFT
magnitudes [27], power spectral densities [2, 3], and the Fourier-Mellin transform [6]. Some
other approaches pre-align the query and database image using the Radon transform [17]
while still others sidestep global alignment entirely by computing only relative features be-
tween keypoints pairs [18, 21]. Finally, alignment can be implicitly computed by matching



KONG, SUPANCIC, RAMANAN, FOWLKES: CROSS-DOMAIN SHOEPRINT MATCHING 3

rotationally invariant keypoint descriptors between the query and database images [18, 22].
In contrast to these previous works, we handle global invariance by explicitly matching tem-
plates using dense search over translations and rotations.

One shot learning: While we must match our crime scene evidence against a large
database of candidate shoes, our database contains very few examples per-class. As such,
we must learn to recognize each shoe category with as little as one training example. This is
a one-shot learning problem [12]. Prior work has explored one-shot object recognition with
only a single training example, or “exemplar” [13]. Specifically in the domain of shoeprints,
Kortylewski et al. [9] fit a compositional active basis model to an exemplar which could
then be evaluated against other images. Alternatively, standardized or whitened off-the-shelf
HOG features have proven very effective for exemplar recognition [7]. We take a similar
approach. Specifically, we examine the performance of using generic deep features which
have proven surprisingly robust for a huge range of recognition tasks [20].

Similarity metric learning: While off-the-shelf deep features work well [20], they can
be improved. In particular, for a paired comparison tasks, so-called “Siamese” architec-
tures integrate feature extraction and comparison in a single differentiable model that can
be trained end-to-end. Past work has demonstrated that Siamese networks learn good fea-
tures for person re-identification, face recognition, and stereo matching [16, 23, 26]; deep
pseudo-Siamese architectures can even learn to embed two dissimilar domains into a com-
mon co-domain [25]. For shoe class recognition, we learn to embed two types of images:
(1) crime scene photos and (2) laboratory test impressions.

3 Multi-variate Cross Correlation

In order to compare two corresponding image patches, we extend the approach of normalized
cross-correlation (often used for matching gray-scale images) to work with multi-channel
CNN features. Interestingly, there is not an immediately obvious extension of NCC to mul-
tiple channels, as evidenced by multiple approaches proposed in the literature [4, 5, 15, 19].
To motivate our approach, we appeal to a statistical perspective.

Normalized correlation: Let x,y be two scalar random variables. A standard measure
of correlation between two variables is given by their Pearson’s correlation coefficient [15]:

ρ(x,y) = E[x̃ỹ], where x̃ =
x−µx√

σxx
, σxx = E[(x−µx)

2], µx = E[x] (1)

=
σxy√

σxx
√σyy

where σxy = E[(x−µx)(y−µy)] (2)

and similar definitions hold for y. Intuitively, the above corresponds to the correlation be-
tween two transformed random variables that are “whitened” to have zero-mean and unit
variance. The normalization ensures that correlation coefficient will lie between -1 and 1.

Normalized cross-correlation: Let us model pixels x from an image patch X as cor-
rupted by some i.i.d. noise process and similarly pixels another patch Y (of identical size)
as y. The sample estimate of the Pearson’s coefficient for variables x,y is equivalent to the
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normalized cross-correlation (NCC) between patches X ,Y :

NCC(X ,Y ) =
1
|P|∑i∈P

(x[i]−µx)√
σxx

(y[i]−µy)√σyy
(3)

where P refers to the set of pixel positions in a patch and means and standard deviations are
replaced by their sample estimates.

From the perspective of detection theory, normalization is motivated by the need to com-
pare correlation coefficients across different pairs of samples with non-stationary statistics
(e.g., determining which patches {Y 1,Y 2, . . .} are the same as a given template patch X where
statistics vary from one Y to the next). Estimating first and second-order statistics per-patch
provides a convenient way to handle sources of “noise” that are approximately i.i.d. condi-
tioned on the choice of patch P but not independent of patch location.

Multivariate extension: Let us extend the above formulation for random vectors x,y ∈
RN . Intuitively, N corresponds to the multiple channels of values at each pixel (e.g., N = 3
for a RGB image). The scalar correlation is now replaced by a N×N correlation matrix. To
produce a final score capturing the overall correlation, we propose to use the trace of this
matrix, which is equivalent to the sum of its eigenvalues. As before, we add invariance by
computing correlations on transformed variables x̃, ỹ that are “whitened” to have a zero-mean
and identity covariance matrix:

ρmulti(x,y) =
1
N

Tr(E[x̃ỹT ]) =
1
N

Tr(Σ−
1
2

xx ΣxyΣ−
1
2

yy ) (4)

where x̃ = Σ−
1
2

xx (x−µx), Σxx = E[(x−µx)(x−µx)
T ], Σxy = E[(x−µx)(y−µy)

T ]

The above multivariate generalization of the Pearson’s coefficient is arguably rather natural,
and indeed, is similar to previous formulations that also make use of a trace operator on a
correlation matrix [15, 19]. However, one crucial distinction from such past work is that
our generalization (4) reduces to (1) for N = 1. In particular, [15, 19] propose multivariate
extensions that are restricted to return a nonnegative coefficient. It is straightforward to show
that our multivariate coefficient will lie between −1 and 1.

Decorrelated channel statistics: The above formulation can be computationally cum-
bersome for large N, since it requires obtaining sample estimates of matrices of size N2.
Suppose we make the strong assumption that all N channels are uncorrelated with each
other. This greatly simplifies the above expression, since the covariance matrices are then
diagonal matrices:

Σxy = diag({σxcyc}), Σxx = diag({σxcxc}), Σyy = diag({σycyc}) (5)

Plugging this assumption into (4) yields the simplified expression for multivariate correlation

ρmulti(x,y) =
1
N

N

∑
c=1

σxcyc√σxcxc
√σycyc

(6)

where the diagonal multivariate statistic is simply the average of N per-channel correlation
coefficients. It is easy to see that this sum must lie between −1 and 1.

Multi-channel NCC: The sample estimate of (6) yields a multi-channel extension of
NCC which is adapted to the patch:

MCNCC(X ,Y ) =
1
|P|N

N

∑
c=1

∑
i∈P

(xc[i]−µxc)√σxcxc

(yc[i]−µyc)√σycyc

(7)
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The above multi-channel extension is similar to the final formulation in [4], but is derived
from a statistical assumption on the channel correlation.

Cross-domain covariates and whitening: Assuming a diagonal covariance makes strong
assumptions about cross-channel correlations. When strong correlations exist, an alternative
approach to reducing computational complexity is to assume that cross-channel correlations
lie within a K dimensional subspace, where K < N. We can learn a projection matrix for
reducing the dimensionality of features from both patch X and Y which decorrelates and
scales the channels to have unit variance:

x̂ =U(x−µx), U ∈ RK×N ,E[x̂x̂T ] = I (8)

ŷ =V (y−µy), V ∈ RK×N ,E[ŷŷT ] = I (9)

In general, the projection matrix could be different for different domains (in our case, crime
scene versus test prints). One strategy for learning the projection matrices is applying princi-
ple component analysis (PCA) on each domain separately. Alternatively, when paired train-
ing examples are available, one could jointly learn the projections that maximize correlation
across domains. This is achievable by canonical correlation analysis (CCA) [14]. An added
benefit of using orthogonalizing transformations such as PCA/CCA is that transformed data
satisfies the diagonal assumptions (globally) allowing us to estimate patch multivariate cor-
relations in this projected space with diagonalized covariance matrices of size K×K.

Global versus local whitening: There are two distinct aspects to whitening (or nor-
malizing) variables in our problem setup: (1) assumptions on the structure of the sample
mean and covariance matrix, and (2) the data over which the sample mean and covariance
are estimated. In terms of (1), one could enforce an unrestricted covariance matrix, a low-
rank covariance matrix (e.g., PCA), or a diagonal covariance matrix (e.g., estimating scalar
means and variances). In terms of (2), one could estimate these parameters over individual
patches (local whitening) or over the entire dataset (global whitening). Sec. 5 empirically
explores various combinations of (1) and (2) that are computationally feasible (e.g., estimat-
ing a full-rank covariance matrix locally for each patch would be too expensive). We find
a good tradeoff to be global whitening (to decorrelate features globally), followed by local
whitening with a diagonal covariance assumption (e.g., MCNCC).

To understand the value of global and per-patch normalization, we examine the statistics
of CNN feature channels across samples of our dataset. Fig. 2 and Fig. 3 show how these
per-channel normalizing statistics vary substantially patches and across channels. Notably,
for some channels, the normalizing statistics change wildly from patch to patch. This makes
local significantly different from global normalization.

One common effect of both global and local whitening is to prevent feature channels
which by chance happen to have large means and variances from dominating the correla-
tion score. However, by the same merit this can have the undesirable effect of amplifying
the influence of low-variance channels which may not be discriminative for matching. In
the next section we generalize both PCA and CCA using a learning framework which can
learn channel decorrelation and per-channel importance weighting based on optimizing a
discriminative performance objective.
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Figure 2: Distribution of patch channel means: For each query we match against the
database, MCNCC normalizes the ‘res2x’ features by their individual mean and standard de-
viation (std). For a uniformly sampled patch, we indicate the normalizing mean for channel c
using the random variable µc. For each channel, we plot the std of µc above. When a channel
has the same mean for every channel (small std, left), we can learn global linear transform
(e.g. PCA or CCA) to normalize it. But, for channels where patches have very different
means (large std, right), normalizing by the local (patch) provides additional invariance.
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Figure 3: Normalizing channel statistics: As shown in the histograms of Fig. 2, for
some feature channels, patches have wildly different means and standard deviations. For
channel 14 (left), the statistics (and hence normalization) are similar from one patch to the
next while for channel 256 (right), means and standard deviations vary substantially across
patches. CNN channel activations are positive so means and standard deviations are strongly
correlated.
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4 Learning
In order to allow for additional flexibility of weighting the relevance of each channel we
consider a channel-weighted variant of MCNCC parameterized by vector W

MCNCCW (X ,Y ) =
N

∑
c=1

Wc

[
1
|P|∑i∈P

(xc[i]−µxc)√σxcxc

(yc[i]−µyc)√σycyc

]
(10)

We note that the weighting can undo the effect of scaling by the standard deviation in order
to re-weight channels by their informativeness. Furthermore, since the features x,y are them-
selves produced by a CNN model, we can consider those parameters as additional candidates
for optimization. Specifically, PCA/CCA adds extra linear layers prior to the correlation cal-
culation which can be initialized using PCA/CCA and then discriminatively tuned. The
resulting “Siamese” architecture is illustrated in Fig. 1.

Siamese loss: To train the model, we minimize a paired regression loss:

argmin
W,U,V

∑
s,t

∣∣Z(X s,Y t)−MCNCCW (φU (X s),φV (Y t))
∣∣2 (11)

where we have made explicit the function φ which computes the deep features of two
shoeprints X s and Y t , with W , U , and V representing the parameters for the per-channel
importance weighting and the linear projections for the two domains respectively. For all
pairs, we want the target, Z(X s,Y t), to be +1 when X s and Y t come from the same category
and −1 otherwise.

We implement φ using a deep architecture, which is trainable using standard backpropa-
gation. Each channel contributes a term to the MCNCC which itself is just a single channel
(NCC) term. The operation is symmetric in X and Y , and the gradient can be computed
efficiently by reusing the NCC computation from the forward pass:

d NCC(X ,Y )
d xc[ j]

=
1

|P|√σxcxc

(ỹc[ j]+ x̃c[ j]NCC(X ,Y )).

We give a complete derivation in the supplement.

5 Experiments
We evaluate the performance of MCNCC on two datasets. The first contains 387 test im-
pressions of shoes and 137 crime scene prints that was collected by the Israel National Po-
lice [24]. As this dataset is not publicly available, we use this dataset for the diagnostic
analysis and when training and validating learned models. To compare our method to others,
we test on the footwear identification dataset (FID-300) [10]. FID-300 contains 1175 test
impressions and 300 crime scene prints.

In all of our experiments, we use the 256-channel ‘res2bx’ activations from a pre-trained
ResNet-50 model (http://www.vlfeat.org/matconvnet/models/imagenet-resnet-50-dag.mat).
We evaluated activations at other locations along the network, but found those to perform
the best.
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5.1 Partial Print Matching

In this section we compare MCNCC to two baseline methods: simple unnormalized cross-
correlation and cross-correlation normalized by a single µ and σ estimated over the whole
3D feature volume. We note that the latter is equivalent to the cosine distance which is
popular in many retrieval applications.

We evaluate these methods in a setup that mimics the occurrence of partial occlusions in
shoeprint matching, but focus on a single modality of test impressions. We extract 512 query
patches (random selected 97×97 pixel sub-windows) from test impressions that have two or
more matching tread patterns in the database. The task is then to retrieve from the database
the set of relevant prints. As the query patches are smaller than the test impressions, we
search over spatial translations (with a stride of 1), using the maximizing correlation value to
represent the test impression. We do not need to search over rotations as all test impressions
were aligned to a canonical orientation. When querying the database, the original shoeprint
the query was extracted from is removed (i.e., the results do not include the self-match).

Global versus local normalization: The retrieval results showing the tradeoff of precision
and recall are shown in Fig. 4. In the legend we denote different schemes in square brack-
ets, where the first term indicates the centering operation and the second term indicates the
normalization operation. A · indicates the absence of the operation. µ and σ indicate local
(i.e., statistics are estimated per exemplar) centering and normalization. µc and σc indicate
local per-channel centering and normalization. µ̄c and σ̄c indicate global (i.e., statistics are
estimated over the whole dataset) per-channel centering and normalization. Therefore, un-
normalized cross-correlation is indicated as [·, ·], cosine distance is indicated as [µ,σ ], and
our proposed MCNCC measure is indicated as [µc,σc].

We can clearly see that using per-channel statistics estimated independently for each
comparison gives substantial gains over the baseline methods. Performing global centering
and scaling per channel is substantially better than the straight correlation or cosine distance.
In general, removing the mean response is far more important than scaling by the standard
deviation. Interestingly, in the case of cosine distance and global channel normalization,
scaling by the variance actually hurts performance (i.e., [µ,σ ] versus [µ, ·] and [µ̄c, σ̄c] ver-
sus [µ̄c, ·] respectively). As normalization re-weights channels, we posit that this may be
negatively effecting the scores by down-weighing important signals or boosting noisy sig-
nals.

Channel decorrelation: Recall that, for efficiency reasons, our multivariate estimate of
correlation assumes that channels are largely decorrelated. We also explored decorrelating
the channels globally using a full-dimension PCA (which also subtracts out the global mean
µ̄c). The second panel of Fig. 4 shows a comparison of these decorrelated feature channels
(solid curves) relative to baseline ResNet channels (dashed curves). While the decorrelated
features outperform baseline correlation (due to the mean subtraction) we found that full
MCNCC on the raw features performed better than on globally decorrelated features. This
may be explained in part due to the fact that decorrelated features show an even wider range
of variation across different channels which may exacerbate some of the negative effects of
scaling by σc.
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Figure 4: Comparing MCNCC to baselines for image retrieval within the same domain.
The methods are denoted by two operations in square brackets: mean subtraction and nor-
malization, respectively. µ and σ denote computing the statistics across all channels, µc
and σc denote computing per-channel statistics, and · denotes the absence of the operation
(e.g., MCNCC is denoted as [µc,σc], whereas cross-correlation is denoted as [·, ·]. Finally,
µ̄c and σ̄c denote computing the average per-channel statistics across the dataset. The left
panel shows the performance on the raw features, whereas the right panel compares globally
whitened features using PCA (solid lines) against their corresponding raw features (dot-dash
lines). (Best viewed in color.)

5.2 Cross-Domain Matching

In this section, we evaluate our proposed system in a setting that closely resembles the real
world task of retrieving relevant shoeprint test impressions for crime scene prints. The task
here is similar to that of the previous section, but now matching is done across domains.
Additionally, as the crime scene prints are not aligned to a canonical orientation, we search
over both translations (with a stride of 2) and rotations (from -20◦ to +20◦ with a stride of 4◦).
We also compute the local statistics only over the valid support region of the test impression
from a predetermined mask associated with each image. The correlation score is similarly
computed over the same valid support region P.

As mentioned in Sec. 4, we can learn both the linear projections of the features and the
importance of each channel for the retrieval task. We demonstrate that learning is feasible
and can significantly improve performance. We use a 50/50 split of the crime scene prints
of the Israeli dataset for training and testing, and determine hyperparameters settings using
10-fold cross-validation. In the left panel of Fig. 5 we compare the performance of three
different models of varying degrees of learning. The model with no learning is denoted as
[µc,σc], with learned per-channel weights is denoted as [µc,σc ·Wc], and with end-to-end
learning of both projection and per-channel weights is denoted as “Siamese.” [µc,σc ·Wc]
was learned using a regularization value of 0.5 and Wc has 257 parameters (a scalar for each
channel and a single bias term). Our Siamese network is learned using a regularization value
of 0.05 and has 66K parameters (256 centering, 2562 projection, 256 channel importance,
and 1 bias). We initialize our Siamese network with identity weights for the linear projection
and [µc,σc ·Wc] weights for the per-channel importance. As seen in the left panel of Fig. 5,
performance increases with more learning. Both [µc,σc ·Wc] and Siamese outperform [µc,σc]
by a large margin, and Siamese outperforms [µc,σc ·Wc] by a modest amount.

We subsequently take [µc,σc], [µc,σc ·Wc], and our Siamese network (both without re-
training), and evaluate them on FID-300 (shown in the right panel of Fig. 5). On FID-300,
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Figure 5: Comparing MCNCC with uniform (denoted as [µc,σc]), learned per-channel
weights (denoted as [µc,σc ·Wc]), and learned projection and per-channel weights (denoted
as Siamese) for retrieving relevant shoeprint test impressions for crime scene prints. The left
panel shows our three methods on the Israeli dataset. The right panel compares our proposed
system against the current state-of-the-art, as published in: ACCV14 [10], BMVC16 [9] and
LoG16 [8] using cumulative match characteristic (CMC).

both MCNCC models with learned weights, performs slightly worse than MCNCC with uni-
form weights, indicating some overfitting. However, all three variants outperform the current
state-of-the-art, once again demonstrating the power of centering and normalizing using the
per-channel local statistics.

6 Conclusion
In this work, we proposed an extension to normalized cross-correlation that performs nor-
malization on a per-channel basis. We explain per-channel normalization in terms of local
data whitening and compare it to global data whitening using PCA. We use MCNCC as a
building block for a Siamese network model that can be trained end-to-end. We show that
this performs substantially better than other similarity measures for shoeprint image retrieval
within and across domains. We expect our findings here will be applicable to a wide variety
of single-shot and exemplar matching tasks using CNN features.
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1 Backpropagation for NCC

Here we derive d NCC(x,y)
d x . NCC is symmetric with respect to x and y so d NCC(x,y)

d y is the same.
NCC is a sum of terms over individual pixels i. Defining

NCC(x,y) =
1
|P|∑i

ri(x,y)

we derive d NCC(x,y)
d x by taking the total derivative:

d NCC(x,y)
d x[ j]

=
1
|P|∑i∈P

d ri(x,y)
d x[ j]

(1)

d ri(x,y)
d x[ j]

= ỹ[i]
d x̃[i]
d x[ j]

(2)

= ỹ[i]
(

∂ x̃[i]
∂x[ j]

+
∂ x̃[i]
∂ µx

∂ µx

∂x[ j]
+

∂ x̃[i]
∂σxx

∂σxx

∂x[ j]

)
(3)

The partial derivative ∂ x̃[i]
∂x[ j] =

1√
σxx

, if and only if i = j and is zero otherwise. The remain-
ing partials derive as follows:

∂ x̃[i]
∂ µx

=− 1√
σxx

∂ µx

∂x[ j]
=

1
|P| (4)

∂ x̃[i]
∂σxx

=
1

2σ3/2
xx

(x[i]−µx)
∂σxx

∂x[ j]
=

2(x[ j]−µx)

|P| (5)

c© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Pulling everything together, we arrive at a final expression:

d NCC(x,y)
d x[ j]

=
ỹ[ j]
|P|√σxx

+
1
|P|∑i∈P

ỹ[i]

(
−1

|P|√σxx
+

2(x[i]−µx)(x[ j]−µx)

2|P|σ3/2
xx

)
(6)

=
1

|P|√σxx

(
ỹ[ j]+

1
|P|∑i∈P

ỹ[i]
(
−1+

(x[i]−µx)(x[ j]−µx)

σxx

))
(7)

=
1

|P|√σxx

(
ỹ[ j]− 1

|P|∑i∈P
ỹ[i]+

1
|P|∑i∈P

ỹ[i]x̃[i]x̃[ j]

)
(8)

=
1

|P|√σxx
(ỹ[ j]+ x̃[ j]NCC(x,y)) (9)

where we have made use of the fact that ỹ is zero-mean.

2 Retrieval Results for Cross-Domain Matching
In this section we take a deeper look at our proposed system for the cross-domain matching
problem, first looking at some qualitative results and second looking at its performance w.r.t.
the size of crime scene prints.

In Fig. 2 and Fig. 3 we show the top-10 retrieved test impressions for a subset of crime
scene prints from FID-300. These results correspond to [µc,σc] and [µc,σc ·Wc] of the right
panel of Fig. 5 in the main paper.

Next we shows the performance of our two methods when evaluating crime scene prints
of certain sizes. The size can give us an estimate of how much information is in the print—as
crime scene prints and test impressions in FID-300 were scaled to a canonical size (10 pixels
is 1 cm). For FID-300, the prints all fell into one of two categorizes which we call “full size”
and “quarter size”. “Full size” prints are crime scene prints whose pixel area is at least 90%
of the corresponding test impression, whereas “quarter size” prints are crime scene prints
whose pixel area is at most 25% of the corresponding test impression. 76 of the 300 crime
scene prints were full size, while 224 of the 300 crime scene prints were quarter size.
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Figure 1: A study on the performance of our proposed methods on different sizes of crime
scene prints in FID-300. The left panel shows the performance of MCNCC with uniform
weights, the middle panel shows the performance of MCNCC with learned per-channel
weights, and the right panel shows the performance of our Siamese network.

Fig. 1 shows us that, unsurprisingly, our system performs better on full size prints than
on quarter size prints. This fits our intuition as larger prints will almost surely have more
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information to discriminate with. We also see our proposed system with learned per-channel
weights performs worse than uniform weights on both categories. On the other hand, our
Siamese network performs slightly better on full size prints but much worse on quarter size
prints compared to uniform weights. These results reaffirm our suspicion that there is some
overfitting in the models where we learn weights.

Figure 2: FID-300 retrieval results for [µc,σc]. The left column shows the query crime scene
prints. Green boxes indicate the corresponding ground truth test impression.
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Figure 3: FID-300 retrieval results for [µc,σc ·Wc]. The left column shows the query crime
scene prints. Green boxes indicate the corresponding ground truth test impression.
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Figure 4: FID-300 retrieval results for “Siamese.” The left column shows the query crime
scene prints. Green boxes indicate the corresponding ground truth test impression.


