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Abstract—This paper addresses the problem of adaptively find such a set of kernels for which any signal in the target
deriving optimally sparse image representations, using an dictio- class has a sparse linear representation. Each coefficient in the
nary composed of shiftable kernels. Algorithmic advantages of sparse set represents a triple: one component is its value, the

our solution make possible the computation of an approximately d is the indek of a k | while th g -
shift-invariant adaptive image representation. Learned kernels second Is the index ot a kernel, while the remaining one 1S

can have different sizes and adapt to different scales. Coefficient @ Pointp in signal space - the location of the shifted kernel
extraction uses a fast implementation of Matching Pursuit with k. Therefore, from now on we choose to refer to the problem

essentially logarithmic cost per iteration. Dictionary update is above asPoint Coding The usual approach to computing a
performed by solving a structured least-squares problem either ¢ tion is by minimizing a two-term cost function: the first

by algebraic characterization of pseudoinverses of structured ¢ the fidelity of tructi I
matrices, or by superfast interpolation methods. Kernels learned erm measures the fidelity of reconstruction (usuallyeeor

from natural images display expected 2D Gabor aspect (localiza- t€rm), while the second term stands for some form of reg-
tion in orientation and frequency), as well as other structures ularization (in our casesparsenegs By employing different

commonly occurring in images €.g, curved edges, or cross choices for these two terms, various algorithms can emerge,
patterns), while when applied to newspaper text images, kemels o4cy with jts own technical challenges and advantages.
tend to reproduce printed symbols or groups thereof. . . LY
This area of research has been particularly active in recent

years, and several interesting directions have been explored.
For example, we mention here the significant work in [5],

Efficient image representation is an important problem, d{@2], [13], [1]. Let us mention that the Point Coding problem
to its practical applications [9] and to its potential as a princis by no means particular to images; in fact approaches to
pled approach to modeling natural vision [23]. Capturing theparse adaptive representation of general types of signals
high structure of the visual signals and encoding it compactist which focus on sounds [27], [17], [10], and even to
is a challenging task. For example, relevant visual content ceaembined audio-visual signals [19]. The goal of the present
appear at any spatial position and scale, which explains th&per is to bring forward computationally efficient methods
success of image coders based on multiscale representatfonsdesigning very general, (approximately) shift-invariant
such as wavelets [28], [2]. However, even wavelets prowglaptive representations of images. The generality refers to
suboptimal in modeling certain structure frequently occurringye fact that the kernel sizes can traly arbitrary, the user
in images (among other things, sharp edges at arbitrary agiving up the control over this issue to the kernel-learning
entations) and several new representations have recently bgetedure and this process is even able to produce a multiscale
designed to fill this gap (see for instance [3], [4], [7]). representation if optimality demands it (in a similar fashion

In spite of such progress, it is still not clear what makes ao Spike Coding [26]). In such conditions, computational
optimally efficient code for images in general: smooth surfacefficiency is afforded by exploiting the (still high) structure of
and short straight edges may be the optimal features for sothe optimization problem, using tools imported from structured
image classese(g, natural scenes), but not for others (facesnatrix algebra [12], [15]. Namely, the coefficient extraction
cartoons, fingerprints, various textures, or medical imagesjep uses a fast implementation of Matching Pursuit with
Furthermore, according to Shannon’s source coding theoresssentially logarithmic cost per iteration, while dictionary up-
a representation is inherently suboptimal for a given class aéite is performed by solving a highly structured least-squares
signals of interest, unless it captures the probability densjtyoblem, either by algebraic characterization of pseudoinverses
of the data. This suggests that better representations canobe&ertain structured matrices [11], or by fast interpolation
obtained by learning more general and flexible dictionariesiethods [30].
which reflect the statistical structure of special image classesThe paper is organized as follows. Section Il contains the
In this paper, we focus on adaptively deriving dictionariemathematical formulation of the problem. Next we describe
generated by a set of relatively small image patterns (herelne stages of the solution: the sparse coefficient extraction and
called “kernels”), shifted at arbitrary positions. The goal is tthe dictionary update. We include our experimental results in

I. INTRODUCTION



section V and present our conclusions in the final section. update the dictionary to better fit the data. Finding the sparsest
linear approximation in a general dictionary is also NP-hard
[20]; however, suboptimal approaches (like greedy) proved
In this section we shall formulate the Point Coding problemjuite satisfactory in practice. Therefore, for the first step
mathematically. Let us start by introducing the appropriatge choose to employ Matching Pursuit [18]. The second
notation. step, adapting the dictionary to the signal structure seems
Let ® = {¢1,...,¢x} be a set of 2D (rectangular) ker-simpler, since it only requires solving a quadratie.{ convex)
nels, of possibly different sizesi; xny, normalized to unit optimization problem in® (or f). In the following, we shall
Frobenius norm, and Iét= (vec(¢1)T, e ,VGC(¢K)T)T the separately describe each of the two steps.
ensemble obtained by concatenating their vectorized versions
For each kernep;, € ® and forp € IN2, we denotepy, , the
translated version of the kernel such that its upper-left corner
lies at positionp. (In this paper, we shall work exclusively ) ) . )
with finite-size images, which means thatdj, is entirely  1he Matching Pursuit (MP) algorithm [18] is a greedy
contained within an\/ x N image, it can only be shifted into |terat|v_e procedure Whos_e goal is to_ldentlfy a decomposition
(M —my, +1) x (N —ny, + 1) positions.) of a given vector as a Imez_ir combination of elements of a
For all k and p, the coefficient of the shifted kernel, dlctlopary. !f t.he dictionary is an orthogpnal vector set and_
will be denoteds;, ,. Under the linear additive noisy modelthe signal is indeed a sparse combination of atoms, MP is

Il. THE POINT CODING PROBLEM

I11. M ATCHING PURSUIT

assumption, for any image we can write: guaranteed to find thi_s sparse set. In general, this method only
serves as an approximation to the sparsest set problem (see
K for instance [20]).
= Z Z Sk Okp +€=T(s,P) +€ @) The main practical challenge in using Matching Pursuit
k=1pePh; with a high-dimensional, highly overcomplete dictionary is

where P, is the set of all occurrences of kerng), in the the large cost of the update and of identifying the next
representatioh As a measure of representation accuracy, viaom, maximally correlated with the residual. In the case of

hereby consider the (squared) reconstruction error: a shiftable-kernel dictionary with small kernels, approaches
presented in the Matching Pursuit Toolkit (MPTK) [16] and
K dy in Sallee [25] shrink this cost to essentially logarithmic in
F, (®,s) = ||z —2(s,®)||2 = ||z — Zzskm'%,pﬂg (2) the size of the signal (we assume that the number of kernels
h—1p=1 and their sizes are constant). The difference between the two

approaches is that in MPTK this logarithmic cost reflects

where for allk, di, = |Py| is the number of shifted versions . . . .

S : . - searching through a binary tree to find for the next maximum,
of kernel ¢, while imposing the sparsity restriction translates , . . , o S .
) L . While in Sallee’s work this is due to maintaining a heap which
in minimizing the number of non-zeros in Therefore, for

a fixed sianale. we should solve the followina optimization holds the maximum correlation coefficients of the kernels with
gnatr, g op the signal, grouped into equal-length, adjacent blocks. Thus,
problem : . : .
every pair ofdelete-maxandinsert operations, corresponding
to into the heap maintain the desired cost.
min ||sl|o We employed this second approach, slightly adapting it to
s . s
bt F (B the 2D case. Namely, we compute the correlation coefficients
st Fu(D,5) <e of the image with all the kernels in our dictionary and we
for ¢ > 0 or equivalently: divide this correlation map into (roughly square) blocks of
equal size. At each step, we only update a small number
] of blocks (namely, 4) and therefore only need to search for
min F, (@, 5) + Allsllo (3)  a small number ohew maxima The heap structure admit-
tedly helps avoid most of the work; careful storage of the

forTiome)\ = .0' . bl b NP-hard fcorrelation matrix can further help by enhancing data locality
e optimization problems above are -hard (see fap 4 yhus avoid costly memory operations. As a typical result,

instance [6]). Therefore, we attempt to approximately find @ecomposing 256 x 256 image to 30dB using a dictionary

solution via an iterative, alternating procedure. First, we fi 25 Gabor-looking8 x 8 kernels can be executed in as
a sparse set of point§ porresponding t? a fixed diction_ar.y alﬂﬂe as 6.4 seconds on a G5 Mac computer (with a MEX C
a preset level of precision; then, for a fixed set of Coeﬁ'c'en%plementation of Matching Pursuit). We intend to provide a

1For a matrixM, vec(M) is the set of all the entries in the matrix, stored.more thorough description and analysis of the above procedure
column-wise. in a future paper.

2For brevity, we will further refer both teb and tof as theencoding Once MP computes a sparse set of coefficients (now con-
dictionary. Also, we will refer to the coefficients;, , aspoints Note again

that one point is determined not only by the value of the coefficient, but al§j(l)dered_flxed)’ we proceed to optimizing the kernels to better
by its corresponding kernel and by the position where it occurs. fit the signals.



IV. DICTIONARY UPDATE ST SE) will be Toeplitz mosaic matrices of identical block

In the following we describe the optimal dictionary for 5izes. Consequently, matrid will be a symmetric, positive
given set of points as the mode of the posterior distributioR€Midefinite Toeplitz mosaic matrix. We can thus reduce the

in a similar fashion to [26], [24]: original problem to a structured least squares problem.
Structured Least Squares. The advantage of working
p(z]®) :/p(a:|<1>,s)p(s)ds (4) with structured matrices comes mainly from the fact that
the number of parameters is much smaller than the actual

where for integration we marginalize over all possibldimension of the matrix and from the existence of fast and
point sets. We can approximate the integral above wigtuperfast algorithms that exploit the displacement rank of
p(x|®, s )p(s'), where s’ is the set of coefficients producedmany such types of matrices [12], [15].
by Matching Pursuit. Then, assuming an additive GaussianFirst, we would like to point out that [11] presents an
noise modek~N (0, o.I), for every kernelkpy: algebraic characterization of pseudoinverses of Toeplitz and
Hankel mosaic matrices, which generalizes the well-known
B B , , Gohberg-Semencul inversion formula for Toeplitz matrices,
aTbklOg(P(ff\‘I’)) = %{bg(]?(fl‘b,s ) +1log(p(s'))}  (3) py using a general notion of Bezoutian to represent such

K mg matrices. The effect is that fast and superfast algorithms can be
= iinx — Z Z Sk p - ¢k,7p||§ (6) employed to compute the pseudoinverses, and consequently to
20 0, k=1 p=1 solve the structured least-square problems. We shall only give
| here one example of such a result; a more detailed description
= — Zskyp - —Z(s, @)]kyp (7) and analysis of this idea will be the subject of a future paper.
Te =1 Definition 1: A (¢, p)-mosaic matrixB is said to be a gen-

where [z — Z(s, ®)], , denotes the restriction of the errorerali.zed Toeplitz(q7p,r).—Bezoutian if its generating function

imagex — Z(s, ®) on the support oty ,. This immediately admits the representation

gives us a learning rule for the MAP dictionary and we could —~

employ any (stochastic) gradient based method to perform the B\ p) = 1—

optimization. ~ ~
Let us observe that maximizing the posterior with respect YghereU(A) is ag x (p+g+r) andV (p) is apx (p+q+r)

@ means minimizing the (squared) reconstruction error, whiéhatrix polynomial.

is S|mp|y a quadratic form of the ensemme“f]deed, if we Then, the fO”OWing theorem prOVideS a characterization of

denote byyl the vectorized version of training ima@e, let us the pseUdOinVErse of a ToeplitZ'mosaiC matrix, which means

TNV (). (15)

denote bys(® = [§(:1) | §(.K)] the matrix corresponding that actually computing the pseudoinverse can be performed
to the linear mapping efficiently, via several convolutions (in our cage= ¢ = K,

) ) the number of kernels).

Ti(s', @) = 5 - f ©) Theorem 1:[11] The Moore-Penrose inverse
and so, the optimization problem we need to solve reducesdo @ (p,q)—Toeplitz mosaic matrix is a Toeplitz
minimizing the following cost function; (¢,p,q + p)—Bezoutian.

! A different, but equally attractive solution to the struc-
Qf) = Z l|zi — S(i)fH% ) tured problem above is suggested by the approaches in [29],
= [30]. Namely, they solve Toeplitz least squares problems

by translating it into an interpolation problem and using a

I

= Z (||xi|‘§ _ QxiTS(i)f + fTS(i)TS(i)f> (10) superfast method to handle this one. Finding generators for the

i1 displacement of our particular Toeplitz-mosaic matrix is rather

I straightforward thanks to the algorithm in the appendix of [14];

=ct.+ Y (—inTS(“f + fTS(“TS(”f) (11) this helps us reduce our own problem to a similar interpolation

i=1 problem, which therefore can be solved efficiently.
I I
=ct.—2 (Z I{g(i)) f+fT (Z S(i)T5<i)> £(12) V. EXPERIMENTAL RESULTS

i=1 i=1 In this section, we shall present the results of applying
=:c—207f + fTAf (13) the above method to fairly different categories of images, to
(14) illustrate the importance of the signal class on the computed

dictionary.

W_e remark that tms_quadratic form has a special struc-natyral Images. We first apply the method presented here
ture: since matrixS™ is a block-row, whose blocks arey, jmages from the Kyoto natural image database [8]. The
each Toeplitz-Block-Toeplitz matricé follows that matrices dictionary started out as a set of 20 randofnx 10 patches

SWe find it is useful to point out that the 1D correspondent is a block-ro"d eVOI_Ved_ as Some_ of t_he kernels grew or shrank. A subset of
matrix with Toeplitz blocks (also known as Toeplitz-striped matrix). kernels is displayed in Figure 1d; the learned kernels display
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(b) Newspaper image example

(c) Fingerprint image example
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(d) Natural image kernels (after 300 iterations) (e) Newspaper image kernels (after 55 iterations{f) Fingerprint image kernels (after 12 iterations)

Fig. 1.

Results of adapting the kernels for three categories of images. First row: Image examples from each class. Second row: Subset of kernels adapt

to that class. Kernels are up-scaled for a better visualization; actual pixel size is displayed above each kernel subplot.

the expected aspects for such a dataset (namely edges, ridgeBhe presented results have been learned form a set of
cross patterns) but they also include other shapgg {round” training images ranging from 10 (newspaper) to 50 (natural
edges). One interesting aspect is that the kernels in the fimahges). The dictionary size was hand-picked to the reported
dictionary (here, after 300 iterations) do not seem extremelglues in order to avoid redundance.d, several kernels

sensitive to the starting point. being copies or shifted versions of each other). We currently

Newspaper ImagesA different type of signals, with sig- work on a mechanism to automatically control the number of
nificantly distinct statistical structure is the class of scannédufficient” kernels.

newspaper images. Particularities of this class mainly involve VI. CONCLUSION
a more reduced set of predominant orientations. Figure le ' . . )
exhibits kernels adapted to this class, after 55 iterations and& Proposed an approach to deriving adaptive shift-
starting from random. As can be easily observed, kernels tdfyariantimage representation. This method is computationally
to capture mainly printed symbols: if a large enough set ¥F"Y efficient and enables eliminates kernel size constraints:
kernels is usede(g, 40), they tend to stabilize to individual they can have arbitrary lengths, which can lead to a multiscale
characters, or pairs thereof dictionary. In the kernel update step, we focused on what we
Fingerprint Images. Finally, we chose to apply our methodbe"e",e to be an under-explored family of glg_orit_hms, which
on another highly distinct class, namely fingerprint imageg?(plo't the structure of the least-squares optimization problem.
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