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ABSTRACT

We address the problem of speech estimation as statistical estimation
with “missing” data in the independent component analysis (ICA) domain.
Missing components are substituted by values drawn from “similar” data in
a multi-faceted ICA representation of the complete data. The paper presents
the algorithm for the inference of missing data in the case of a fixed pattern
of missing data. We apply our approach to the problem of bandwidth exten-
sion, or where speech is degraded by a fixed filtering process and show the
capability of the algorithm to reconstruct fine missing details of the original
data with little artifacts. The evaluation is done using objective distortion
measures on speech samples from the NTT database.

1. INTRODUCTION

Over the last forty years, remarkable progress has been made
in the area of speech separation and enhancement, however
accurate estimation of clean speech for real-world environ-
ments is still a challenge (for a comprehensive review of ideas
see [1]). Extraction of speech sources typically exploits the
diversity from multi-microphone measurements and the sta-
tistical independence of the sources, in so called blind source
separation (BSS) or independent component analysis (ICA)
[2]. Some of these techniques make simplifying assumptions
about the data e.g. anechoic or single-path propagation mod-
els or sparsity and disjointness of TF representations. They
have been successful on real data [3], however they are lim-
ited in the fidelity of reconstruction of the speech sounds in
complex auditory scenarios. One should take advantage of
prior statistical speech models [4].

One problem motivating this work is spectral extension.
Present digital telephony systems operate at the minimum re-
quirements of analog speech communication (e.g. 300Hz to
4kHz bandwidth) although speech is much richer. Another
problem is source separation from mono or multi-channel data:
in the presence of masking sources of sound, only inaccurate
source reconstruction is possible with present approaches. In
both cases, can information of the source signal be modeled
and used in order to recreate a natural sounding source in ad-
verse conditions? These problems have much in common.
Data (in some appropriately chosen space) may not really be
missing but be masked or very noisy, which makes statistical
estimation difficult and non-robust. An abstract statement of
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our problem is to perform statistical model-based inference of
the “missing” data and rely on prior models of clean speech
[5]. Also, it is useful to characterize properties of the corre-
sponding statistical inference procedures.

The paper presents and evaluates algorithms for implicit
modeling and inference to deal with a fixed pattern of miss-
ing data and applications to the spectral extension problems.
This can be generalized to a random pattern of missing data.
Next section presents related work motivating our approach.
Section 3 introduces the algorithm for statistical estimation
with a fixed data template, corresponding to the spectral ex-
tension problem. Section 4 presents experimental results on
bandwidth extension problems and Section 5 concludes and
highlights future work directions.

2. RELATED WORK

An auditory scene is generally a mixture of auditory objects,
environment noise, music, etc. Computational auditory scene
analysis (CASA) approaches [6] attempt to extract and use
information or features about auditory sources in order to ul-
timately separate the source of interest. Model-based mono
source separation approaches confine the signal space to pos-
sibilities given by an explicit or implicit model of the source.
Under the model assumptions, it is possible to identify the
model and therefore recover an estimate of the source [7, 8, 9].

Statistical models of clean speech (e.g. [8]) capture the
principal spectral shapes, or speech units, and their dynam-
ics in order to be able to distinguish and recognize the speech
units (i.e. Hidden Markov Models in present Automatic Speech
Recognition technology). Instead, we depart from the goal
of recognizing speech units and investigate the possibility to
model global characteristics of speech regardless of the se-
quence of speech units. Independent component analysis is
what we need [2]. In this work we use ICA speech models
to infer missing or masked components in speech data and
reconstruct speech better.

Speech features are characterized by statistical dependence
across space and time. However we will not use explicit fea-
tures defined with fixed, or data-independent transformations.
This is the case e.g. in [10], where a multitude of features
and grouping cues (continuity, pitch, timbre) are used to train



a spectral clustering procedure. Related examples are denois-
ing sounds by sparse code shrinkage [2], as such signals result
in sparse representations due to their time-frequency distribu-
tions. Alternatively, sparseness has been explicitly used in the
choice of representations. Compared with some commonly
used transformations such as discrete Fourier, discrete cosine,
and wavelet transforms, ICA is a data-driven transformation
adapted to the structure of speech training data. The literature
exploits this assumption formally by considering that speech
features have Laplacian priors, and by using ICA to derive
data-dependent features [11].

Present bandwidth extension (BWE) literature is also rel-
evant, as BWE fundamentally relies on clean speech models.
BWE algorithms use Linear Predictive Coding (LPC) analy-
sis to decompose the estimation problem into the extension of
the excitation signal and the extension of the spectral enve-
lope. The excitation can be extended with a spectral copy of
the low-frequency excitation [12], or by bandpass modulated
Gaussian noise [13, 14]. The spectral envelope can be ex-
tended using pattern recognition techniques relying on a Hid-
den Markov Model (HMM) of speech. Relevant information
about the spectral envelope of the extension band is extracted
from narrow band speech. Other approaches forego the LPC
analysis and copy the narrow band speech spectrum [15].

3. SPECTRAL EXTENSION FOR FIXED PATTERN
OF MISSING DATA

3.1. ICA Domain Data Transformation

We denote a time domain, clean, mono speech signal by x(t),
where t is the discrete time index. A set of independent basis
functions, learned in unsupervised manner by an ICA algo-
rithm, represents both the frequency and the phase spectrum
of the clean speech signal.

The first step in learning the ICA representation of x(t)
is to take a large number L of frames of length N at ran-
dom starting points in training speech data x(t), transform
each frame using a Hamming window, and lay them as a col-
umn of the clean speech matrix Xtrain. An ICA algorithm,
such as FastICA [2], learns a set of basis vectors (columns of
matrix A) from Xtrain. The transformation into statistically
independent components (ICs), Strain, captures informative
features of the natural speech in the form of a higher order
structure [16] (in contrast to second order statistics):

Strain = A−1Xtrain or (1)

Xtrain = AStrain (2)

The rows of A−1 are filters, acting as feature detectors at var-
ious frequency combinations on the training data x(t). The
basis functions i.e. the columns of A are waveforms to which
the filters respond optimally. Figure 1 illustrates the fre-
quency localization properties of the basis functions.

10 20 30 40 50 60

5

10

15

20

25

30
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Fig. 1. Frequency localization property of the ICA basis functions A is
shown by the Fourier domain representation of the columns of A; Columns
are sorted according to the peak frequency response per column. Training
data is described in Section 4.

3.2. Bandwidth Extension Problem

The bandwidth extension problem is reduced to a problem
of statistical inference with missing data in the ICA domain.
We are given testing data Xtest, representing limited band-
width speech (e.g. a cut-off frequency of 4 kHz). Enhance-
ment targets the natural quality and intelligibility of speech
(see a good review in [12]). Consider the data set:

S =
[
A−1Xtrain ; A−1Xtest

]
, (3)

where the first part is computed from wide band speech while
the latter is “incomplete”, missing high-frequency band in-
formation. This represents the set of data on which we apply
statistical inference to recover the missing data, in this case
the ICA components of the high pass bands in A−1Xtest.

Figure 2 illustrates the essence of the missing data prob-
lem. The missing values (crossed in the figure) are statisti-
cally imputed from the ICA representation of wide band data.
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frequency"
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 frequency"

(a) (b)

stest(t) = A−1 xtest(t) S (respectively M)

Fig. 2. (a) The missing data problem for BWE using the ICA representa-
tion: Assume that the ICA basis are given in a first approximation by Fourier
basis. High frequency feature detectors (white horizontal vectors) result in
zero level values for the corresponding independent component coefficients
of a limited band (e.g. low pass) data frame. We consider these coefficients
as “missing.” (crossed in the figure) (b) S and the missing data pattern M.

3.3. Statistical Inference of Missing IC Coefficients

We deal with the problem of missing data according to the
treatment in [5]. Assume the data S = (sij) in equation (3),
where one column of S corresponds to independent compo-
nent coefficients s(t) (where t is a generic index). s(t) orig-
inates either in the training data or the testing data. Consider
the missing data indicator M = (mij), where mij = 1 if



sij is missing and 0 otherwise. The missing data mechanism
is given by the conditional density f(M|S). In our case the
pattern of missing data is fixed, i.e. it does not depend on the
values of the data: f(M|S) = f(M). This case is denoted in
[5] as missing completely at random . We base inferences of
the missing values in S(t) on properties of the ICA model.

We adopt the idea of the “nearest neighbor hot-deck” im-
putation [5]. Missing values of s(t) are recovered by substi-
tution with values drawn from a set of complete frames in the
sample (i.e. corresponding to the training data). This hot-
deck set is obtained by using a metric d such as Euclidean or
Mahalanobis distance on frames, measuring how well com-
plete data frames fit the incomplete data frame. Hot-deck
refers to the set of matching frames to become “donors” of
information, available for an incomplete instance in opinion
surveys. The squared Mahalanobis distance is a weighted dis-
tance, computed by weighting different components of the
data according to their covariance:

d2
Mah(s(t0), s(t)) = (s(t0) − s(t))T R−1

ss (s(t0) − s(t)) , (4)

where Rss is the estimate of the covariance matrix on the
set of completely available independent component (training)
frames. The closest frame will contribute the missing data:

t∗ = argmint dMah(s(t0), strain(t)) (5)

It can be shown that for simple hot-deck procedures (e.g. sam-
pling with replacement) and under the missing completely at
random assumption (our case) the estimators for the mean and
variance of the inferred values are unbiased. This is important
as inferred independent components will be transformed back
to the time domain and integrated with the available data to
enhance speech.

3.4. Spectral Extension Algorithm

Although wide band speech independent components could
be used in the nearest-neighbor hot-deck matching process,
we choose a variation of equation 3, namely:

S =
[
A−1XLP

train ; A−1Xtest

]
(6)

where XLP
train is the training data transformed with the same

bandlimiting process (i.e. low pass) as the data to be ex-
tended. According to Figure 1, the reasoning is that IC contri-
butions due to high frequency data will leak into the indepen-
dent components roughly responsible for low frequency con-
tent. Thus, in the statistical matching process we make a fair
comparison: Imputation is based on comparisons (using the
metric of choice) between band limited test data frames and
equivalent training frames. Similarly, the inferred data can
be extracted from the high-pass representation of the training
data at the corresponding matching index t∗ (5). Let us intro-
duce the following notations: Consider two filters h1(t) and

h2(t) and define the convolutions⊗ and signals below (where
xI(t) and xII(t) have the role of xLP and xHP ):

xI(t) = h1(t) ⊗ x(t) ; SI = A−1XI (7)

xII(t) = h2(t) ⊗ x(t) ; SII = A−1XII (8)

The final spectral extension algorithm is as follows:
1. Training phase:

(a) Given clean wide band speech xtrain, learn its
ICA mixing matrix A.

(b) Obtain SI
train and SII

train, the frequency band

IC representations of xI(t) and xII(t)

2. Testing phase:

(a) Given spectral limited, possibly noisy speech
xtest obtain ICA domain representation S

(b) For each test data frame index t0, find t∗,
index of best match in training data (eq. 5)

(c) Reconstruction rule. Estimate ‘‘extended’’
independent component values:

ŝ(t) = sI (t) + sII
train(t∗) (9)

(d) Spectrally extended signal is x̂(t) = Aŝ(t)

Let us prove that the reconstruction rule for extended in-
dependent components is correct.
Theorem: Consider two complementary filters h1(t) and h2(t)
with Fourier transforms H1(ω, t) and H2(ω, t). The comple-
mentarity condition is:

H1(ω, t) + H2(ω, t) = 1 ∀ω, t . (10)

Also, assume perfect recoverability of independent compo-
nents from training data, that is ∀t in test data ∃t∗, s.t.

x(t) = xtrain(t∗) , (11)

and t∗ is given by equation (5). Then equation (9) perfectly
recovers x(t) from xI,II

train(t) and testing data xI(t).
Proof: According to the reconstruction rule (9), and (11)

ŝ(t) = sI (t) + sII
train(t∗) = A−1h1(t) ⊗ x(t) + A−1h2(t) ⊗ x(t)

= A−1F−1{H1(ω, t) + H2(ω, t)} ⊗ x(t) = A−1F−1{1} ⊗ x(t)

= A−1δ(t) ⊗ x(t) = A−1x(t) = s(t) qed. (12)

Here F−1{·} is the inverse Fourier transform and δ is the
Kronecker delta (unit impulse).

4. EXPERIMENTAL RESULTS

We tested the spectral extension algorithm in two variants:
(1) BWE; (2) expansion with complete missing data over a
fixed pattern in three or more frequency bands. We report
some of these results below. In all cases we measured log-
spectral distortion as in [12] and the Itakura-Saito distortion
measure between wideband and estimated speech. All speech
signals were taken from the NTT database, 16kHz sampling
frequency. We used 64-sample frames, with a 4-sample time



step, and we employed a total of 50000 frames for training.
Each result averages 20 cases, for four different speakers on
five different training-testing combinations, on clean data.

The inner-working of the essential matching part is de-
picted in Figure 3. Table 1 shows statistical results of test 1.
Figure 4 shows sample results of the tests. We noticed that
results improve with larger amounts of training data as ex-
pected. Overall, estimated speech had some artifacts, which
decrease to imperceptible levels as more training data is used.
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Fig. 3. Average LSD for BWE of hand chosen speech segments represent-
ing sound frames “a” and “sh”. The spectral expansion is done according to
either t∗ (best match, rank 1 on x-axis), or suboptimally, here just to explore
effect of suboptiomal choice: match with rank 2 (second best), 3, etc.

Distance/Alg. LSD ISD
Euclidean 16.27 (1.412) 2.31 (0.56)

Mahalanobis 16.29 (1.513) 2.29 (0.52)

Table 1. Log-spectral distortion and Itakura-Saito distortion measures re-
sults of the BWE algorithm: means (std. deviation) for 20 cases. The algo-
rithm used either Euclidean, or Mahalanobis distance for pattern matching.

5. CONCLUSION

This paper defines new algorithms for spectral estimation us-
ing statistics learned from data in an unsupervised way. The
algorithms work in an appropriate domain, the ICA domain,
by essentially performing statistical inference with missing
data. A simple version of the algorithms implements band-
width extension and is a form of nearest-neighbor hot-deck
imputation for a fixed template of missing data. For the near
future we suggest the following powerful generalization of
the method: perform statistical spectral inference with miss-
ing data according to random patterns of missingness. This is
possible and useful for speech enhancement, e.g. output from
source separation methods based on time-frequency masking.
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