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ABSTRACT

This paper examines the application of extended permuta-
tion rank selection (EPRS) filters in image interpolation.
EPRS filters are constrained to output an order statistic based
on N observation samples and K statistics that are functions
of the observation samples. By including the sample mean
as the sole statistic when K=1, EPRS filters were shown to
have superior edge-enhancing properties. By letting K=0,
we can define a subset class known as rank conditioned rank
selection (RCRS) filters. We will show that these filters can
also be applied to the issue of image interpolation. In this
case, by extending the observation space by including more
original samples and by adding additional linear statistics,
EPRS filters produce results superior to traditional methods
in the application of image interpolation.

1. INTRODUCTION

Image interpolation is an issue that has recently received
great attention. With the continued development of data
communication schemes for image transmission over the In-
ternet and image/video coding for HDTV, novel techniques
for image down-sampling and image interpolation are more
sought after than ever before. Down-sampling schemes are
already well developed, and it is the interpolation phase that
provides the most room for development of new methods.

Image interpolation is typically performed by creating
an observation vector consisting of the samples in the im-
mediate neighborhood of the original pixel to be interpo-
lated. Applying a traditional linear filter to the observation
vector exploits the spatial ordering of the neighboring pix-
els by outputting a weighted sum combination. This method
tends to produce blurred edges and smoothed details. Non-
linear filters, however, have proven more successful in this
area. Zeng examined a series of median filters, in which the
observation set includes the original four neighboring sam-
ples [1]. He further investigated extending the observation
vector to include mean statistics based on the four samples,
generally seeing improved results.

Median filtering itself can, however, eliminate fine de-
tails such as sharp corners and narrow lines because the
rank-based filtering process neglects any spatial neighbor-
hood information. We propose to use rank conditioned rank
selection (RCRS) and extended permutation rank selection
(EPRS) filters, which incorporate both the rank and spatial
ordering of the observation samples [2],[3]. RCRS filters
are a class of filters based upon the partitioning of an obser-
vation space using rank permutations. A rank selection fil-
tering operation is defined over each individual partition, al-
lowing the RCRS filter to output one of the original samples
from the filter window. The observation vector used to gen-
erate the permutations consist of the original N observation
samples. EPRS filters use an extended observation vector
that also includes K statistics of the N observation samples.
This allows the rank selection operation of the EPRS filter
to output not only one of the N original samples, but one of
the K statistics as well.

By selecting the appropriate N original samples and K
statistics, both RCRS and EPRS filters can be applied to
image interpolation. This paper will concentrate on the in-
terpolation of quinqunx sub-sampled images. We selected
this sub-sampling lattice as our focus because it warrants
a single interpolator structure as defined in the next section.
With the judicious selection of the original samples and cor-
responding statistics, both RCRS and EPRS filters provide
superior interpolation results compared to traditional meth-
ods.

This remainder of this paper is organized as follows. In
Section 2, the quincunx sub-sampling lattice is presented.
Various nonlinear interpolators for the lattice are defined in
Section 3. In Section 4, we present experimental results.

2. QUINQUNX SUB-SAMPLING LATTICE

The initial stage of the quinqunx sub-sampling/interpolation
progression can be seen in Fig. 1. The quinqunx lattice re-
duces the number of samples by 2 [1],[4]. The lattice can
subsequently be zero-interlaced to produce the original size
image (Fig. 1-c) [5]. The next step in the interpolation pro-
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Fig. 1. Sampling lattices. (a)Original. (b)Quinqunx sub-
sampled. (c)Quinqunx zero-interlaced.
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Fig. 2. Interpolator Structure for Quinquinx Zero Interlace.

gression is to filter the zero pixels in the zero-interlaced im-
age, producing the reconstructed image. One preliminary
point to consider is whether the original image should be
low-pass filtered before it is subsampled to avoid any alias-
ing. We decided against this option since the low-pass filter
would remove the high frequencies and sharp quality that
we are trying to preserve through nonlinear interpolation.
This also represents the case common in many practical ap-
plications.

The basic interpolator structure for the quinqunx zero
interlace is shown in Fig. 2. The central zero is pixel to be
filtered, or interpolated. The inner diamond encompasses
the four adjacent neighboring samples, while the outer dia-
mond encompasses the next set of known samples. Thus,
using the given interpolator structure, there are up to 16
known samples that we can use to interpolate the value for
the central zero.

3. QUINQUNX INTERPOLATORS

Consider the 2–dimensional discrete sequences
���������
	

and�����
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,where the discrete index
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�
. Let these se-

quences represent the original image (Fig. 1-a) and the zero-
interlaced version (Fig. 1-c) respectively. Note that from
this point on, the index

�
is assumed and is used explicitly

only when needed. Also, consider a 2–dimensional window
function that spans � samples and passes over the zero-
interlaced image, only filtering the appropriate zero pixels.
At a given zero pixel location, we can consider the sur-
rounding non-zero samples to create an observation window
of � samples, defining a corresponding observation vector

of ��� ��� � � � � � �"!"!�!#��� � �$!
(1)

For example, using the interpolator structure from Fig. 2, we
can extract the observation vector

� �&%
=

� �'��� ���(�"!�!"!#� �)��%#�
to

create a 16 element filter window.
We can pass the observation vector

� �
through any fil-

ter, using the output as the value for the center zero pixel. A
typical linear scheme would exploit the spatial ordering of
the observed samples by outputting a weighted average of���

. Increasing the computation and complexity, we could
exploit the rank ordering of the samples by choosing the
median of

�*�
. We, however, propose a scheme combining

both the rank and spatial ordering of the samples.
Additional information about the window can be ex-

tracted by extending the observation vector to include +
characteristic statistics. Thus, we define an extended obser-
vation vector as,���.- / � � ,� � � ,� � �"!"!�!"� ,� �.0�/ �$�
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where

1�42� � � �
is some function of the original observation

vector. Note that the standard observation vector
� �

is sim-
ply a special case of

,� �.- /
, for + = 0. Hence the RCRS

filter, which is based on the original observation vector, is a
limiting case of the EPRS filter that uses an extended obser-
vation vector of

,���.- 5
. For the remainder of this section, we

will only explicitly define the EPRS filter.
To create a rank ordering of the extended observation

vector, sort
,���.- /

by rank to define,�*6 ��798 ,��6 � 798;:�:":<8 ,��6 �=0*/ 7 !
(3)

The ranks of the � samples and + statistics can be re-
lated to their spatial position (within the observation vec-
tor) by defining > 4 to be the rank of the sample at index?

of
,���@- /

. This allows for the creation of a rank vectorA �B� > � � > � ��!"!�!#� > �=0*/ �
, which contains the ranks of the �

samples and + statistics. This rank vector can be used as an
input into a selection rule C � : �

, which will produce desired
rank to output [2]. This allows the center zero pixel to take
on any value in

,� �@- /
.

Consider a subset of the full rank vector where we only
rank M original samples and L statistics, such that D 8E 8 � and D 8GFH8 + . We can now define the rank
feature vector to beAJI ��� >"K�L � >�K#M �"!�!"!"� >"K�N � >#OJL � >#O�M �"!�!"!"� >#OQP �R� (4)

where S 8UT 4 8 � , �GVUS 8UW 4 8 �XVY+ . We will refer
to

E
as the order of the EPRS filter.

Finally, we address the issue of the number of elements
in the extended observation vector. Median filters, when
given an even-numbered

,���.- /
, output the average of the



two center-ranked samples. This behavior proves to be very
desirable in many cases. To allow EPRS filters the ability to
do the same, defineZ� �\[ ,���@- /

if �XV]+ is odd
[
,���.- /

, median(
,���.- /

)] if �XV^+ is even
(5)

The vector
Z�

is identical to
,���.- /

, except a median value
is appended when

,���.- /
has an even number of elements.

Defining
Z�*6 4_7

as the
?R`�a

rank-ordered element of
Z�
, the out-

put of filter can now be defined as1�b*c�d�e�� � �f� Z�*6hg)6hi2j 7k7 �
(6)

The EPRS selection filter rule C � : �
can be optimized un-

der the least mean absolute error (MAE) or mean squared
error (MSE) given the training sequences

�l�m�
����	
and
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.

The procedure is described in [2].
To examine the effects of � and + on the performance

of the EPRS filters, define two sets of observation vectors.
In the initial set, consider the original observation vector for+ = 0 (corresponding to a RCRS filter). Define 9 observa-
tion vectors for N = 2,3,. . . ,8,12,16 as� 4 ��� � � ��� � ��!"!"!���� 4 �R�

(7)

where
? �;no�2p<��!"!"!
�2q<� S no� S�r .

To examine the effect of extending the observation vec-
tor, define a set of extended observation vectors based on
the original vectors above. Noting the success of adding an
overall mean to EPRS filters as an edge enhancement mech-
anism [3], we will also extend our filters with linear averag-
ing statistics as well. However, to derive increased statisti-
cal information about our observation window, we will add
directional means of samples positioned along lines which
pass through the center sample.,�'s - �t� � �'s �Qu�'v � - s#w �Ju�)v � - x w �$!
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w �R!
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where
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= mean
�
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. Note that
because of the added symmetry in

� ��%
, we were able to

directly extend the vector by four averaging statistics de-
noting the four main directional lines passing through the
center pixel.

All of the defined observation vectors and extended ob-
servation vectors can be used as input vectors for linear and
median interpolation schemes as well as the EPRS method.
In the linear and median schemes, this results in simply tak-
ing a weighted sum or the median of

,���
and

,���.- /
, while

for EPRS scheme, the selection rule C is used to output one
of the samples in the vector.

4. RESULTS

Experimental results are presented for the test image of Cafe.
This grayscale image is 2560 by 2048 pixels. A large im-
age size was needed to successfully train and optimize the
selection rule C . The simulations consisted of subsampling
cafe using the quinqunx lattice without pre-filtering. We in-
terpolated the sub-sampled image back to its original size
using the various EPRS filters defined above. We also com-
pare the results with linear, median, and weighted median
(WM) [5] filters. The weights for the linear filter were the
inverse of the euclidean distances of each sample to the cen-
ter pixel. The weights for the WM filter were the coefficents
of a linear Weiner filters optimized on Cafe.

The median, WM, and EPRS filters follow a progres-
sion based on both the orginal and extended observation
vectors. The linear filter, however, was not applied to the
extended vectors since the appended statitics were are lin-
ear and yeiled no performance gain. Analogously, since
no Weiner coefficents for the extended observation vectors
could be derived, the weights for the WM filter for those
vectors were simply the inverse of the euclidean distance of
the given sample to the center. The weights for the addi-
tional statitics were equal to the mean distance of the aver-
aged samples to the center

Figure 4-a and Figure 4-b gives the MAE and the MSE
between the original and the reconstructed image using the
original observation vectors ( + = 0). Two EPRS filters are
presented for each observation vector; one that was opti-
mized under the MAE criterion (Fig. 4-a), and one that was
optimized under the MSE criterion (Fig. 4-b). For window
sizes � � S ��no�"!�!"!
�2q , all the samples in window are used in
the rank vector (i.e.,

E � � ). For � � S n , only the first 6
samples

�'�Q���m�Q��!"!"!����m%
from

� ���
are used. And for � � S�r ,

we only rank the first 4 samples from
� �&%

.For the extended
vectors (Fig. 4-c and Fig. 4-d), we always ranked all the+ statistics (

F � + for all the vectors). However, we only
ranked the first 4 original samples of

� s - � � � y - �
, and

� �&� - �
.

Due to memory restrictions, we were only able to rank the
first original sample of

� ��% - s
.

In all cases, the linear and median schemes’ performance
peak for

� s
. However, as � is increased beyond 4, rank

interpolation is the only scheme that performs better. For� � Slr , the rank interpolation schemes seem to worsen,
but this can be attributed to the low filter order of

E � S .
We hypothesize that with an adequate filter order, the rank
filtering would have been able to handle the larger window
size.

Sample figures are presented in Fig. 5. Here, we apply
an EPRS filter trained on Cafe (Fig. 3) to Aerial (Fig. 5-
a). We consider the difference image between the original
and reconstructed Aerial images. The results for the linear,
WM, and MAE-optimized rank interpolation for the

� ���
ob-



Fig. 3. Training image of Cafe

servation vector are presented. The order used for the rank
filter was 4. We see that the majority of error in both the
linear and WM interpolation schemes stem from the edges
within the image, which suggests that the rank interpolation
successfully interpolates sharper edges then either method.

Generally, we can conclude that the rank ordering in-
formation is indeed useful and generically applicable. Fur-
thermore, as the amount of rank-ordered information is in-
creased (the further

,� �.- /
is enlarged by increasing � or

extended by increasing + ), the better the performance of
the rank filters.
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Fig. 4. Summary of results (a)MAE and (b)MSE results for
original observation vectors. (c)MAE and (d)MSE results
for extended observation vectors.
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Fig. 5. Interpolation of Aerial based on the observation
vector
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using training data from Cafe. (a)Original.

(b)Linear. (c)WM. (d) EPRS with
E ���
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