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Abstract—This paper addresses the problem of adaptively
deriving optimally sparse image representations, using an dictio-
nary composed of shiftable kernels. Algorithmic advantages of
our solution make possible the computation of an approximately
shift-invariant adaptive image representation. Learned kernels
can have different sizes and adapt to different scales. Coefficient
extraction uses a fast implementation of Matching Pursuit with
essentially logarithmic cost per iteration. Dictionary update is
performed by solving a structured least-squares problem either
by algebraic characterization of pseudoinverses of structured
matrices, or by superfast interpolation methods. Kernels learned
from natural images display expected 2D Gabor aspect (localiza-
tion in orientation and frequency), as well as other structures
commonly occurring in images (e.g., curved edges, or cross
patterns), while when applied to newspaper text images, kernels
tend to reproduce printed symbols or groups thereof.

I. I NTRODUCTION

Efficient image representation is an important problem, due
to its practical applications [9] and to its potential as a princi-
pled approach to modeling natural vision [23]. Capturing the
high structure of the visual signals and encoding it compactly
is a challenging task. For example, relevant visual content can
appear at any spatial position and scale, which explains the
success of image coders based on multiscale representations
such as wavelets [28], [2]. However, even wavelets prove
suboptimal in modeling certain structure frequently occurring
in images (among other things, sharp edges at arbitrary ori-
entations) and several new representations have recently been
designed to fill this gap (see for instance [3], [4], [7]).

In spite of such progress, it is still not clear what makes an
optimally efficient code for images in general: smooth surfaces
and short straight edges may be the optimal features for some
image classes (e.g., natural scenes), but not for others (faces,
cartoons, fingerprints, various textures, or medical images).
Furthermore, according to Shannon’s source coding theorem,
a representation is inherently suboptimal for a given class of
signals of interest, unless it captures the probability density
of the data. This suggests that better representations can be
obtained by learning more general and flexible dictionaries,
which reflect the statistical structure of special image classes.
In this paper, we focus on adaptively deriving dictionaries
generated by a set of relatively small image patterns (hereby
called “kernels”), shifted at arbitrary positions. The goal is to

find such a set of kernels for which any signal in the target
class has a sparse linear representation. Each coefficient in the
sparse set represents a triple: one component is its value, the
second is the indexk of a kernel, while the remaining one is
a point p in signal space - the location of the shifted kernel
k. Therefore, from now on we choose to refer to the problem
above asPoint Coding. The usual approach to computing a
solution is by minimizing a two-term cost function: the first
term measures the fidelity of reconstruction (usually, anerror
term), while the second term stands for some form of reg-
ularization (in our case,sparseness). By employing different
choices for these two terms, various algorithms can emerge,
each with its own technical challenges and advantages.

This area of research has been particularly active in recent
years, and several interesting directions have been explored.
For example, we mention here the significant work in [5],
[22], [13], [1]. Let us mention that the Point Coding problem
is by no means particular to images; in fact approaches to
sparse adaptive representation of general types of signals
exist which focus on sounds [27], [17], [10], and even to
combined audio-visual signals [19]. The goal of the present
paper is to bring forward computationally efficient methods
for designing very general, (approximately) shift-invariant
adaptive representations of images. The generality refers to
the fact that the kernel sizes can betruly arbitrary, the user
giving up the control over this issue to the kernel-learning
procedure and this process is even able to produce a multiscale
representation if optimality demands it (in a similar fashion
to Spike Coding [26]). In such conditions, computational
efficiency is afforded by exploiting the (still high) structure of
the optimization problem, using tools imported from structured
matrix algebra [12], [15]. Namely, the coefficient extraction
step uses a fast implementation of Matching Pursuit with
essentially logarithmic cost per iteration, while dictionary up-
date is performed by solving a highly structured least-squares
problem, either by algebraic characterization of pseudoinverses
of certain structured matrices [11], or by fast interpolation
methods [30].

The paper is organized as follows. Section II contains the
mathematical formulation of the problem. Next we describe
the stages of the solution: the sparse coefficient extraction and
the dictionary update. We include our experimental results in



section V and present our conclusions in the final section.

II. T HE POINT CODING PROBLEM

In this section we shall formulate the Point Coding problem
mathematically. Let us start by introducing the appropriate
notation.

Let Φ = {φ1, ..., φK} be a set of 2D (rectangular) ker-
nels, of possibly different sizesmk×nk, normalized to unit
Frobenius norm, and letf =

(
vec(φ1)T , . . . ,vec(φK)T

)T
the

ensemble obtained by concatenating their vectorized versions1.
For each kernelφk ∈ Φ and forp ∈ IN2, we denoteφk,p the
translated version of the kernel such that its upper-left corner
lies at positionp. (In this paper, we shall work exclusively
with finite-size images, which means that ifφk is entirely
contained within anM×N image, it can only be shifted into
(M −mk + 1)× (N − nk + 1) positions.)

For all k and p, the coefficient of the shifted kernelφk,p

will be denotedsk,p. Under the linear additive noisy model
assumption, for any imagex we can write:

x =
K∑

k=1

∑

p∈Pk

sk,p · φk,p + ε = x̂(s,Φ) + ε (1)

where Pk is the set of all occurrences of kernelφk in the
representation2. As a measure of representation accuracy, we
hereby consider the (squared) reconstruction error:

Fx (Φ, s) = ||x− x̂(s,Φ)||22 = ||x−
K∑

k=1

dk∑
p=1

sk,p ·φk,p||22 (2)

where for allk, dk = |Pk| is the number of shifted versions
of kernelφk, while imposing the sparsity restriction translates
in minimizing the number of non-zeros ins. Therefore, for
a fixed signalx, we should solve the following optimization
problem

min
Φ,s

||s||0
s.t. Fx (Φ, s) < ε

for ε ≥ 0 or equivalently:

min
Φ,s

Fx (Φ, s) + λ||s||0 (3)

for someλ > 0.
The optimization problems above are NP-hard (see for

instance [6]). Therefore, we attempt to approximately find a
solution via an iterative, alternating procedure. First, we find
a sparse set of points corresponding to a fixed dictionary and
a preset level of precision; then, for a fixed set of coefficients,

1For a matrixM , vec(M) is the set of all the entries in the matrix, stored
column-wise.

2For brevity, we will further refer both toΦ and to f as theencoding
dictionary. Also, we will refer to the coefficientssk,p aspoints. Note again
that one point is determined not only by the value of the coefficient, but also
by its corresponding kernel and by the position where it occurs.

update the dictionary to better fit the data. Finding the sparsest
linear approximation in a general dictionary is also NP-hard
[20]; however, suboptimal approaches (like greedy) proved
quite satisfactory in practice. Therefore, for the first step
we choose to employ Matching Pursuit [18]. The second
step, adapting the dictionary to the signal structure seems
simpler, since it only requires solving a quadratic (i.e., convex)
optimization problem inΦ (or f ). In the following, we shall
separately describe each of the two steps.

III. M ATCHING PURSUIT

The Matching Pursuit (MP) algorithm [18] is a greedy
iterative procedure whose goal is to identify a decomposition
of a given vector as a linear combination of elements of a
dictionary. If the dictionary is an orthogonal vector set and
the signal is indeed a sparse combination of atoms, MP is
guaranteed to find this sparse set. In general, this method only
serves as an approximation to the sparsest set problem (see
for instance [20]).

The main practical challenge in using Matching Pursuit
with a high-dimensional, highly overcomplete dictionary is
the large cost of the update and of identifying the next
atom, maximally correlated with the residual. In the case of
a shiftable-kernel dictionary with small kernels, approaches
presented in the Matching Pursuit Toolkit (MPTK) [16] and
in Sallee [25] shrink this cost to essentially logarithmic in
the size of the signal (we assume that the number of kernels
and their sizes are constant). The difference between the two
approaches is that in MPTK this logarithmic cost reflects
searching through a binary tree to find for the next maximum,
while in Sallee’s work this is due to maintaining a heap which
holds the maximum correlation coefficients of the kernels with
the signal, grouped into equal-length, adjacent blocks. Thus,
every pair ofdelete-maxand insert operations, corresponding
to into the heap maintain the desired cost.

We employed this second approach, slightly adapting it to
the 2D case. Namely, we compute the correlation coefficients
of the image with all the kernels in our dictionary and we
divide this correlation map into (roughly square) blocks of
equal size. At each step, we only update a small number
of blocks (namely, 4) and therefore only need to search for
a small number ofnew maxima. The heap structure admit-
tedly helps avoid most of the work; careful storage of the
correlation matrix can further help by enhancing data locality
and thus avoid costly memory operations. As a typical result,
decomposing a256 × 256 image to 30dB using a dictionary
of 25 Gabor-looking8 × 8 kernels can be executed in as
little as 6.4 seconds on a G5 Mac computer (with a MEX C
implementation of Matching Pursuit). We intend to provide a
more thorough description and analysis of the above procedure
in a future paper.

Once MP computes a sparse set of coefficients (now con-
sidered fixed), we proceed to optimizing the kernels to better
fit the signals.



IV. D ICTIONARY UPDATE

In the following we describe the optimal dictionary for a
given set of points as the mode of the posterior distribution,
in a similar fashion to [26], [24]:

p(x|Φ) =
∫

p(x|Φ, s)p(s)ds (4)

where for integration we marginalize over all possible
point sets. We can approximate the integral above with
p(x|Φ, s′)p(s′), wheres′ is the set of coefficients produced
by Matching Pursuit. Then, assuming an additive Gaussian
noise modelε∼N(0, σεI), for every kernelφk:

∂

∂φk
log(p(x|Φ)) =

∂

∂φk
{log(p(x|Φ, s′)) + log(p(s′))} (5)

=
−1
2σε

∂

∂φk
||x−

K∑

k′=1

nk′∑
p=1

sk′,p · φk′,p||22 (6)

=
1
σε

nk∑
p=1

sk,p · [x− x̂(s, Φ)]k,p (7)

where [x− x̂(s, Φ)]k,p denotes the restriction of the error
imagex − x̂(s, Φ) on the support ofφk,p. This immediately
gives us a learning rule for the MAP dictionary and we could
employ any (stochastic) gradient based method to perform the
optimization.

Let us observe that maximizing the posterior with respect to
Φ means minimizing the (squared) reconstruction error, which
is simply a quadratic form of the ensemblef . Indeed, if we
denote byyi the vectorized version of training imagexi, let us
denote byS(i) = [S(i,1), . . . , S(i,K)] the matrix corresponding
to the linear mapping

x̂i(s(i), Φ) = S(i) · f (8)

and so, the optimization problem we need to solve reduces to
minimizing the following cost function:

Q(f) =
I∑

i=1

||xi − S(i)f ||22 (9)

=
I∑

i=1

(
||xi||22 − 2xT

i S(i)f + fT S(i)T S(i)f
)

(10)

= ct. +
I∑

i=1

(
−2xT

i S(i)f + fT S(i)T S(i)f
)

(11)

= ct.− 2

(
I∑

i=1

xT
i S(i)

)
f + fT

(
I∑

i=1

S(i)T S(i)

)
f (12)

=: c− 2bT f + fT Af (13)

(14)

We remark that this quadratic form has a special struc-
ture: since matrixS(i) is a block-row, whose blocks are
each Toeplitz-Block-Toeplitz matrices3 it follows that matrices

3We find it is useful to point out that the 1D correspondent is a block-row
matrix with Toeplitz blocks (also known as Toeplitz-striped matrix).

S(i)T S(i) will be Toeplitz mosaic matrices of identical block
sizes. Consequently, matrixA will be a symmetric, positive
semidefinite Toeplitz mosaic matrix. We can thus reduce the
original problem to a structured least squares problem.

Structured Least Squares. The advantage of working
with structured matrices comes mainly from the fact that
the number of parameters is much smaller than the actual
dimension of the matrix and from the existence of fast and
superfast algorithms that exploit the displacement rank of
many such types of matrices [12], [15].

First, we would like to point out that [11] presents an
algebraic characterization of pseudoinverses of Toeplitz and
Hankel mosaic matrices, which generalizes the well-known
Gohberg-Semencul inversion formula for Toeplitz matrices,
by using a general notion of Bezoutian to represent such
matrices. The effect is that fast and superfast algorithms can be
employed to compute the pseudoinverses, and consequently to
solve the structured least-square problems. We shall only give
here one example of such a result; a more detailed description
and analysis of this idea will be the subject of a future paper.

Definition 1: A (q, p)-mosaic matrixB is said to be a gen-
eralized Toeplitz(q, p, r)-Bezoutian if its generating function
admits the representation

B̂(λ, µ) =
1

1− λµ
Û(λ)V̂ (µ)T . (15)

whereÛ(λ) is a q× (p+ q + r) and V̂ (µ) is ap× (p+ q + r)
matrix polynomial.

Then, the following theorem provides a characterization of
the pseudoinverse of a Toeplitz-mosaic matrix, which means
that actually computing the pseudoinverse can be performed
efficiently, via several convolutions (in our casep = q = K,
the number of kernels).

Theorem 1:[11] The Moore-Penrose inverse
of a (p, q)−Toeplitz mosaic matrix is a Toeplitz
(q, p, q + p)−Bezoutian.

A different, but equally attractive solution to the struc-
tured problem above is suggested by the approaches in [29],
[30]. Namely, they solve Toeplitz least squares problems
by translating it into an interpolation problem and using a
superfast method to handle this one. Finding generators for the
displacement of our particular Toeplitz-mosaic matrix is rather
straightforward thanks to the algorithm in the appendix of [14];
this helps us reduce our own problem to a similar interpolation
problem, which therefore can be solved efficiently.

V. EXPERIMENTAL RESULTS

In this section, we shall present the results of applying
the above method to fairly different categories of images, to
illustrate the importance of the signal class on the computed
dictionary.

Natural Images. We first apply the method presented here
to images from the Kyoto natural image database [8]. The
dictionary started out as a set of 20 random10× 10 patches,
and evolved as some of the kernels grew or shrank. A subset of
kernels is displayed in Figure 1d; the learned kernels display



(a) Natural image example. (b) Newspaper image example (c) Fingerprint image example

[8 X 6] [8 X 5] [6 X 8]

[10 X 10] [7 X 7] [8 X 8]

[8 X 8] [7 X 6] [8 X 7]

(d) Natural image kernels (after 300 iterations)

[12 X 12] [12 X 12] [12 X 12]

[12 X 12] [12 X 12] [11 X 12]

[8 X 12] [12 X 12] [12 X 12]

(e) Newspaper image kernels (after 55 iterations)

[8 X 8] [8 X 8] [8 X 8]

[8 X 8] [8 X 8] [8 X 8]

[8 X 8] [8 X 8] [8 X 8]

(f) Fingerprint image kernels (after 12 iterations)

Fig. 1. Results of adapting the kernels for three categories of images. First row: Image examples from each class. Second row: Subset of kernels adapted
to that class. Kernels are up-scaled for a better visualization; actual pixel size is displayed above each kernel subplot.

the expected aspects for such a dataset (namely edges, ridges,
cross patterns) but they also include other shapes (e.g., “round”
edges). One interesting aspect is that the kernels in the final
dictionary (here, after 300 iterations) do not seem extremely
sensitive to the starting point.

Newspaper Images.A different type of signals, with sig-
nificantly distinct statistical structure is the class of scanned
newspaper images. Particularities of this class mainly involve
a more reduced set of predominant orientations. Figure 1e
exhibits kernels adapted to this class, after 55 iterations and
starting from random. As can be easily observed, kernels tend
to capture mainly printed symbols; if a large enough set of
kernels is used (e.g., 40), they tend to stabilize to individual
characters, or pairs thereof.

Fingerprint Images. Finally, we chose to apply our method
on another highly distinct class, namely fingerprint images.
Figure 1f displays a set of kernels learned from images in the
Cross Match Verifier 300 sample fingerprint database [21].
Although initialized randomly, after only 12 iterations the 25
kernels already localize in frequency and orientation, although
not also in space (easily explained by the structure of the
signals).

The presented results have been learned form a set of
training images ranging from 10 (newspaper) to 50 (natural
images). The dictionary size was hand-picked to the reported
values in order to avoid redundancy (e.g., several kernels
being copies or shifted versions of each other). We currently
work on a mechanism to automatically control the number of
“sufficient” kernels.

VI. CONCLUSION

We proposed an approach to deriving adaptive shift-
invariant image representation. This method is computationally
very efficient and enables eliminates kernel size constraints:
they can have arbitrary lengths, which can lead to a multiscale
dictionary. In the kernel update step, we focused on what we
believe to be an under-explored family of algorithms, which
exploit the structure of the least-squares optimization problem.
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[13] P. Jost, P. Vandergheynst, S. Lesage, and R. Gribonval, “MoTIF: an
efficient algorithm for learning translation invariant dictionaries,” in
IEEE ICASSP, 2006.

[14] T. Kailath and J. Chun, “Generalized Displacement Structure for Block-
Toeplitz,Toeplitz-Block, and Toeplitz-Derived Matrices,”SIAM J. Matrix
Anal. Appl., vol. 15, no. 1, pp. 114–128, 1994.

[15] T. Kailath and A. H. Sayed, Eds.,Fast reliable algorithms for matrices
with structure. SIAM, 1999.

[16] S. Krstulovic and R. Gribonval, “MPTK: Matching Pursuit made
tractable,” inProc. ICASSP, vol. 3, 2006, pp. 496–499.
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