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Abstract

Representation of natural signals such as sounds and images is critically impor-

tant in a broad range of fields such as multimedia, data communication and storage,

biomedical imaging, robotics, and computational neuroscience. Often it is crucial

that the representation be efficient, i.e., the signals of interest are encoded economi-

cally. It is also desirable that the representation be robust to various types of noise. In

this thesis, we advocate several ways to expand current signal encoding approaches

via the framework of adaptive representations.

In recent decades, the multiresolution paradigm has provided powerful mathe-

matical and algorithmic tools to signal encoding. In spite of widely proven effec-

tiveness, such methods ignore statistical structure of the class of signals they should

represent. On the other hand, high computational costs artificially confine standard

linear adaptive statistical models to relatively small block-based encoding scenarios.

We show that a good tradeoff between computational complexity and coding effi-

ciency can be achieved via a hybrid encoding scheme: Multiresolution ICA. When

applied to natural images the new method significantly outperforms JPEG2000, the

current compression standard, which indicates adaptivity as a source of practical

improvement for modern coders.

Sparsely encoding large signals via a set of adaptive variable-size shiftable ker-

nels has been studied in several contexts, like efficient auditory coding. One impor-

tant merit of this paradigm is that, besides efficient adaptive coding, it also provides

a direct approach towards an (approximately) shift-invariant representation. This is

especially desirable in modeling encoding systems robust to signal shifts, such as

biological sensory systems. We study this problem in the case of images and pro-

vide contributions leading to fast and superfast algorithms, significantly improving

the complexity of the kernel learning process.

The third part of this thesis is a mathematical study of Robust Coding - the prob-

lem of optimal linear coding with limited precision units. We characterize optimal

solutions in the case of Gaussian channel noise and arbitrarily many encoding units,

and derive efficient and stable algorithms for their computation. By expressing the

limit of optimization as a closed-form bound, we provide a formal justification of

the intuition that noisy encoding units can preserve signal information if sufficiently

many are used - a case very relevant to modeling neural encoding systems.
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I know now that life in academia is more than “publish or perish”. Actually, it’s more

like “appreciate all your collaborators and co-authors for all they do to make it easier and

fun for you to sit around and look smart... or perish”. At CMU, I was blessed to have

met an amazing group of fellow students who influenced much of what I know, and how I

(should) think. I will only pick two out of this remarkable crowd. It’s hard to describe how

much fun it is to think about the most impossible of problems when Gowri Srinivasa is in

the house. Compared to that, even her generous and cheerful help giving, or contagiously

enthusiastic energy seem to fall short (although not by much). Her new students might not

know yet under what a lucky star they have been gathering (but for sure they’ll find out!). An

extraordinary guy is my fellow Eastern European co-author Aliaksei Sandryhaila. Dynamic

and determined, friendly and brilliant, practical and funny, he often seems like nothing can

stop him. So far nothing has, and I’m willing to bet that nothing will. A great deal of my

gratitude and appreciation goes to Justin Romberg and Nick O’Donoughue for promptly and

graciously agreeing to help out when I was recently unable to physically present two of my

posters (any grad student’s nightmare).

The work in this thesis would have not been possible without the care and dedication of

competent and nurturing staff. Thank you, Sharon Burks and Deb Cavlovich, for the many

last-minute support letters and for everything else in between! As for Ms. Anna Hegedus,

the “know-it-all supreme” title in computer... everything, is not so far from the truth.

In Pittsburgh, you are fortunate if you have around many Romanians like the ones I had.

From them I learned that a hearty community can be stronger than a country. Here is to

Alina Oprea, Radu Niculescu, and Cristina Cânepă. Special thanks go to Florin Oprea for
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Chapter 1

Introduction

In everyday life, a change of perspective about a particular problem that we confront is likely

to reveal entirely new aspects which both enrich our understanding of the problem and improve

the way we solve it. Sometimes, a different perspective might be even critical in discovering the

most efficient solution. This high-level principle lies at the foundation of science and discovery

in general, but in signal processing it has a concrete, low-level analog: the choice of signal

representation.

1.1 Motivation

Deriving efficient representations of natural signals is an important and challenging research

topic. There are multiple ways to quantify progress, many of them employed as the “working

standard” by an entire beneficiary community. For instance, to multimedia users, having better

signal representations means more music and video on their portable devices, and consequently

more entertainment. To robot manufacturers, it translates into a better chance for a robot to

navigate and operate within a new environment. Diverse applications in communications, earth

sciences, and medicine can greatly benefit from representations with good descriptive and com-

putational properties.

Besides the attraction towards practical applications, often associated with financial gratifi-

cation, there exists the human drive to understand nature. One of the greatest challenges posed to

science has been to explain the function of the brain: what are the principles that govern the phe-

nomena taking place here? There is still much to be learned about representing and processing

information in the brain, even in relatively specialized subsystems. For instance, by observation

and experimentation we learned that the visual system has the role of analyzing and combining

the various information content of the perceived images, as it is transmitted from the retina all

the way to the cortex. This is much more than to merely format the visual stimulus into spikes

and distribute it to the processing areas; it also involves “splitting” complex scenes into features

that later combine into higher-level concepts.

Although the exact mechanisms and computational principles driving these processes are not

fully understood (or maybe because of it), the brain is rightfully considered the ultimate high-
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end signal processor. It outperforms by far any known artificial system at tasks that involve

abstract concept manipulation – analyzing complex scenes, navigating unknown environments,

extracting specialized types of features like text, etc. It is then perhaps not surprising that several

security protocols are heavily relying on this (see, for instance [118])!

In this thesis, we investigate several aspects related to natural signal representation while fo-

cusing on one main class of applications: visual signal encoding. We address several problems

generated by existing signal representation frameworks and propose novel extensions by em-

bracing the adaptive encoding point of view. For each of the instances hereby studied, we follow

two main goals: to clearly identify the theoretical principles which govern the representation’s

optimality, and to identify the most efficient algorithm to compute it.

1.2 Thesis outline

The thesis is organized as follows.

• Background. In Chapter 2, we review most of the fundamental notions and theoretical

concepts used in the remainder of the thesis. We start by introducing basic signal pro-

cessing notions such as bases, frames, and dictionaries, then continue by presenting the

concept of multiresolution and several signal representations of that family. Next, we ad-

dress the issue of adaptivity and illustrate it with two finite-dimensional linear models:

ICA and Robust Coding. After a short introduction to sparse signal approximations with a

particular emphasis on greedy encoding methods, we explain the concept of shiftable ker-

nel dictionary representations, and illustrate a way to obtain adaptive dictionaries of this

type.

• Multiresolution ICA.1 In Chapter 3, we study the problem of efficient and adaptive repre-

sentation of large-scale images. In recent decades, the multiresolution paradigm has pro-

vided powerful mathematical and algorithmic tools to signal encoding. In spite of widely

proven effectiveness, such methods ignore the statistical structure of the class of signals

they represent. On the other hand, because of usually high computational costs, standard

linear adaptive statistical models have been confined artificially to relatively small block-

based encoding scenarios. We show that a good tradeoff between computational cost and

coding efficiency can be achieved via a hybrid encoding scheme: Multiresolution ICA.

When applied to natural images the new method significantly outperforms JPEG2000, the

current compression standard, which indicates adaptivity as a source of practical improve-

ment for modern coders.

• Point Coding.2 In Chapter 4, we review the problem of sparsely encoding large signals via

a set of adaptive variable-size shiftable kernels. An important merit of this approach is that

it produces a very efficient adaptive code, which is explained by the flexibility of such a

1Parts of this chapter have been published in [11].
2The work in this chapter has been published in [12].
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dictionary, compared with conventional representations, such as wavelets. In addition, this

provides a more direct way to obtain an (approximately) shift-invariant signal representa-

tion. This is especially desirable in modeling encoding systems robust to signal shifts, such

as biological sensory systems. We study this problem in the case of images and provide

contributions leading to efficient algorithms, significantly improving the complexity of the

kernel learning process. Specifically, we show that we can employ fast and superfast algo-

rithms for the learning step, by formulating the problem as a least-squares problem with a

highly structured (Toeplitz-mosaic) matrix. Encoding is implemented via a fast version of

Matching Pursuit based on exploiting the relatively small sizes of the kernels compared to

the signal and by using appropriately designed data structures to speed up computations.

• Robust Coding.3 In Chapter 5 we provide a detailed mathematical study of Robust Coding

- the problem of optimal linear coding with limited precision units. We characterize opti-

mal solutions in the case of Gaussian channel noise and arbitrarily many encoding units,

and derive efficient and stable algorithms for their computation. By conveniently express-

ing the limit of optimization as the closed-form bound, we formally explain the intuition

that noisy encoding units can preserve signal information if sufficiently many are used - a

case very relevant to modeling neural encoding systems.

• Conclusions. Chapter 6 contains a summary of this thesis, together with a list of directions

and ideas we intend to pursue in the future.

In completing the research projects reported here, we employed the principles of learning and

optimization to the design of signal representations. In each case, the first step was to identify

some clear computational objective and express it in the most convenient mathematical form.

The next step was to choose the algorithm most suitable to exploit the intrinsic structure of the

problem. Finally, by implementation and simulation, hypotheses were validated and often new

insights appeared.

For the sake of coherence, we decided not to include in the body of this thesis several pub-

lished results, which are nevertheless useful in exploring and understanding various aspects of

signal representation design. One significant direction is artificial bandwidth extension of speech

signals (see [9, 103]). There we consider the practical problem of enhancing speech whose TF

content is missing, either as a result of bandpass filtering (like in telephony) or as a by-product

of certain source separation algorithms. We address the problem of “filling the spectral holes” a

case of statistical estimation with missing data. A second research direction we mention is the

problem of designing polynomial signal transforms asymptotically approximating the Discrete-

Time Fourier Transform, but which do not require the periodicity assumption usually associated

with DFT (see [10]). To answer this question, arising from the general algebraic signal process-

ing theory [99], we identify a fairly large class of such finite polynomial transforms by defining

polynomial families whose set of roots approximately converges to the complex unit circle (with

perhaps finitely many exceptions).

3Parts of this chapter have been published in [43, 44].
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Chapter 2

Background

The focus of this thesis is the study of signal representations. We investigate several ways in

which existing approaches can be extended and improved, but first we need to lay out the math-

ematical groundwork of our construction.

To start, let us specify that we only consider discrete-time/space signals. Although several of

the problems we treat in the following do not necessarily require it, for simplicity we restrict to

finite signals. Accordingly, a signal shall usually be regarded as a vector x in a finite-dimensional

space V (e.g., R
N or C

N ). Its representation shall be defined with respect to dictionary Φ, a finite

subset of V , as a vector s such that

x = Φs. (2.1)

Assuming the dictionary has M elements, the representation is thus a M -dimensional vector of

coefficients. Computing the signal from the representation (when the dictionary is fixed) is called

decoding or synthesis, and by definition is a simple linear operation. The reverse operation

(encoding, or analysis) may be a more complicated process is; for example, there may exist

infinitely many vectors s (or even none at all!) that satisfy eq. 2.1.

A central issue of this thesis is adaptivity. When the dictionary is optimized in some respect

to represent signals of a given class, i.e., it reflects either deterministic or statistical properties of

the class, we say it is adapted to the class and the induced representation shall be called adaptive;

otherwise, we label it as fixed.

2.1 Bases, Frames, and Dictionaries

The canonical, sample-based representation is often not appropriate to describe compactly the

complicated structure of many classes of signals. The most common source of redundancy is

the strong local dependency between samples; in the case of images, this would correspond

to neighboring pixels having similar values, due to similar color or intensity. Other types of

regularities, such as texture patterns, and even “frequent” irregularities or other discontinuities,

like edges, could be handled more efficiently by alternative representations.

The idea of choosing the appropriate signal representation for the task at hand is generating
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much of the effort (and the progress) in signal processing and many results from linear algebra

have contributed to great advancements in the field. Essentially, searching for linear representa-

tions of finite signals is searching for dictionary matrices Φ whose columns span the entire vector

space V . If the columns of such a matrix form a spanning set for the whole space and they are

linearly independent, we say that the representation is complete1. In case the vectors lack linear

independence but still span the space, the representation is called overcomplete2. Otherwise, we

shall denote the representation as undercomplete3.

The ideas about changing coordinates to analyze structure go a long way back, originating

in Physics, but spectral methods and their applications to signal processing have flourished after

the (re)discovery of the fast algorithms for their implementation. Unfortunately, the Discrete

Fourier Transform, the many kinds of Discrete Trigonometric Transforms, or any linear basis

of C
N with only global structure for that matter, do not offer a compact description of signals

with local spatial structure, which is a consequence of the uncertainty principle. The need for

more specialized descriptors was behind the multiscale revolution, and the wavelet frenzy. The

representational advantage and the low computational cost of applying the Discrete Wavelet

Transform have lead to the design of current image coding standards such as JPEG2000 [109]

(also see [86, 117]).

The various applications often require representations having specific analytical and compu-

tational properties. Generally, the process of computing such bases requires an objective function

and a set of constraints. In come cases, the solutions of these optimization problems are unique,

while in others they are not; moreover, it is also possible that the optimization problem be over-

constrained and that no solution exists. For example, in frame design the objective is to find an

overcomplete basis with specified properties, such as prescribed length columns and minimum

inner product between different column vectors. If we throw in additional constraints, for exam-

ple those regarding the set of singular values of the matrix, we may get a rather difficult problem

to solve. Luckily, some of these problems can be handled numerically by the use of efficient op-

timization algorithms on structured spaces, as opposed to having closed-form, analytic solutions.

Depending on the context, we will be satisfied with such a particular numerical solutions, or we

shall search for specifications of the whole space of solutions. In this thesis, we will pursue both

possibilities, and specify the advantages for adopting each point of view.

In certain cases, it is possible to implement the process of signal analysis or that of synthesis

of a without the explicit use of a matrix-vector product. This happens frequently when faster

algorithms exist which do not require all the entries of the basis matrix. Just to give an example,

computing the Discrete Fourier Transform of a signal (either the direct or the inverse one) is

nowadays almost synonymous with using the Fast Fourier Transform (FFT) algorithm (see e.g.,

[56]). Other widely-known signal processing operations (e.g., convolution) can benefit from this

aspect. We will point out the distinction between explicit and implicit linear operations when we

1We call the set of vectors, and by extension the matrix itself - a basis. For finite dimensional vector spaces,

basis matrices are always square.
2To describe such a system of vectors, we will use the term “frame”. The formal definition of a frame (see e.g.,

[34]) is equivalent to this one in the case of finite sets of vectors spanning a finite dimensional space.
3We will slightly abuse the term “basis” in this case, using it even if the vector set Φ does not span the space V .
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discuss implementation aspects, otherwise we will keep this issue transparent.

In the following, we gradually introduce several strategies for obtaining desirable represen-

tations as well as for computing the corresponding signal coefficients. Our generic goal will be

efficient coding, which also can be formulated as compact signal description. Usually, this in-

volves computing a minimal set of nonzero coefficients; the advantage of these so-called sparse

representations is that we only need to store or compress a small set of numbers, as opposed to

the whole set of samples, for (approximately) reconstructing the signal. Then, we review adap-

tive linear methods, whose goal is to improve the descriptive properties of the dictionary with

respect to the observed data. Next, we describe the problem of deriving adaptive linear represen-

tations that are robust to coefficient perturbations. Finally, we briefly review the so-called Spike

Coding model – a method for sparse one-dimensional signal representation using an adaptive

shiftable-kernels dictionary.

2.2 Adaptive Models: ICA and Robust Coding.

Independent component analysis (ICA) has appeared in the signal processing community as a

general method to separate a number of sources, assumed mutually independent, when several

(linear) combinations of these are available [68]. The particular case when the sources are Gaus-

sian distributed had already been known as principal component analysis (PCA), but this could

not handle and explain the many examples of signal distributions that are not proper Gaussian.

In a relatively short time, the field also was extended theoretically and equivalence between the

apparently different settings has been revealed (see [23, 31]; extensive treatment of ICA also can

be found in [30, 64, 79]).

Let x1, x2, . . . , xm be samples drawn from a distribution with pdf p over R
N . The goal of

ICA is to compute the N×N matrices W such that vectors sj = Wxj are the realizations of

a random vector whose components are as statistically independent as possible, according to

formal criteria described below. In other words, we search for the linear mapping allowing us

to best approximate the data distribution by a product of marginals. Alternatively, ICA can be

viewed as a method to describe the data by a linear combination of vectors (or “basis functions”):

x = As (2.2)

such that the components of random vector s are maximally independent. Matrix A is called

the mixing matrix, while W is referred as the demixing matrix. A standard assumption is that

the data has been processed to have zero mean, and unit covariance (possibly by dimensionality

reduction), which implies that matrices A and W are nonsingular, and inverse to each other.

When the underlying data distribution is Gaussian, coefficient independence is equivalent to

decorrelation, and thus, when the coefficients are indeed independent, the ICA and PCA bases

will coincide. In general, PCA will search for the best orthogonal basis to represent the data,

while ICA does not have this constraint.

There are several mathematical objective functions associated with independence, and each

leads to one formulation of the ICA problem. For example, one such objective is to minimize
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the mutual information of the representation components. Specifically, for any invertible linear

transformation s = Wx, the mutual information among the components of s is defined as:

I(s1, . . . , sn) =
n∑

i=1

H(si) − H(x) − log | detW|. (2.3)

By an appropriate scaling of W, mutual information can be viewed as the difference between the

sum of the marginal entropies and the joint entropy. This can be interpreted further in terms of

the Kullback-Leibler divergence between the joint probability and the product of marginals, or in

terms of the negentropy of the projections, or in terms of data likelihood [31, 64]. For instance,

if we denote the pdf’s of the projections by pi(·), the expectation of the log-likelihood can be

written as4

1

m
E{log L(W)} =

n∑

i=1

E{log pi(wi·x)} + log | detW| (2.4)

which is the negative of mutual information, except for a constant term (entropy of the data).

Equivalently, this can be viewed as maximizing various measures of non-Gaussianity (e.g., the

kurtosis) of the entire ensemble and many practical ICA algorithms are based on methods that

attempt to maximize higher order moments of the coefficients. Finally, another direction to

approach independence of the coefficients is by diagonalization of certain matrix functionals.

Methods of this family thus translate independence into simultaneously solving a series of eigen-

problems.

Generally, existing ICA optimization algorithms can be grouped into several categories:

gradient-based [2, 13, 23, 66, 81], fixed-point5 [63, 65, 119], joint-diagonalization [24, 25].

A very efficient procedure based on Relative Trust-Region Optimization has been presented re-

cently in [29]; due to its excellent behavior, we decided to employ this algorithm for all the

ICA-related experiments presented in this thesis.

To represent images in the ICA model, we can regard them as samples drawn from an un-

known distribution, over a linear space (the so-called image space). The fact that independent

components of natural images have a very sparse (or “thorny”) distribution makes ICA highly

suitable for image representation and coding. The immediate consequence of a sparse marginal

distribution is a low entropy, and thus the possibility of achieving a short average code length,

which ultimately yields better compression. In fact, among all linear models the ICA represen-

tation is optimal in the entropy minimization sense, which thus recommends it for compression

tasks.

A well known limitation of ICA is its poor scaling behavior. Due to the relatively high com-

putational cost, it cannot be applied directly to large dimensional data. For example, in case

of d×d images computing a complete basis to span the space implies estimating d4 parameters.

Even for a moderate value of d (say 100) the memory requirements are tremendous. More-

over, the computational cost of typical gradient optimization is Ω(d2 log2 7), which is prohibitive.

4Here wi is the ith row vector of matrix W.
5Although it has been proven that some of these algorithms were wrongly classified as ”fixed-point” [119], for

convention purposes we chose to leave them in this category.
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Figure 2.1: Diagram of the Robust Coding Model.

Therefore, this approach is feasible only if the problem is reduced to a smaller space (as in PCA),

which in turn limits the signal structure we are able to represent. From the image coding point

of view, the quantization or sparsification of the coefficients in this block transform approach

leads to blocking artifacts in the reconstruction. Block processing also leads to artifacts for more

general signal processing algorithms, such as image denoising. In chapter 3, we shall present

a method to compute an quasi-ICA basis for large images by solving several (typically much

smaller) ICA problems.

Optimizing for coding efficiency is a very desirable goal in applications such as storage and

communication. An equally important aspect is the resilience of the signal representation to

various types of noise. Reliable communication over noisy channels is the most fundamental

problem of information theory. Out of the many variations on this theme, we shall focus on the

problem of finding finite-dimensional linear representations that optimally preserve information

in the transmitted signals when the representation has limited precision. Proposed by E. Doi

et.al. in [43] and further analyzed in [44], the Robust Coding scheme uses arbitrarily many

coding units to minimize reconstruction error, by explicitly introducing redundancy in the code

to compensate for channel noise.

The above problem was pointed out to be of particular relevance to the mathematical mod-

eling of neural representations. This is not at all surprising; cells can be regarded as communi-

cation channels for the traveling neural spikes, and their coding precision is limited by intrinsic

biological constraints to as low as 1-2 bits per spike (see [16], [43] and references therein). By

identifying the short time activity of a neuron with a real value, the limited information capacity

of the encoding unit can be modeled effectively by additive Gaussian noise.

To describe the problem formally, let us consider our signals as samples drawn from an N -

dimensional zero-mean data distribution, with known full-rank covariance matrix Σx. We shall

search for analysis matrix W ∈ R
M×N and synthesis matrix A ∈ R

N×M that maximally reduce

the effect of additive Gaussian noise, independent of the signal and having the same power σ2
δ on

each channel. If we denote ǫ = x − x̂ = (IN − AW)x − Aδ, our objective is to minimize the

reconstruction MSE

〈||ǫ||22〉x,δ = 〈ǫT ǫ〉 = tr(〈ǫǫT 〉) = tr
{
〈((IN − AW)x − Aδ)((IN − AW)x − Aδ)T 〉

}

= tr
{
〈(IN − AW)xxT (IN − AW)T 〉x + 〈AδδTAT 〉δ

}

= tr
{
(IN − AW)Σx(IN − AW)T

}
+ σ2

δtr
{
AAT

}
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In chapter 5 we shall provide a more thorough description of the problem, as well as a com-

plete characterization of the optimal encoder/decoder pair.

2.3 Sparse Approximations

Data compression is built around the principle of employing compact descriptions of a seem-

ingly complex signal. Computing sparse linear representations of signals is useful for many

applications, ranging from data communication to statistical data analysis and machine learning.

In general, it may not be possible to choose a small set of nonzero coefficients to represent any

signal exactly in a given basis. Besides an intrinsic measure theoretic difficulty, the limitation

can persist even if we relax the exactness and settle for a sparse approximate coefficient set.

The properties of the dictionary can help significantly if they match the statistical properties

of the signal. We will address this issue in the following subsection, but now it is important

to focus on two questions. The first is: how can we compute the sparsest representation in a

given, fixed dictionary? The second question is concerned with the validation of our answer

to the first one: how close are we to the sparsest representation? Unfortunately, in the most

general case both problems are NP-hard (see [90], as well as [37, 38, 39]), which means that

it is unlikely to compute optimal solutions in polynomial time. In spite of this shortcoming, it

is possible to obtain approximate solutions in (pseudo-)polynomial time. Next, we describe the

most frequently used approaches to obtain such sparse linear approximations.

The most straightforward idea is thresholding. More precisely, out of a complete set of coef-

ficients corresponding to a linear combination of atoms, we only keep the ones with the largest

absolute values, while the rest are assumed to be zero. Various strategies for determining the “ap-

propriate” number of coefficients were studied, and the success of this approach to applications

like compression and denoising was investigated in the context of wavelet dictionaries.

The proper greedy approach to the sparsest set selection problem has become known in signal

processing by the name of Matching Pursuit (MP) [87]. Unlike thresholding, which assumed that

all the coefficients of a transform would have to be available in order to choose the largest ones,

MP is a sequential algorithm, allowing us to individually pick dictionary atoms that are most

correlated with the signal. Mathematically, if we consider a signal x and a dictionary Φ made of

atoms (φi)i∈I , with I a given set of indices, and define R0x = x, then at iteration step k ≥ 1 the

new residual Rkx is computed by the rule

Rkx = Rk−1x − skφik (2.5)

where φik = arg max
i∈I

∣∣< Rk−1x, φi >
∣∣, and sk =< Rk−1x, φik >. The atom selected at each

step is orthogonal to the newly computed residual and thus, by Pythagora’s theorem, the energy

of the residual error decreases strictly which in turn guarantees asymptotical convergence. The

computational cost of this procedure is in general O(MN) per iteration, where N the dimension

of x and M is the number of atoms in the dictionary (the bottleneck lies in updating the correla-

tion coefficients at each step). If the inner products of all pairs of atoms are available, then the

cost can be reduced to O(M). This could be useful in a setting where MP is called for many
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signals x, using the same dictionary; for this scenario to be practical the number of calls should

be at least M . If the dictionary is very big however, this approach would fail because of memory

constraints.

One fundamental criticism of the Matching Pursuit algorithm is the suboptimal criterion for

choosing each atom. Although at each iteration step the atom most correlated with the signal

is chosen, the distance from the current residual to the linear span of the atoms chosen so far

is not (as we would expect) given by the current coefficients, unless the dictionary is an or-

thogonal basis. To address this problem, Orthogonal Matching Pursuit (OMP) [95] performs

an additional step (orthogonalization) to insure that the computed residual is orthogonal to all

of the already selected atoms. One effect is that the OMP algorithm is forced to stop after a

number of steps smaller or equal to the dimension of the space, unlike MP which could poten-

tially run infinitely. Nevertheless, OMP uses the same (rather local) criterion for atom selection.

It was the so-called Optimized Orthogonal Matching Pursuit (OOMP) procedure introduced in

[102] which addressed this issue. Namely, if we denote by Vk the vector space spanned by the

first k selected atoms, and for all remaining atoms αj we define6 γj = αj − PVk
αj , then the

OOMP approach selects the index ik = arg max
j

| < γj, R
k−1x > |/||γj||, ||γj|| 6= 0, unlike MP

and OMP, which pick arg max
j

| < γj, R
k−1x > | . Further extensions of this method emerged,

e.g., Backward-Optimized OMP (BOOMP [6, 101]), Swapping-Based OMP (Swap-OOMP [5]),

which are heuristics meant to improve the chances of the greedy algorithm to approach the op-

timally sparse solution (regarding implementation issues, see also the OOMP tutorial [4]). The

computational price paid for such refinements is sometimes hard to accept though, and for many

situations when a faster, reasonably sparse approximation is sufficient, MP is the standard choice.

Finally we mention another approach which is frequently used in approximation algorithms

to tackle hard combinatorial problems, by reducing them to the continuous domain: relaxation.

In the case of the sparse selection of dictionary atoms, this was known as Basis Pursuit (BP) [28].

Specifically, instead of minimizing the number of nonzero coefficients of the decomposition of

signal x into dictionary Φ, equivalent to solving

min
s

||s||0 s.t. x = Φs (P0)

we attempt to solve the relaxed variant in ℓ1 sense:

min
s

||s||1 s.t. x = Φs (P1)

The obvious advantage of this change of objective is that now we are dealing with a convex

problem, which can be conveniently formulated as a linear program. Less obviously, in cer-

tain conditions the optimal solutions of these two seemingly different problems coincide (see

the multitude of results on this topic contained in e.g., [28, 48, 49, 112]). Moreover, numer-

ical experiments have also confirmed the merits of this approach, displaying its superiority to

greedy algorithms in applications such as signal denoising. In spite of this fact, BP fails to offer

6By PVx we denote the orthogonal projection of x onto the linear space V .
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satisfactory computational speed when compared against Matching Pursuit, even for relatively

structured dictionaries.

To conclude, we remark that computing sparse representations is desirable, but in general re-

mains computationally challenging. In the following, we will describe an instance of a successful

compromise between sparsity and speed.

2.4 Shiftable Kernel Representations.

As we argued previously, the need for linear adaptive signal representations is motivated by

many families of computational procedures involving “intelligent” ways to represent data. On

the other hand efficiency has been intuitively associated with sparse representations. For natural

sounds and images, as argued by Simoncelli and coll. [51], an additional desirable property is

shift-invariance. Combining these different requirements has recently lead to new sparse signal

representations based on adaptive shiftable-kernel dictionaries.

Introduced and further studied by Smith and Lewicki [107, 108], Spike Coding is such a

method, which proved particularly successful in providing a biologically plausible, nonpara-

metric acoustic model for the mammal auditory system (see also [106]). The computational

principles are independent of the modality and they apply for sounds, as well as for images or

video. (For example, spike-based models were proposed by Perrinet et.al. [96], and Rozell et.al.

[104].

In the following, we will give a basic mathematical description of the model (as derived for

1D signals), and address several aspects regarding its implementation. The objective of Spike

Coding is linear approximation of a signal x ∈ R
L with a set of K shiftable kernels Φ =

{φk}1≤k≤K , such that the representation is as sparse as possible. Thus, the optimization problem

can be expressed as

min
s

||s||0
s.t. ||x(·) −

∑

k,t

sk,tφk,t(·)||2 < ǫ.

As this problem is NP-hard (see section 4.2), we can only hope to approximate its solution.

One approach which is computationally very attractive, is Matching Pursuit [87]. Atoms in the

signal representation are obtained by selecting the shifted version of a kernel most correlated

with the signal, thus picking out the single most informative feature available at each step. More

precisely, if R0x = x, the residual signal corresponding to the n-th iteration is computed as:

Rnx = Rn−1x − snφkn,pn (2.6)

where φkn,pn = arg max
k,p

|< Rn−1x, φk,p >| , and sn =< Rn−1x, φkn,pn >.

It is worth pointing out that this encoding method is close to being shift invariant. By trans-

lating the whole signal by a sample in any direction, most of its correlation with the kernels will

suffer an appropriate change in position, but not in value. In fact the only places where this does
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not hold true is at the boundaries, and their number is less and less significant as the size of the

signal gets larger. Due to the particular form of the dictionary we are effectively combining a

convolution-based method with the greedy procedure of picking a very sparse coefficient set.

Efficient implementations of MP in the one-dimensional case have been proposed independently

by Sallee [105], and Gribonval et al. [74, 75], which reduce the computational complexity of an

MP iteration to O(K log L), instead of O(KL).

It is possible to reduce the size of the representation (in ℓ0 sense) by adapting the kernels to

the class of signals they should best represent, and thus by increasing their descriptive power. In

the following we will regard the optimal dictionary for a given set of points, in terms of searching

for the mode of the posterior distribution in a similar fashion to [91, 107]:

p(x|Φ) =

∫
p(x|Φ, s)p(s)ds (2.7)

where the integration is made by marginalizing over all possible point sets. If the integral above

is approximated by p(x|Φ, s′)p(s′), where s′ is the set of coefficients produced by Matching

Pursuit, and assume that ǫ, the representation noise, is distributed according to N (0, σǫI), then

for every kernel φk we can find:

∂

∂φk

log(p(x|Φ)) =
∂

∂φk

{log(p(x|Φ, s′)) + log(p(s′))} (2.8)

=
−1

2σǫ

∂

∂φk

||x −
K∑

j=1

nj∑

p=1

s′j,p · φj,p||22 (2.9)

=
1

σǫ

nk∑

p=1

s′k,p · [x − x̂(s′,Φ)]k,p (2.10)

where the expression [x − x̂(s,Φ)]k,p denotes the restriction of the error signal to the support

of φk,p. Thus, we have a learning rule for the MAP dictionary. On the other hand, maximizing

the posterior with respect to Φ is equivalent to minimizing the (squared) reconstruction error,

which is simply a quadratic form of the ensemble f , the concatenation of all the kernels in the

dictionary. We shall further develop this issue in chapter 4.
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Chapter 3

Multiresolution ICA

3.1 Introduction

The problem of efficiently describing visual structure has been of great importance to many

research fields spanning from biology to engineering (see e.g., [92, 117]). Best existing coders

(notably JPEG2000 [109]) rely on the flexibility of multiresolution (MR) transforms to capture

structure in natural images by exploiting their intrinsic multiscale character [54, 85]. The most

important and practical analysis tool employed to access this structure was the Discrete Wavelet

Transform (DWT) [34, 86, 117]

In spite of their success, wavelets do have well-known limitations in terms of modeling or

detecting two-dimensional, sharp, arbitrarily-oriented (ridge-like) discontinuities. Various types

of MR representations emerged in the past decade in computational harmonic analysis, which

provably outperform wavelets in approximating particular classes of signals [22, 42]). Because

of their great diversity, it is not clear what makes an optimally efficient code for images. Com-

mon intuition that optimal image features are smooth surfaces and short straight edges may be

accurate for some classes (e.g., natural scenes [54]), but not for others (faces, textures, cartoons,

fingerprints, and medical images of all sorts).

Separating signal content into different subbands, and concentrating the relevant information

into a small set of non-zero coefficients, seems a natural recipe for achieving efficiency. How-

ever, a representation is inherently suboptimal unless it can capture the probability density of

the data, according to Shannon’s source coding theorem. As such, optimal efficiency can only

be achieved by adapting the representation to the statistical structure of the target image class.

When searching for the “most compact” code, one method to employ is independent component

analysis (ICA) [64]. Generally speaking, the goal of ICA is to derive a data dependent linear

mapping such that the coefficients in this new representation are maximally independent. There-

fore, a suitable mathematical cost to minimize is the mutual information among coefficients.

Due to its poor computational scalability with respect to data dimensionality, ICA has been tra-

ditionally applied to images (either for analysis, encoding, or denoising) by extracting relatively

small image patches to be used as training samples, followed by block-transforming the image.

Unfortunately, the arbitrary alignment of the blocks with the image and the insufficient capacity
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Figure 3.1: Multiresolution ICA flowchart.

to represent image structure spread across blocks produce artifacts at reconstruction.

In this chapter, we propose an ICA-like image representation, which overcomes the artifi-

cial block confinement and computational obstacles. Our method consists of a preliminary MR

(e.g. wavelet) decomposition step, followed by learning an ICA basis for each of the resulting

subbands. The purpose of the MR step is to allow easier access to structure at each scale, while

reducing the bulk of image information to the coarsest scale; indirectly, this helps in eliminating

blocking artifacts. Since the learned ICA bases provide the most compact linear code for each

subband, we can conclude that this hybrid Multiresolution-ICA procedure (henceforth referred as

MrICA) gives an improvement over both types of representations. For a flowchart of the MrICA

procedure described above, see fig. 3.1.

Efficient coding has been a very suitable paradigm in attempting to explain how biological

systems cope with processing complex information. The resemblance of the optimally derived

linear features learned from natural scenes to the receptive fields of simple cells in primary visual

cortex (V1) has led to very interesting hypotheses about the role and function of the brain’s sen-

sory systems [14, 92, 115]. A probabilistic modeling approach aimed directly at optimal efficient

coding of natural images [80] has revealed that the average entropy improvements of adaptive

linear representations over fixed ones (Fourier, DCT, wavelets, Gabor functions [35, 36]) are too

important to neglect. However, due to the computational constraints, their representation was de-

rived for relatively small image patches and thus a comparison to multiscale bases was limited.

We can mention here two other block-based ICA approaches to image compression [53, 89].

Both compare favorably to JPEG (for faces and natural images), and the first one even outper-

forms the FBI Wavelet Scalar Quantizer (WSQ) coder [17, 18] for fingerprint images at low

rates; however, they do not fully exploit the potential of multiresolution. Modeling subband in-

formation statistically for image coding has been performed in [19]; the resulting coder (EPWIC)

explicitly exploits statistical relationships between coefficients in different wavelet subbands via

a parameterized model. Another parametric adaptive multiscale method has been presented in
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[93]; there the objective is to adapt the parameters of a certain wavelet-based transform to better

fit natural images. In contrast to their approach, MrICA derives an adaptive non-parametric mul-

tiscale image representation by letting the subband ICA basis functions be learned from scratch,

therefore keeping them unconstrained. Finally, a different multiscale framework for blind sepa-

ration is presented in [71], and [120]. The essential difference between their work and the MrICA

lies in the nature of the mixtures: we regard the images as being sample points/vectors drawn

independently from a certain distribution, while in their case the images are the mixtures and the

samples correspond to sets of pixels drawn from all images, at identical spatial locations.

Structure of the chapter. In Section 3.2, we describe the main components of our image en-

coder. We address the issues of computational complexity of MrICA in section 3.3. Section 3.4

describes in detail the experimental results illustrating the encoding performance of the proposed

adaptive method, while section 3.5 concludes the chapter.

3.2 Adaptive Multiresolution Coding

In this section, we shall describe the proposed method for MR adaptive image encoding. We

shall start by assuming we have a set of sample images x1,x2, . . . ,xm assumed to be drawn iid

from a common distribution over R
N (here N is their common size). We shall decompose these

images by a fixed MR transform and then for each of the resulting subband spaces we shall learn

an ICA basis, by using the subband coefficient sets of all the images in the sample as training

data. Finally, we shall use the subband ICA coefficients to design a quantizer. Every new image

will be transformed and quantized, and finally output into a bitstream via an arithmetic coder. In

the following, we provide details on each of the modules of our system.

Multiresolution Transforms. The first step of our hybrid method aims at separating image con-

tent by projecting images on scale-orientation subbands. The most widely used MR transforms

are based on wavelets and this due their theoretical and computational properties. For instance,

JPEG2000 (Part 1) uses the Cohen-Daubechies-Feauveau 9/7 biorthogonal wavelet filters [34], as

its only supported “irreversible” wavelet transform [109]. We also chose to employ this wavelet

because we wanted to test the coding efficiency of our method against that of the most common

fixed MR transform. To share further similarities with existing image coders, we applied this

separable decomposition method, using whole-point symmetric edge handling. The implemen-

tation we used in our experiments was that of Matlab Wavelet Toolbox 4.2. (For the sake of

completeness, let us mention that the CDF 9/7 wavelets are referred there as ’bior4.4’.)

Formally, we consider that the wavelet transform is represented by a N×N invertible matrix

M, partitioned (row-wise) into Nk×N matrices Mk, with 1≤k≤K. In our case, the submatri-

ces correspond to different scale/orientation subbands. For each subband k, and image xj , let

x
[k]
j = Mkxj be the coefficients of the image over the subband. The goal MrICA is to derive

for each k the Nk×Nk matrices Wk such that s
[k]
j = Wkx

[k]
j are realizations of a random vector

with maximally independent components. In other words, within each subspace defined by the

partition (Mk)k we search for the linear mapping allowing us to best approximate the projected
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data distribution by a product of marginals.

Adaptation. In unsupervised learning, the problem of separating signals into independent linear

components can be formulated as follows: given a set of N -dimensional vectors (y(k))1≤k≤K ,

search for a linear transform A such that the observed vectors are linear mixtures (induced by

A) of realizations of an M -dimensional random vector Z = (z1, . . . , zM)T whose components

are as independent as possible. We can express this model compactly as:

Y = AZ (3.1)

where Y ∈ R
N×K , A ∈ R

N×M , and Z ∈ R
M×K . The ICA computational objective is then

to find the linear transform A, such that the mutual information among the coefficients zi is

minimized. To simplify the description, we will assume that A is square and invertible (that is,

M = N ) and if we denote its inverse by W, the problem is reduced to minimizing:

I(z1, . . . , zN) =
M∑

j=1

H(zj) − H(Y) − log | detW| (3.2)

Since the entropy of the observed mixture Y is constant, imposing | detW| = 1 causes the

quantity we seek to minimize to be the sum of the coefficients’ marginal entropies; that is, ICA

searches for the transformation giving the (potentially) most compact linear code of the data.

When the size of the training images is very high let us observe that the size of the subbands

at the first decomposition level (roughly one quarter of that of the original image) is still very

large and we cannot learn a complete basis for the subband. However, by applying a variant of

our method called modified MrICA we can overcome this obstacle. Namely, we impose that for

all subbands up to some decomposition level L′ we learn ICA bases in a block-based fashion,

while for the coarsest subbands we perform MrICA as usual. As we will later point out, the

computational savings will be tremendous since we only need to solve a linear number of conve-

niently small ICA problems. Moreover, since most of the wavelet coefficients are already very

small, there will be virtually no blocking artifact in the reconstruction. (Let us point out that

this is not the same as decomposing the image into moderately large blocks (e.g., 64 × 64) and

applying MrICA to the blocks.)

Quantization and Coding. Next, we shall describe the subband coding procedure employed

to transform the coefficients into bitstreams, for both the wavelets and MrICA. For a group of

images from the training set, we group the MR coefficients belonging to the same subband and

from the whole group, we estimate a scalar quantizer. Note that scalar quantization is justified

in the case of MrICA, since coefficients within each subband are as independent as possible. To

design the subband quantizers, individual bit rates are allocated according to the relative energy

within each subband. Since we are interested in the potential improvement of the adaptive rep-

resentation, and less so in the great many practical issues of image coding, we will compute the

“optimal” entropy-constrained scalar quantization [52] for each subband. This should provide

a reliable upper bound for the performance of each representation. After quantizing the coef-

ficients, we use Matlab Communication Toolbox’s arithmetic coder to construct the bitstreams
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and record the total bitstream length and the reconstruction SNR for each test image. Then, we

take the average over the whole test set to estimate the coding efficiency of the distribution. We

repeat this procedure for various target rates, and by interpolation we construct the rate-distortion

curve.

3.3 Complexity Issues of MrICA

An important aspect that motivates our hybrid method is the lack of ability to compute an ICA

basis for large-dimensional data. As we have mentioned in the background chapter (see sec-

tion 2.2) the computational cost becomes prohibitive because of the large number of parameters

we need to estimate. In the following we shall explain how this problem is handled by MrICA.

For simplicity, let us assume that we employ a wavelet basis for the MR step; for one de-

composition level, this will produce three detailed subbands (horizontal, vertical, and diagonal)

and one approximation subband whose dimension will be 1/4 of the original image size. Let us

denote by T (n) the computational cost of performing one ICA iteration when the size of the data

is n×n; suppose the original image size is d×d and say we use the wavelet decomposition with

L resolution levels. Then, the total cost of one ICA step across subbands is:

3

[
T (

d

2
) + T (

d

22
) + ... + T (

d

2L
)

]
+ T (

d

2L
) (3.3)

The iteration cost of a typical off-line ICA algorithm which involves a matrix multiplication, (or

an inversion, or a re-orthogonalization) is of the order n2 log 7. Thus a rough estimate of the ratio

between the cost of a MrICA iteration (again, for all subbands) and T (d) is

3
L∑

t=1

1

(22 log 7)t
= 3

L∑

t=1

αt ≈ 3α

1 − α
(3.4)

where α = 2−2 log 7 ≈ 0.0204. Thus, the computational savings are significant, the entire process

getting to be roughly 16 times faster. If we also take into account the fact that for a smaller

problem we generally need fewer iterations to converge, we realize that even higher savings are

possible. Let us point out that in the case of the modified MrICA, which treats the most detailed

subbands up to level L′ < L in a block-based fashion, the approximate cost ratio computed like

above becomes (3L′ + 4)αL′

). For a very large image, and even a moderate limit level L′, the

cost is reduced tremendously.

We should emphasize that for each image class that we are interested to represent, we need to

pay the computational price of learning only once. That is, having learned the MrICA basis for

our class we will be able to use it whenever is necessary. This is a common practice in (off-line)

machine learning and thus applies to our adaptive signal coding setting.
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(a) Approximation Subband L1 (b) Detailed Subband V1

(c) Detailed Subband H1 (d) Detailed Subband D1

Figure 3.2: Basis functions computed by MrICA with 1 MR decomposition level for 32x32 log-

scale natural images (see text). For each subband, a random set of basis functions are displayed.

3.4 Experimental Results

We shall illustrate the encoding performance of MrICA by plotting the average rate-distortion

curves generated by coefficient quantization at various levels of precision, for both the fixed and

the adaptive MR transforms. First of all, however, let us comment on the features learned by our

method when applied to natural images.

We applied MrICA to encoding natural scenes randomly cropped from van Hateren’s database

of natural stimuli [116]. We tested our method on images of two sizes, 32× 32 and respectively,

64 × 64 pixels1. Instead of working with the pixel intensities, we took the logarithm of these

intensities before any further processing; as explained in [116], the reasons for this operation are

to incorporate contrast invariance of natural scenes, get better first-order statistics of the natural

image data, and better mimic the operations performed by the first stages of visual systems. On

each of these logarithmically transformed images, we applied the discrete wavelet decomposition

and learned the subband ICA matrices, as described in the previous section.

Interpreting the ICA objective as maximizing the (log-)likelihood of the data under the linear

model, or as minimizing the Kullback-Leibler divergence between the joint probability and the

product of marginals has produced several families of ICA algorithms (see section 2.2). For the

results reported in this section we employ the Relative Trust-Region algorithm [29]. Figure 3.2

1As they are similar to JPEG2000 standard code blocks sizes, we considered these image sizes relevant to use

for comparison purposes.
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displays a random set of such ICA basis functions learned from the 32 × 32 data set with one

MR decomposition level. MrICA basis functions of the approximation subband retain the aspect

of classic image ICA basis functions (relatively low spatial frequency, all orientations) [14, 116],

which is not a surprise considering that the approximation subband contains a low-resolution

version of the original image. On the other hand, the detailed subbands basis functions look like

localized features, preserving the dominant orientation of the subband. Besides the quantitative

(mutual information) difference between the MrICA detailed bases and corresponding wavelets,

we note that the adaptive features are also more diverse in shape (i.e., they are not shifted copy

of a single wavelet kernel).

Next, we illustrate the improvement in coding efficiency afforded by adaptiveness. In ad-

dition to comparing the adaptive and non-adaptive MR methods described in the previous sec-

tion, we also compare both of them against JPEG2000; for this purpose, we used Jasper [83], a

software package implementing JPEG2000. The coding cost of the adaptive and non-adaptive

representations does not include the basis functions (respectively, the wavelets), as these can

rightfully be considered part of the coder, and not of the code; also, in case of Jasper, we report

only the codestream length (i.e., not including the metadata). In the case of MrICA, the images

included for the evaluation are taken from the testing set, that is, they belong to the same signal

class as those in the training set but have not been used during learning. Let us point out that the

JPEG2000 performs quantization for each individual image, and not over a whole sample set,

unlike our method. In this respect, our quantizers take advantage of more information. On the

other hand, JPEG2000 performs surprisingly well considering that we used an optimal ECSQ,

and not a uniform one. The rate-distortion trade-off obtained for the 32 × 32 test images, with

one MR level, for the three encoding methods, are presented in Figure 3.4. The top plot shows

the relative coding gain, while the bottom plot shows the relative bit-rate difference of the three

methods, taking the non-adaptive wavelet representation as reference. The better coding effi-

ciency of MrICA (more apparent at low bit rates) has two important consequences: the same

distortion (or SNR) can be achieved by the adaptive method for a significantly lower rate (i.e.,

bit cost) and, reciprocally, for a fixed bit rate we can get a significantly better improvement in

fidelity.

As it is well known, SNR is not a relevant measure of perceptual distortion; instead, eval-

uating the representational power of MrICA should also involve assessing the presence of re-

construction artifacts. For this purpose, we chose to display several test images from the two

datasets, their encoded version via the adaptive and non-adaptive MR transforms, and the resid-

ual errors. Figure 3.5 illustrates the encoding results of six examples from the 32 × 32 dataset.

Each image has been encoded to a quality of 25dB; the coding gains of MrICA over the non-

adaptive wavelet method for these images are: 2.43 bpp, 0.62 bpp, 2.91 bpp, 2.78 bpp, 3.39

bpp, and 2.69 bpp. Figure 3.6 shows six examples of 64 × 64 images encoded at 20dB. The

coding gain values of the adaptive method are in this case 1.5 bpp, 1.48 bpp, 0.33 bpp, 0.23 bpp,

0.45 bpp, and 1.23 bpp. (For both figures, the colormaps are maximally stretched to enhance

visibility.) As a general conclusion, MrICA obtains a better coding rate than the fixed wavelet

representation, with fewer reconstruction artifacts.
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3.5 Concluding Remarks

We proposed MrICA, a hybrid method that combines the advantages of both adaptive and mul-

tiresolution representations. We illustrated the significant coding efficiency gain of MrICA over

the wavelet transform when applied to natural images, which is explained by the ability of the

new method to adaptively describe image structure at all scales. This suggests that an image

coder devoted to a given class of signals should use not only multiresolution, but also adaptivity

to optimize encoding performance.

One particularly important issue that remains unsolved is the optimality guarantee: it would

be very useful to find an explicit relationship between the lower bound of the “classic” ICA

objective function, and the one achievable by MrICA, when applied to the same data. Since

our method reduces only intra-band redundancies, we expect that in general this difference will

not be negligible. This is definitely a very interesting direction that we intend to pursue in the

future work, as it will help us measure the trade-off between coding efficiency and computational

complexity more accurately.

Finally, let us mention that applying the method described here is by no means restricted to

the class of natural images. Indeed, MrICA provides a general framework for data-dependent

signal coding which could potentially be useful in representing more restricted image classes,

such as faces2 and medical images, and even to other modalities (e.g., speech and video).

2One particularly interesting application we recently heard of is the Automatic Cameraman project at UCSD

[55]
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(c) 32 × 32 blocks, 2 MR decomposition levels.

Figure 3.3: Layout of the parameters corresponding to MrICA basis functions, in the Spatial

frequency (radial) vs. Orientation (angular) domain. The black circles represent the parame-

ters of MrICA basis functions computed for the approximation subband. Colored circles rep-

resent basis functions from the intermediate detailed subbands (red=horizontal, green=vertical,

blue=diagonal). Colored dots represent basis functions from the highest resolution detailed sub-

bands. 23
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Figure 3.4: Relative rate-distortion performance of three methods (MrICA, wavelet, JASPER)

computed for the 32 × 32 test images.
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Figure 3.5: Examples of 32 × 32 images reconstructed at 25dB. Column 1.Original images;

2.Image encoded by non-adaptive method; 3.Error; 4.Image encoded by MrICA ; 5.Error
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Figure 3.6: Examples of 64 × 64 images reconstructed at 20dB. Column 1.Original images;

2.Image encoded by non-adaptive method; 3.Error; 4.Image encoded by MrICA ; 5.Error

26



Chapter 4

Point Coding

4.1 Introduction

Efficient image representation is an important research problem, due to its practical applications

[50] and to its potential as a principled approach to modeling natural vision [92]. Capturing

the structure of visual signals and encoding it compactly is a challenging task. For example,

relevant visual content can appear at any spatial position and scale, which explains the success

of image coders based on multiscale representations such as wavelets [19, 109]. However, even

wavelets prove suboptimal in modeling certain structure frequently occurring in images (among

other things, sharp edges at arbitrary orientations) and recently several new representations have

been designed to fill this gap (see for instance [20, 21, 42]).

In spite of spectacular progress, it still is not clear what constitutes an optimally efficient

code for images in general: smooth surfaces and short straight edges may be the optimal features

for some image classes (e.g., natural scenes), but not for others (faces, cartoons, fingerprints,

various types of texture, or medical images). Furthermore, according to Shannon’s source coding

theorem, a representation is inherently suboptimal for a given class of signals of interest, unless

it captures the probability density of the data. This suggests that better representations can be

obtained by learning more general and flexible dictionaries that reflect the statistical structure of

particular image classes. In this chapter, we focus on adaptively deriving dictionaries defined by a

set of relatively small image patterns (henceforth called “kernels”), shifted at arbitrary positions.

The goal is to find such a set of kernels for which any signal in the class of interest has a sparse

linear representation. Each coefficient in the sparse set represents a triple: one component is its

scaling value (including sign), the second is the index k of a kernel, and the third one is a point

p in signal space - the location of the shifted kernel k. Therefore, from now on we refer to the

problem above as Point Coding. The usual approach to computing a solution is to minimize a

two-term cost function: the first term measures the fidelity of reconstruction (usually, an error

term), while the second term stands for some form of regularization (in our case, sparsity). By

employing different choices for these two terms various algorithms can emerge, each with its

own advantages and technical challenges.

This area of research has been particularly active in recent years, and several interesting di-
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rections have been explored [3, 28, 67, 91]. However, this setting is by no means particular

to images: approaches to sparse adaptive representation of general types of signals exist which

focus on sounds [59, 84, 108], or combined audio-visual signals [88]. Our goal is to bring

forward computationally efficient methods for designing very general, (approximately) shift-

invariant adaptive image representations. The generality refers to the fact that the kernel sizes

can be distinct and arbitrary; the user gives up the control over this issue to the kernel-learning

procedure and the adaptive process may even produce a multiscale representation if optimality

demands it (in a similar fashion to Spike Coding [106, 107]). Computational efficiency stems

from exploiting the structure of the optimization problem, using tools imported from structured

matrix algebra [61, 70, 94]. Namely, the coefficient extraction step uses a fast implementation of

Matching Pursuit with essentially logarithmic cost per iteration, while dictionary update is per-

formed by solving a highly structured least-squares problem, either by algebraic characterization

of pseudoinverses of certain structured matrices [60], or by fast interpolation methods [76, 114].

The chapter is organized as follows. Section 4.2 contains the mathematical formulation of the

problem. Next we describe the alternative steps of the numerical solution: section 4.3 reviews

the sparse coefficient extraction and section 4.4 is concerned with the dictionary update. We

include the experimental results in section 4.5 and present our conclusions in section 4.6.

4.2 The Point Coding Problem

In this section we shall formulate the Point Coding problem mathematically. Let us start by

introducing the appropriate notation.

Let Φ = {φ1, ..., φK} be a set of two-dimensional (rectangular) kernels, of possibly different

sizes mk×nk, normalized to unit Frobenius norm, and let f =
(
vec(φ1)

T , . . . ,vec(φK)T
)T

the

ensemble obtained by concatenating their vectorized versions1; thus, if D =
K∑

k=1

mknk, then

f ∈ R
D. For each kernel φk ∈ Φ and for p ∈ IN2, we denote φk,p the translated version of the

kernel such that its upper-left corner lies at position p. (Here, we shall work exclusively with

finite-size images, which means that if φk is entirely contained within an M×N image, it can

only be shifted into (M − mk + 1) × (N − nk + 1) positions.)

For all k and p, the coefficient of the shifted kernel φk,p will be denoted sk,p. Under the linear

additive noisy model assumption, for any image x we can write:

x =
K∑

k=1

∑

p∈Pk

sk,p · φk,p + ǫ = x̂(s, Φ) + ǫ (4.1)

where Pk is the set of all occurrences of kernel φk in the representation2. As a measure of

1For a matrix M , vec(M) is the set of all the entries in the matrix, stored column-wise.
2For brevity, we will further refer both to Φ and to f as the encoding dictionary. Also, we will refer to the

coefficients sk,p as points. Note again that one point is determined not only by the value of the coefficient, but also

by its corresponding kernel and by the position where it occurs.
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representation accuracy, we hereby consider the (squared) reconstruction error:

Fx (Φ, s) = ||x − x̂(s, Φ)||22 = ||x −
K∑

k=1

dk∑

p=1

sk,p · φk,p||22 (4.2)

where for all k, dk = |Pk| is the number of shifted versions of kernel φk. Optimizing for sparsity

of the representation translates into minimizing the number of non-zeros in s. Therefore, for a

fixed signal x, we should solve the following optimization problem

min
Φ,s

||s||0
s.t. Fx (Φ, s) < ǫ

for ǫ ≥ 0 or equivalently:

min
Φ,s

Fx (Φ, s) + λ||s||0 (4.3)

for some λ > 0.

The optimization problems above are NP-hard (see for instance [37, 38, 39, 111]). Therefore,

we attempt to approximately find a solution via an iterative, alternating procedure. First, we find

a sparse set of points corresponding to a fixed dictionary and a preset level of precision; then, for

a fixed set of coefficients, update the dictionary to better fit the data. Finding the sparsest linear

approximation in a general dictionary is also NP-hard [90]; however, suboptimal approaches (like

greedy) proved quite satisfactory in practice. Therefore, for the first step we choose to employ

Matching Pursuit [87]. The second step, adapting the dictionary to the signal structure only

requires solving a quadratic (i.e., convex) optimization problem in Φ (or f ). In the following, we

shall describe each of the two steps separately.

4.3 Matching Pursuit

The Matching Pursuit (MP) algorithm [87] is a greedy iterative procedure whose goal is to iden-

tify a decomposition of a given vector as a linear combination of elements of a dictionary. If the

dictionary is an orthogonal vector set and the signal is indeed a sparse combination of atoms, MP

is guaranteed to find this sparse set. In general, this method only serves as an approximation to

the sparsest set problem (see for instance [90]). For a detailed presentation of how MP can be

used to compute sparse signal representations in a shiftable-kernel dictionary see section 2.4.

The main practical challenge in using Matching Pursuit with a high-dimensional, highly over-

complete dictionary is the large cost of the update and of identifying the next atom, maximally

correlated with the residual. In the case of a 1-D shiftable-kernel dictionary with small ker-

nels, approaches presented in [74, 75] and [105] shrink this cost to be O(KL), i.e., essentially

logarithmic in the size of the signal (we assume that the number of kernels and their sizes are

small constants compared to the signal size). The difference between the two approaches is

that in MPTK [74, 75] the logarithmic cost is obtained by searching for the maximum coeffi-

cient within a balanced binary tree, while in Sallee’s work [105] it is achieved by maintaining a
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Figure 4.1: A graphical depiction of the data organization for the efficient Matching Pursuit

algorithm.

heap [32] which holds the maximum correlation coefficients of the kernels with the signal over

equal-length adjacent blocks. Thus, every pair of delete-max and insert heap operations, helps

achieving the desired cost.

We employ the second approach, slightly adapting it to the particularities of the 2D case.

Namely, we compute the correlation coefficients of the image with all the kernels in our dictio-

nary and then divide these correlation maps into blocks of size m0×n0, where m0 = maxk mk

and n0 = maxk nk. At each step, we shall only update a small number of blocks (at most 4)

and therefore we only need to search for a small number of new maxima. (Figure 4.1 contains

a graphical description of this data structure.) The heap structure insures that we avoid most of

the work required by searching the new maxima; also, careful storage of the correlation matrices

further can help by enhancing data locality and thus avoid costly memory operations. As a typi-

cal result, decomposing a 256 × 256 image to 30dB reconstruction quality using a dictionary of

25 Gabor-looking 8×8 kernels can be executed in as little as 6.4 seconds on a G5 Mac computer

(with a MEX C implementation of Matching Pursuit).

Once MP computes a sparse set of coefficients (now considered fixed), we proceed to opti-

mizing the kernels to better fit the signals. Let us note that it is not trivial to adapt the “orthogo-

nal” variants of MP (see 2.3) to the setting described above. Such methods attempt to remove the

intrinsically suboptimal choice of MP by modifying the criterion (maximally correlated atom)

as well as adding other (also greedy) heuristics as a subsequent refinement step. We are still

investigating the possibility of adapting these ideas to the shiftable-kernel MP setting.
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4.4 Dictionary Update

In the following we describe the computation of the optimal dictionary for a given set of points

in terms of searching for the mode of the posterior distribution, in a similar fashion to [93, 107]:

p(x|Φ) =

∫
p(x|Φ, s)p(s)ds (4.4)

where for integration we marginalize over all possible point sets. We can approximate the integral

above with p(x|Φ, s′)p(s′), where s′ is the set of coefficients produced by Matching Pursuit.

Then, assuming an additive Gaussian noise model ǫ∼N (0, σǫI), we can compute the gradient

for every kernel φk as follows:

∂

∂φk

log(p(x|Φ)) =
∂

∂φk

{log(p(x|Φ, s′)) + log(p(s′))} (4.5)

=
−1

2σǫ

∂

∂φk

||x −
K∑

k′=1

nk′∑

p=1

sk′,p · φk′,p||22 (4.6)

=
1

σǫ

nk∑

p=1

sk,p · [x − x̂(s,Φ)]k,p (4.7)

where [x − x̂(s,Φ)]k,p denotes the restriction of the error image to the support of φk,p. This im-

mediately gives us a learning rule for the MAP dictionary and we could employ any (stochastic)

gradient based method to perform the optimization.

Let us observe that maximizing the posterior with respect to Φ means minimizing the (squared)

reconstruction error, which is simply a quadratic form of the ensemble f . By a slight abuse of

notation, we shall designate xi as being both the training image xi itself and its associate vector

in R
Li (Li is the size of image xi). Now take to be S(i) = [S(i,1), . . . , S(i,K)] ∈ R

Li×D the matrix

corresponding to the linear mapping

x̂i(s
(i),Φ) = S(i) · f (4.8)

and so the optimization problem we need to solve reduces to minimizing the following cost

function:

Q(f) =
I∑

i=1

||xi − S(i)f ||22 (4.9)

=
I∑

i=1

(
||xi||22 − 2xT

i S(i)f + fT S(i)T S(i)f
)

(4.10)

= ct. +
I∑

i=1

(
−2xT

i S(i)f + fT S(i)T S(i)f
)

(4.11)

= ct. − 2

(
I∑

i=1

xT
i S(i)

)
f + fT

(
I∑

i=1

S(i)T S(i)

)
f (4.12)

=: c − 2bT f + fTAf (4.13)
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This quadratic form has a special structure: since matrix S(i) is a block-row whose blocks are

each Toeplitz-Block-Toeplitz (TBT) matrices3, it follows that matrices S(i)T S(i) will be mosaic

TBT matrices of identical block sizes. Consequently, matrix A will be a symmetric, positive

semidefinite, D×D mosaic TBT matrix and therefore we can reduce the original problem to a

structured least-squares problem.

Structured Least Squares. The advantage of working with structured matrices comes

mainly from the fact that the number of parameters is much smaller than the actual dimension of

the matrix and from the existence of fast and superfast algorithms that exploit the displacement

rank of many such matrices [61, 70].

An algebraic characterization of pseudoinverses of Toeplitz and Hankel mosaic matrices has

been presented in [60], which generalizes the well-known Gohberg-Semencul inversion formula

for Toeplitz matrices, by using a general notion of Bezoutian. The effect is that fast and superfast

algorithms can then be employed to compute the pseudoinverses, and consequently to solve the

structured least-square problems.

Definition 1. A (q, p)-mosaic matrix B is said to be a generalized Toeplitz (q, p, r)-Bezoutian if

its generating function admits the representation

B̂(λ, µ) =
1

1 − λµ
Û(λ)V̂ (µ)T . (4.14)

where Û(λ) is a q × (p + q + r) and V̂ (µ) is a p × (p + q + r) matrix polynomial.

Then, the following theorem provides a characterization of the pseudoinverse of a Toeplitz-

mosaic matrix, which means that actually computing the pseudoinverse can be performed effi-

ciently via several convolutions (in our case p = q = K, the number of kernels).

Theorem 4.4.1. [60] The Moore-Penrose inverse of a (p, q)−Toeplitz mosaic matrix is a Toeplitz

(q, p, q + p)−Bezoutian.

By adapting the result above to the case of mosaic TBT matrices, we obtain an analog char-

acterization of matrix A.

A different, but equally attractive solution to the structured problem above is suggested by

the approaches in [113, 114]. Namely, they translate the Toeplitz least squares problem into an

interpolation problem, which can then be solved by using a superfast method. Finding generators

for the displacement of our particular mosaic TBT matrix is rather straightforward by using the

algorithm in the appendix of [69]; this helps us reduce our own problem to a similar interpolation

problem, which therefore can be solved efficiently in Õ(D log2 D).

4.5 Experimental Results

In this section, we shall present the results of applying the above method to fairly different cate-

gories of images, which illustrates the importance of the signal class on the adapted dictionary.

3We find it useful to point out that the 1D correspondent is a block-row matrix with Toeplitz blocks (also known

as Toeplitz-striped matrix).
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(a) Natural image. (b) “Natural image” kernels (300 iter.)

Figure 4.2: Results of applying the Point Coding method to natural images in the Kyoto database.

The dictionary was initialized with K = 25 random kernels of size 10×10. Kernels are up-scaled

for a better visualization; actual pixel size is displayed above each kernel subplot.

(a) “Newspaper” image. (b) Newspaper kernels (55 iter.)

Figure 4.3: Results of applying the Point Coding method to newspaper images. The dictionary

was initialized with K = 40 random kernels (only 9 are shown) of size 8 × 8. Kernels are

up-scaled for a better visualization; actual pixel size is displayed above each kernel subplot.
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(a) Fingerprint image. (b) “Fingerprint” kernels (31 iter.)

Figure 4.4: Results of applying the Point Coding method to fingerprint images. The dictionary

was initialized with K = 25 random kernels of size 10 × 10. Kernels are up-scaled for a better

visualization; actual pixel size is displayed above each kernel subplot.

Natural Images. We first apply the method presented here to images from the Kyoto natural

image database [45]. The dictionary started out as a set of 25 random 10×10 patches, and evolved

as some of the kernels grew or shrank. The entire set of kernels is displayed in Figure 4.2(b);

the learned kernels display the expected aspects for such a dataset (namely edges, ridges, cross

patterns) but they also include other shapes (e.g., “round” edges). One interesting aspect is that

the kernels in the final dictionary (here, after 300 iterations) do not seem extremely sensitive to

the starting point.

Newspaper Images. A different type of signal, with significantly distinct statistical structure,

is the class of scanned newspaper images. It is a main characteristic of this class that fewer

predominant orientations are present. Figure 4.3(b) exhibits kernels adapted to this class, after

55 iterations and starting from random. As can be observed easily, kernels tend to capture mainly

printed symbols; if a large enough set of kernels is used (e.g., 40), they tend to stabilize to

individual characters, or pairs thereof.

Fingerprint Images. Finally, we apply our method to another highly distinct class, namely

fingerprint images. Figure 4.4(b) displays a set of kernels learned from images in the Cross

Match Verifier 300 sample fingerprint database [1]. Although initialized randomly, after only

31 iterations the 25 kernels already localize in frequency and in orientation, although not also in

space (easily explained by the structure of the signals).

The results presented in this section have been learned from a training set ranging from 10

images (newspaper) to 50 images (natural). The dictionary size was hand-picked to the reported

values in order to avoid redundancy (e.g., several kernels being copies or shifted versions of each

other). We currently are working on designing an automatic mechanism to control the number
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of “sufficient” kernels.

4.6 Conclusion

We proposed an approach to deriving adaptive shift-invariant image representation. Our method

is computationally very efficient and eliminates kernel size constraints, which can lead to a gen-

eral adaptive multiscale dictionary. In the kernel update step, we focused on what we believe

to be an under-explored family of algorithms, that exploit the structure of the least-squares opti-

mization problem.
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Chapter 5

Robust Coding

5.1 Introduction

Reliable communication over noisy channels is the fundamental problem of information theory.

The abundance of practical modern applications, such as the communication, compression, or

storage of data, has produced many variations on the theme. In this chapter, we focus on the

problem of finding linear representations that optimally preserve information in the transmitted

signals when the representation has limited precision. Introduced by E. Doi and coll. in [43]

and further analyzed in [44], the so-called Robust Coding scheme makes use of arbitrarily many

coding units to minimize reconstruction error, by explicitly introducing redundancy in the code

to compensate for channel noise.

The above problem was pointed out to be of particular relevance to a new and exciting area:

mathematical modeling of neural representations. This is not at all surprising; cells can be re-

garded as communication channels for traveling neural spikes and their coding precision is lim-

ited by intrinsic biological constraints (see for instance [8, 16, 43, 46]). By identifying the short

time activity of a neuron with a real value, the limited information capacity of the encoding unit

can be modeled effectively by additive Gaussian noise. This abstraction has been observed to

be better suited for neural modeling than are noise-free representations, employed by existing

standard linear models like PCA or ICA; nevertheless, in this chapter we intend to focus on

theoretical optimality, rather than on biological plausibility issues.

Many problems tightly related to Robust Coding have been studied in the literature. In spite

of the high conceptual similarity of these problems, optimal solutions depend on the various ob-

jectives and, just as importantly, on the particular assumptions or constraints involved. These

factors, as it turns out, determine both the structural properties of the solutions and the com-

putational cost of obtaining them. One instance of such problems appears in the context of

communicating real-valued signals over parallel independent Gaussian channels ([33, ch. 9]).

There, the objective is optimal power allocation for maximizing mutual information among the

altered components of the signal, subject to an average power constraint. The solution essen-

tially depends on the covariance of the original signal, by the so called “water-filling” procedure.

This problem addresses only one aspect of the coding (power allocation), which restricts the so-
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lutions to the set of diagonal matrices with nonnegative entries and bounded trace. Instead, it

would be more useful to investigate more general linear transforms, notably those implemented

by non-square dense matrices.

The idea of improving robustness to additive noise via redundant linear transformations has

been addressed in the context of frames by Daubechies [34], where the optimality criterion was

mean squared error (MSE). Several classes of frames have been identified as optimal solutions of

other problems involving the design of linear representations that are resilient to various types of

coefficient alterations (quantization noise [58], erasures [57, 97]), or that have optimal numerical

stability of reconstruction [34]. (For a recent and thorough review of frame properties and appli-

cations, we recommend Kovačević and Chebira [72, 73]). In general, the frame design problem

can become rather complex and often times algebraic methods, usually employed for structural

characterization, must be complemented by numerical methods, as argued by Dhillon and coll.

[40, 41]. Several insightful techniques have been developed in search for accurate characteriza-

tion and interpretation of optimal frame representations which reduce the numerical optimization

burden considerably (see Casazza and coll. [26]).

To formally define our problem, let us consider our signal to be made of samples from an

N -dimensional zero-mean data distribution, with known full-rank covariance matrix Σx. For a

given number M of communication channels1, we shall search for analysis matrix W ∈ R
M×N

and synthesis matrix A ∈ R
N×M that maximally reduce the effect of additive Gaussian noise,

independent of the signal and having the same power σ2
δ on each channel. More precisely, our

objective is to minimize the reconstruction MSE2:

tr
{
(IN − AW)Σx(IN − AW)T

}
+ σ2

δtr
{
AAT

}
(5.1)

The signal power on each of the M channels also may be assumed to be identical (call it

σ2
u), via a simple rescaling of W’s rows. This implies the existence of a common signal-to-noise

ratio (SNR) parameter γ2 = σ2
u/σ

2
δ > 0 to characterize the precision, and consequently the

information capacity of each channel3. In the following we will try to simplify the optimization

problem, by reducing it to a more convenient form, a first step of which is to eliminate the

correlation in the signal. By the eigendecomposition of the covariance matrix Σx, we obtain

a diagonal spectrum matrix S2 with positive diagonal entries, and an orthogonal matrix E ∈
R

N×N , such that Σx = ES2ET . By the changes of variable T = WES/σu, and B = ETA we

can formulate our optimization problem as:

{
min
B,T

||BT − S||2F + 1
γ2 ||B||2F

s.t. diag(TTT ) = 1M,1

(RCsimple)

1No assumption about the relation between M and N is explicitly made. We shall refer the case M < N as

undercomplete, and the opposite one as overcomplete.
2Here we take the average over the data, as well as over the noise.
3In Cover and Thomas [33], information capacity is defined as 1

2
log(γ2 + 1), which is a function of the channel

SNR γ2.
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The new variables B and T also represent synthesis and analysis matrices, while the capacity

constraint simply translates in the rows of T being unit-length vectors in R
N .

When N = 1 and N = 2, a complete characterization of the optimal encoding/decoding pair

for the Robust Coding problem, based on exhaustive case analysis, was presented in [43, 44].

For general dimension N , numerical solutions were obtained via gradient-based optimization

with Lagrange multipliers. Although such solutions are perfectly legitimate for many optimiza-

tion problems, we could not provide optimality guarantees as precise as in the one- and two-

dimensional cases. A conjecture on the error function lower bound was given in [44], yet even

though the result was strongly supported by numerical results, a proof remained out of reach.

The present chapter addresses this issue by extending the previous analysis to the most gen-

eral case (any N and M ). Namely, we characterize the algebraic structure of the solutions via

singular value decomposition (SVD; see [56, 110]). We also prove an exact formula for the MSE

lower bound, as a function on the covariance spectrum, channel SNR γ2, and on the dimensions

N and M . This exact, therefore tight, bound not only enables us to easily verify optimality of a

given encoding/decoding pair, but also gives insight into how to manipulate the parameters (e.g.,

increase the number of units M ) to minimize reconstruction error. Last but not least, structural

characterization leads to fast and direct algorithms for obtaining the optimal solutions, which

confers an immense advantage over our previous approach. Thus, the computation becomes

independent on the notorious step-size sensitivity of gradient methods, both from numerical sta-

bility and from computational complexity points of view.

The chapter is organized as follows. In subsection 5.2, we identify necessary conditions on

the optimal T, via constraints on the components of its singular value decomposition (SVD),

and compute the optimal singular values. Also, the structure of the right singular matrix V is

described, and a generic procedure for computing the left singular matrix U is analyzed. Also,

we derive the closed-form expression of the lower bound, interpret its dependence on the prob-

lem parameters, and illustrate with several interesting cases. Section 5.4 concludes the chapter

by summarizing the results, by comparing our study with related approaches, and by revealing

several directions we plan to explore in the future.

5.2 Robust Coding Solutions

In section 5.1 we provided an extended motivation for the Robust Coding framework. Namely,

it models the problem of reliable communication on parallel Gaussian channels having identical

signal-to-noise ratios. Here, we address the properties of optimal solutions and propose efficient

ways of computing them.

First, we shall introduce several notions that we intend to use throughout the rest of this

chapter. We will show how to effectively reduce the parameter search space to the set of unit-row,

M -by-N matrices T. Then, we identify necessary conditions for the optimality of such matrices

via constraints on its singular vectors, and compute the singular values exactly. This will enable

us to exactly describe the structure of the right singular matrix V, and identify several algorithms

for computing the left singular matrix U. Next, we shall derive the closed-form expression of
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Figure 5.1: Image coding under the presence of channel noise. For each reconstruction its percent

error is indicated. (a) Original image. (b) PCA (M=32) with noiseless representation. (c) PCA

(M=32) with 1-bit precision code. (d) Robust coding (M=32) with 1-bit precision code. (e)

Robust coding (M=64) with 1-bit precision code. (f) Robust coding (M=512) with 1-bit precision

code. (g) PCA (M=64) with 1-bit precision code. (h) ICA (M=64) with 1-bit precision code. (i)

Daubechies 9/7 wavelet with 1-bit precision code.

the lower bound, interpret its dependence on the problem parameters, and illustrate with several

interesting cases.

Definitions and notations

Let us define several notions we shall use throughout the chapter.
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Definition 2. For any p ∈ N
∗, let us denote Op(R) the orthogonal group of index p, i.e., the

space of all p × p orthogonal matrices.

Definition 3. For any p ∈ N
∗ and r > 0, let Bp(0; r) = {x|x ∈ R

p, ‖x‖2 ≤ r} the p-dimensional

zero-centered unit ball and Sp(0; r) = ∂Bp(0; r) its surface.

Definition 4. For any two matrices M1 and M2, we define the direct sum of M1 and M2 as the

block-diagonal matrix

M1 ⊕ M2 =

(
M1

M2

)
. (5.2)

Definition 5. For any two matrices M1 and M2 of the same size, we will denote by M1 ◦ M2

their Hadamard, or entry-wise product.

Definition 6. Let n be a positive integer. For any permutation τ of {1, 2, ..., n}, its corresponding

permutation matrix is defined as

P(τ) ≡
(
δτ(i),j

)
i,j

(5.3)

where δ is Kronecker’s symbol: δα,β = 1 if α = β and 0 otherwise.

Remark. Permutation matrices are both orthogonal and doubly-stochastic [62].

We will now show how to further simplify the Robust Coding optimization problem, as well

as to reduce the parameter search space. For the sake of completeness, let us review the assump-

tions and conditions imposed on the parameters appearing in the simplified form (RCsimple).

Let M,N ∈ N
∗, γ > 0, and S = diag(s1, ..., sN ), where s1 ≥ . . . ≥ sN > 0 without loss of

generality. As explained in section 5.1, we want to find B ∈ R
N×M , T ∈ R

M×N that minimize

the cost function

E(B,T) = ||BT − S||2F +
1

γ2
||B||2F , (5.4)

subject to diag(TTT ) = 1M,1. We can regard E as a function defined on R
MN × SN(0; 1)M .

This is possible, because the constraint diag(TTT ) = 1M,1 means that the rows of T are unit-

length, N -dimensional vectors and therefore we can identify the set of feasible matrices T, with

SN(0; 1)M ≡ SN(0; 1)× . . .×SN(0; 1). We observe that for any fixed T ∈ SN(0; 1)M , function

ET(·) ≡ E(·,T) is a quadratic (therefore continuously differentiable) function of the entries of

B, and so a necessary condition on B to minimize ET can be expressed in matrix form as:

0M,N =
∂

∂B
ET(B) =

∂

∂B
E(B,T) = 2

(
(BT − S)TT +

1

γ2
B

)
(5.5)

which further implies that

B

(
1

γ2
IM + TTT

)
= STT . (5.6)

Remark. Matrices 1
γ2 IM + TTT and 1

γ2 IN + TTT are positive definite matrices for any γ > 0

and T ∈ R
M×N . As such, they are invertible and det( 1

γ2 IM +TTT ) > 0, det( 1
γ2 IN +TTT) > 0.

Consequently, function ET has a unique point of extremum, namely
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BT = STT

(
1

γ2
IM + TTT

)−1

. (5.7)

Since ET : R
MN → R is bounded below by 0, and obviously unbounded above, this extremum

can only be a minimum. Therefore eq. (5.7) represents a necessary and sufficient condition for

B to minimize ET.

From the observation above, we can infer (see details in Appendix 5.5):

E(B,T) ≥ E(BT,T) = tr

(
S2(IN − TT (

1

γ2
IM + TTT )−1T)

)
(5.8)

with equality if and only if B = BT. This allows us to conclude that (Bmin,Tmin) is a min-

imizing pair for E if and only if Bmin = BTmin
and Tmin is minimizing the cost function

F : BN(0; 1)M → R,

F(T) = tr

(
S2(IN − TT (

1

γ2
IM + TTT )−1T)

)
= tr

(
S2(IN + γ2TTT)−1

)
. (5.9)

where the last equality follows by applying Sherman-Morrison-Woodbury formula ([56, p.50];

see Appendix 5.5). Since F is a continuous function defined on a compact set, Weierstrass’s

theorem implies that it reaches its minimum on its domain, which means that there exists at least

one such optimal matrix Tmin and moreover, min
T

F = min
B,T

E .

Let us notice that matrix T shall serve now as a parametric descriptor of our optimal analy-

sis/synthesis Robust Coding pair. We have succeeded in effectively reducing the search space to

the set of feasible matrices T. Next, we need to describe the structure of function F’s minima.

The SVD structure of Tmin

In this section, we shall identify necessary conditions on the minimizers of F , after which we

shall point out which of these are also sufficient. For this purpose, we employ the singular value

decomposition (SVD) of T. Thus, if we denote K ≡ min(M,N), there exists a decomposition:

T = U · Σ · VT (5.10)

where U ∈ OM(R), V ∈ ON(R), and Σ ∈ R
M×N a diagonal matrix whose diagonal entries

are, without loss of generality, sorted in decreasing order: σ1 ≥ . . . ≥ σK ≥ 0. Let us denote by

ΣK = diag(σ1, . . . , σK), the “reduced”, square version of Σ.

Remark. Matrices TTT ∈ R
N×N and TTT ∈ R

M×M are symmetric, and their SVD (the same

as their eigenvalue decomposition) is

TTT = VΣTΣVT = V (Σ2
K ⊕ 0N−K) VT , (5.11)

respectively

TTT = UΣΣTUT = U (Σ2
K ⊕ 0M−K) UT . (5.12)
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Remark. Since T ∈ BN(0; 1)M , a necessary condition on its singular values is:

M = tr
(
TTT

)
= tr (Σ2

K ⊕ 0M−K) = tr Σ2
K =

K∑

i=1

σ2
i (5.13)

Let us examine now the cost function. By algebraic manipulations, from eq. (5.9) we obtain

(see Appendix 5.5):

F(T) = tr

(
S2V (diag(

1

1 + γ2σ2
1

, . . . ,
1

1 + γ2σ2
K

) ⊕ IN−K) VT

)
. (5.14)

As function F above depends only on ΣK and V, we choose to refer it (by a slight abuse of

notation) as F(ΣK ,V). Our goal now became to characterize the minimizing pairs (ΣK,min,Vmin)

of this function. First of all, let us observe that for any ΣK , there exists4:

G(ΣK) ≡ min
V∈ON (R)

F(ΣK ,V) (5.15)

We can show that function G is invariant to the ordering of the entries on the diagonal of its

argument (for proof, see Appendix).

Lemma 1. For any permutation matrix P ∈ R
K×K , we have G(ΣK) = G(PΣKPT ).

This lemma guarantees that condition σ1 ≥ . . . ≥ σK imposed on the diagonal elements of

ΣK does not restrict the generality in any way.

Remark. From the conditions imposed so far, we have

0 <
1

1 + γ2σ2
1

≤ 1

1 + γ2σ2
2

≤ . . . ≤ 1

1 + γ2σ2
K

≤ 1 (5.16)

s2
1 ≥ s2

2 ≥ . . . ≥ s2
N > 0. (5.17)

This implies that the two diagonal matrices appearing in (5.14) have their (positive) diagonal

elements ordered differently. The following general Lemma will help us find the exact expression

of G, and moreover characterize all the orthogonal matrices V for which G(ΣK) = F(ΣK ,V).

Lemma 2. Let n ∈ N
∗ a positive integer, and DA = diag (a1, a2, . . . , an), DB = diag (b1, b2, . . . , bn),

two diagonal matrices such that a1 ≥ . . . ≥ an > 0 and bn ≥ . . . ≥ b1 > 0.

a) Then, min
V∈On(R)

tr
(
DAVDBVT

)
= tr (DADB) =

n∑
i=1

aibi.

b) Let τ1, ..., τm be all the permutations of {1, ..., n}, for which
n∑

i=1

aibτk(i) =
n∑

i=1

aibi, 1 ≤ k ≤
m. Then ∀ V ∈ On(R), V is a minimizer of tr

(
DAVDBVT

)
if and only if the entry-wise

product V ◦ V is a convex combination of the permutation matrices P(τk), 1 ≤ k ≤ m.

Proof. See Appendix.

4Function F(ΣK , ·) : ON → R is continuous, and defined on a compact set.
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The above lemma guarantees that the minimum of tr
(
DAVDBVT

)
over the set of orthog-

onal matrices, is reached for the identity matrix. This minimizer may not be unique, as this

property should depend on the diagonal values as well, and not only on their relative order. If we

substitute DA by S2, and DB by (IK + γ2Σ2
K)−1 ⊕ IN−K , we obtain:

G(ΣK) = min
V∈ON (R)

F(ΣK ,V) = F(ΣK , IN) (5.18)

= tr
(
diag(s2

1, . . . , s
2
K) · (IK + γ2Σ2

K)−1
)

+
N∑

i=K+1

s2
i (5.19)

=
K∑

i=1

s2
i

1 + γ2σ2
i

+
N∑

i=K+1

s2
i (5.20)

Since function G is continuous, we can guarantee that there exists a minimizer for G on the

compact set of all diagonal matrices of trace M , with nonnegative diagonal entries. Conse-

quently, (ΣK,min,Vmin) is a minimizing pair for F if and only if ΣK,min is minimizing G, and

moreover, min
ΣK ,V

F = min
ΣK

G.

From eq. (5.20), we observe that an immediate lower bound for G(ΣK) is the sum of squares

of the smallest N −K diagonal entries of S. Moreover, optimizing G is equivalent to solving the

following optimization problem:






min GK(σ1, . . . , σK)

s.t.
K∑

i=1

σ2
i = M

σ1 ≥ . . . ≥ σK ≥ 0

(P1)

where we denoted

GK(σ1, . . . , σK) =
K∑

i=1

s2
i

1 + γ2σ2
i

(5.21)

Fortunately, this problem has a closed-form solution.

Theorem 5.2.1. There exists 1 ≤ R ≤ K, such that for any index j ≤ K,

sj >

j∑
i=1

si

j + γ2M
⇔ j ≤ R. (5.22)

Then, problem (P1) has the unique solution

σi =






1

γ

√
si∑R

j=1 sj

(R + γ2M) − 1, if 1 ≤ i ≤ R

0, if R + 1 ≤ i ≤ K.

(5.23)

Proof. See Appendix 5.5
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The above theorem provides the general form of the singular values of Tmin. At a closer

examination of the result, we observe that the optimal singular values depend not only on the

dimensions and the SNR level, but also on the concentration of the eigenvalues of the covariance

matrix. The threshold R, the index of the smallest nonzero singular value, and consequently

the rank of the optimal encoding matrix T (or W, for that matter), directly reflects a degree of

spectral concentration. The necessity of identifying this degree would easily become apparent

in a naive attempt to minimize the sum
K∑

i=1

s2
i /(1 + γ2σ2

i ) s.t.
K∑

i=1

σ2
i = M , via the Cauchy-

Schwartz inequality (see Appendix 5.5). On the other hand, R is an indicator on “how much”

and ”which part of the data space we can fill” with the available number of noisy coding units.

It therefore determines an interesting power allocation scheme, somewhat related to the well-

known “waterfilling” scheme. Similarly, the subspaces, or directions, lacking significant energy

are sacrificed and the resources are devoted to the more important ones.

Finding V, the right singular vector matrix of Tmin

In the proof of Lemma 2 we used Birkhoff’s theorem [62, p. 527] stating that for any V ∈ ON ,

matrix V ◦ V is doubly stochastic, and therefore it must be a convex combination of permu-

tation matrices. Furthermore, matrix V is a minimizer for F(ΣK,min, ·) if and only if all the

permutation matrices just mentioned are also minimizers. In this section, we will address the

structural characterization of the matrices minimizing F(ΣK,min, ·), which are actually all the

possible right singular matrices of Tmin. As in the previous section, we shall state a slightly

more general result (we omit the proof).

Lemma 3. Let n ∈ N
∗ a positive integer, and DA = diag (a1, a2, . . . , an), DB = diag (b1, b2, . . . , bn),

two diagonal matrices such that a1 ≥ . . . ≥ an > 0 and bn ≥ . . . ≥ b1 > 0. Let us denote by⋃ Ia
k the partition of {1, ..., n} determined by the values a1, a2, . . . , an; namely, ∀ i ∈ Ia

k1
, j ∈

Ia
k2

, i ≤ j we have:

(ai = aj ⇔ k1 = k2) and (ai > aj ⇔ k1 < k2) . (5.24)

Let
⋃ Ib

l be the partition of {1, ..., n}, determined by b1, b2, . . . , bn. (In the definition above, we

only need to substitute a’s with b’s, and ai > aj with bi < bj .) Then all orthogonal matrices

V = (vij)1≤i,j≤n minimizing the function tr(DAVDBVT ) share the same support structure

determined by these partitions:

vij 6= 0 ⇒ i ∈ Ia
k , and j ∈ Ib

l , and Ia
k

⋂
Ib

l 6= ∅. (5.25)

Consider sequences a = (ai)1≤i≤N and b = (bi)1≤i≤N , where

ai = s2
i , ∀ 1 ≤ i ≤ N, (5.26)

bi =






1

1 + γ2σ2
i

, if 1 ≤ i ≤ K

1, if K + 1 ≤ i ≤ N.
(5.27)
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As we observed, there is a correspondence between contiguous intervals of optimal singular

values σi and intervals of variances si. This correspondence will directly influence the structure

of the V matrix. We shall start discussing this issue by means of observations on the “optimal

permutations” P(τ) involved in the convex expansion of V ◦ V. Namely, we notice that such a

permutation τk is optimal if and only if
N∑

i=1

aibτ(i) =
N∑

i=1

aibi, which is equivalent to saying that

the ordering of the values of b remains unchanged via permutation τ .

In the following, let us consider the partition (Jj)1≤j≤β+1 of {1, 2, . . . , N}, where Jβ+1 =

{K + 1, . . . , N}, and the rest of the Jj’s defined as in the previous section. We will denote b̂j

the (common) value of bi for i ∈ Jj . First, let us notice that for 1 ≤ j < β, we have τ(Jj) =

Jj , that is, optimal permutation τ takes interval Jj onto itself. An immediate consequence of

this observation is that all the corresponding permutation matrices P(τ) have a block-diagonal

structure, of whose first β − 1 diagonal blocks are of size |Jj| × |Jj|. In turn, this will imply

that matrix V ◦ V has this property, and therefore matrix C itself will have the same structure.

Namely, we showed that the first β − 1 blocks of C are matrices from O|Jj |, respectively. What

about the rest of C?

If b̂β = 1, since b̂β+1 = 1 it follows that however we permute the last |Jβ|+ |Jβ+1| elements

of b, the result will be optimal. To conclude, let us prove that any orthogonal, block-diagonal

matrix C is optimal.

tr
(
DAVDBVT

)
= tr (DA,1 ⊕ . . . ⊕ DA,β) · (V1 ⊕ . . . ⊕ Vβ) (5.28)

(DB,1 ⊕ . . . ⊕ DB,β) · (VT
1 ⊕ . . . ⊕ VT

β )
)

(5.29)

= tr
(
DA,1V1DB,1V

T
1 ⊕ . . . ⊕ DA,βVβDB,βV

T
β

)
(5.30)

Since DB,j = b̂j · I|Jj |, 1 ≤ j < β, and DB,β = b̂β · I|Jβ |+|Jβ+1|, for each j we have

DA,jVjDB,jV
T
j = b̂j · DA,jVjV

T
j = b̂j · DA,j = DA,jDB,j (5.31)

and therefore tr
(
DAVDBVT

)
= tr (DADB), which as we know is optimal. Let us observe

that the previous analysis works almost unaltered for the case when N ≤ M (i.e., N = K),

regardless of the value of b̂β . (The only difference is that Jβ+1 = ∅.)

Let us analyze the case when b̂β < 1. If N > M(= K), and aM > aM+1, the analysis goes

almost exactly as before, the only difference being in the structure of the optimal V. Namely, V

would be block-diagonal, having β+1 (orthogonal) blocks of size |Jj|, respectively. An interest-

ing case occurs when N > M(= K) (i.e., we are in the “undercomplete case”), and aM = aM+1

(i.e., all the singular values are non-degenerate and M “splits” a contiguous interval of variance

values). We can assume, without losing generality that β = 1, otherwise the first β − 1 blocks

of V are orthogonal, as before. In other words, our problem is the following: given a1 = . . . =

ar > . . . ≥ aN > 0, and b1 = . . . = bp < bp+1 = . . . = bN = 1, with r > p, for which per-

mutations τ of the indices we have
N∑

i=1

aibτ(i) =
N∑

i=1

aibi? The answer is quite immediate, namely

we can only consider permutations for which the smallest p values of b are paired with some of
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the largest values values of a, or more simply stated for which {1, 2 . . . , p} ⊆ τ ({1, 2 . . . , r}).
But this condition is equivalent to τ ({r + 1, . . . , N})⋂ {1, 2 . . . , p} = ∅, which means that the

lower left submatrix of P(τ), corresponding to rows r + 1, . . . , N and columns 1, . . . , p is null.

But then V ◦ V and V will also have this property! To complete the analysis, let us show that,

for any orthogonal matrix V of the form

V =

(
X Y

0 Z

)
(5.32)

we have tr
(
DAVDBVT

)
= tr (DADB) (here X ∈ R

r×p). First, let us observe that the orthog-

onality of V implies

XTX = Ip, XXT + YYT = Ir, and ZZT = IN−r. (5.33)

We have:

tr
(
DAVDBVT

)
= tr

(
DA

(
X Y

0 Z

)(
b̂βIp

IN−p

)(
XT 0

YT ZT

))
(5.34)

= tr

(
DA

(
b̂βX Y

0 Z

)(
XT 0

YT ZT

))
(5.35)

= tr

(
DA

(
b̂βXXT + YYT YZT

ZYT ZZT

))
(5.36)

= tr

(
DA

(
(̂bβ − 1)XXT YZT

ZYT 0

)
+ DA

)
(5.37)

= tr DA − (1 − b̂β) tr
(
DA,βXXT

)
(5.38)

Since a1 = . . . = ar, and r > p, it follows that DA,β = a1Ir, and so

tr
(
DAVDBVT

)
= tr DA − (1 − b̂β) tr

(
DA,βXXT

)
(5.39)

= tr DA − a1(1 − b̂β) tr
(
XXT

)
(5.40)

= tr DA − a1(1 − b̂β) tr
(
XTX

)
(5.41)

= tr DA − a1(1 − b̂β) tr (Ip) (5.42)

=
N∑

i=1

ai − pa1(1 − b̂β) (5.43)

=

p∑

i=1

ai − pa1(1 − b̂β) +
N∑

i=p+1

ai (5.44)

=

p∑

i=1

ai

(
1 − (1 − b̂β)

)
+

N∑

i=p+1

ai (5.45)

= b̂β

p∑

i=1

ai +
N∑

i=p+1

ai (5.46)

= tr (DADB) (5.47)
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Algorithm 1 Compute U, the left singular matrix of Tmin.

Let U0 ∈ OM arbitrary.

Q ⇐ U0 (Σ2
K,min ⊕ 0M−K)UT

0

for i = 1 to M − 1 do

Find indices j, k such that (1 − qjj)(1 − qkk) < 0; otherwise, stop.

Let θi ∈ [0, 2π), such that q′jj = 1, where Q′ = Gj,k(θi) Q Gj,k(θi)
T

Ui ⇐ Gj,k(θi)Ui−1

Q ⇐ Q′

end for

Output U = Ui

In conclusion, in the case when N > M and aM = aM+1, matrix V is block-diagonal, with

the first β−1 blocks orthogonal matrices, and the βth block of the form shown in eq. (5.32). Our

attempt to characterize the right singular vector matrices of Tmin is now complete.

Finding U, the left singular vector matrix of Tmin

In this section we shall describe how to compute the left singular matrix of Tmin when we know

the optimal singular values (i.e., ΣK,min). As we noticed already, this is needed only to satisfy

the constraint and does not influence the cost function. Namely, our goal will be to search for

U ∈ OM(R), such that diag
(
U (Σ2

K,min ⊕ 0M−K)UT
)

= 1M,1.

Remark. For any U ∈ OM(R), we have:

tr
(
U (Σ2

K,min ⊕ 0M−K)UT
)

= tr
(
TTT

)
= M (5.48)

Using this observation, we shall provide a very simple and efficient way to obtain the U

matrix, based on Givens rotations. We illustrate this procedure (hereby referred as Algorithm

5.2), and then prove its correctness.

Lemma 4. Algorithm 5.2 computes a matrix U ∈ OM , satisfying the constraint condition

diag
(
U (Σ2

K,min ⊕ 0M−K)UT
)

= 1M,1. (5.49)

Proof. See Appendix.

As it can easily be observed, there may be multiple ways to “fix” the initial matrix U0 into

an acceptable solution. Let us also remark that the procedure just described remains virtually

unchanged if we work with the incomplete SVD, rather than with full SVD, in the overcomplete

case (M > N ). The only difference is in the choice of the starting point U0 ∈ R
M×N , having

an orthonormal set of columns. Unfortunately, this observation does not essentially reduce the

computational complexity of finding matrix U, which is still going to be O(M2).

Error Bound

It is useful to know what is the theoretical limit of the cost function. To find the exact formula for

the lower bound, we first need to identify the rank R of the encoding matrix, that is we need to
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Figure 5.2: Robust Coding solutions: computed without additional constraints (left), with ”spar-

sity” constraints (center), and with “locality” constraints (right). [Courtesy of E. Doi.]

check until when does the non-degeneracy condition hold. To do this, binary search is sufficient,

and so we can find R in O(log M) time. Once it is known, we can express the closed-form lower

bound of E , as demonstrated by the following lemma.

Lemma 5. The minimal value of the cost function E is

min E =

(
R∑

j=1

sj

)2

R + γ2M
+

N∑

i=R+1

s2
i . (5.50)

Proof. See Appendix.

This result proves, as well as improves our conjecture in [44].

5.3 Robust Coding Algorithms

We have described the optimal solutions of the Robust Coding problem when the only constraint

was that the SNR of the channels was identical, arguing that this should lead to a more realistic

model for neural encoding. As we pointed out, any solution of the form described in section 5.2 is

equally good, although it is not obvious what kind of image structure do these optimal solutions

represent (see figure 5.2).

The most natural explanation for this lack of structure is the fact that we only focused on one

biological constraint that accompany neural encoding. Other constraints, such as the sparsity of

the distribution of encoding coefficients, known to hold in real biological systems, should also

be taken into account.
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This motivation has lead to more structured optimal RC solutions in [47]. There, by extending

the RC model to account for optical blur, as well as for sparsity of the neural activity, they

managed to produce optimal solutions closely resembling receptive fields of retinal ganglion

cells. For the computation, they used gradient descent with Lagrange multipliers, thus grouping

all the constraints and the objective function. Although the optimization converged, the number

of iterations was considerable, even for a relatively moderate-size problem. We will focus more

on the computational side of their problem. Namely, we are interested in deriving algorithms that

take advantage of the known structure of the Robust Coding optimal solutions to accommodate

additional constraints. The obvious advantage of such an approach is the significant reduction of

the (structured) search space.

In our case, since the only set of parameters needed to differentiate among all RC solutions is

the set of left singular vectors (an orthonormal matrix), we propose using optimization algorithms

on Stiefel and Grassmann manifolds (for a comprehensive description and categorization of most

widely used algorithms of this kind, see [7]). The idea of using a “natural gradient” (as it is

sometimes referred) has lead to what is currently state-of-the-art stochastic gradient approach to

ICA ([30, 66]), but has been applied to many other problems (see [7] for a thorough review, and

[2] for a very good monograph).

We recently found that variants of the (unconstrained) Robust Coding problem have been

known already in the information theory literature. The most similar to our analysis is the one

presented in [77, 78]. Our structural characterization of the optimal encoder matrices is (in our

opinion) more explicit and elegant. Regarding the algorithm for computation of the left sin-

gular matrix U, we learned that it has been rediscovered at least two more times since [78],

being included in [15] and [27]. Fortunately, we can now take advantage of recent mathemat-

ical advances such as optimization algorithms on manifolds to identify algorithms with better

computational and numerical properties. Applicability of the general theory of optimization on

Stiefel and Grassmann manifolds was eased significantly by the implementation and release of

the sg MATLAB package (see [82]). We feel that by adapting such power to the specifics of Ro-

bust Coding (and its generalizations) we can advance our understanding about this fundamental

problem.

5.4 Discussion

We have provided a theoretical analysis of Robust Coding solutions in the general case: arbitrary

dimension, arbitrary number of encoding units, arbitrary precision, and spectrum of the data

covariance matrix.

A consequence of our result is that we can manipulate the parameters to arbitrarily reduce

the error. For instance, one possible intuitive interpretation of the formula is that by increasing

the redundancy (i.e., M ), we can compensate for the limited coding precision and thus we can

overcome the effect of noise in the representation. Alternatively, for a fixed number of encoding

units a higher capacity will result in a lower error5.

5We should emphasize that the “break” index J is dependent of both M and γ. However its effect does not affect
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By keeping our model flexible enough to handle arbitrary (i.e., non-isotropic) covariance also

implies that Robust Coding optimal encoder/decoder are not necessarily tight frames. Indeed,

because of the way index R is defined we notice that the optimal matrices may not have full

rank. This is to say that we first select a subspace most relevant for the data distribution, and

then allocate all the representation resources (encoding vectors) to span this subspace as well as

possible. Such an interpretation is related to the one in [26], however it is more general.

5.5 Appendix

Reformulate cost function E . We show how the cost function is transformed when we

plug in the expression of the optimal decoding matrix (BT from eq. (5.7)) into eq. (5.4):

E(BT,T) = ||BTT − S||2F +
1

γ2
||BT||2F (A-1)

= tr
(
(BTT − S)(BTT − S)T

)
+

1

γ2
tr
(
BTBT

T

)
(A-2)

= tr

(
BTTTTBT

T
+ S2 − STTBT

T
− BTTS +

1

γ2
BTBT

T

)
(A-3)

= tr

(
BT(

1

γ2
IM + TTT )BT

T
+ S2 − STTBT

T
− BTTS

)
(A-4)

= tr
(
STTBT

T
+ S2 − STTBT

T
− BTTS

)
(A-5)

= tr ((S − BTT)S) (A-6)

= tr (S(S − BTT)) (A-7)

= tr

(
S(S − STT (

1

γ2
IM + TTT )−1T)

)
(A-8)

= tr

(
S2(IN − TT (

1

γ2
IM + TTT )−1T)

)
. (A-9)

Sherman-Morrison-Woodbury formula.

Proposition 1 ([56]). Let X,Y ∈ R
N×M , C ∈ R

N , such that both C and IM + YTC−1X are

nonsingular. Then
(
C + XYT

)−1
is also nonsingular and

(
C + XYT

)−1
= C−1 − C−1X

(
IM + YTC−1X

)−1
YTC−1. (A-10)

By plugging C = IN , and X = YT = γTT into the identity above, we obtain:

(IN + γ2TTT)−1 = IN − TT (
1

γ2
IM + TTT )−1T. (A-11)

consistency of the interpretations.
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Reformulate cost function F .

F(T) = tr
(
S2(IN + γ2TTT)−1

)
(A-12)

= tr
(
S2(VVT + γ2V (Σ2

K ⊕ 0N−K) VT )−1
)

(A-13)

= tr
(
S2V(IN + γ2(Σ2

K ⊕ 0N−K)))−1VT
)

(A-14)

= tr
(
S2V ((IK + γ2Σ2

K)−1 ⊕ IN−K) VT
)

(A-15)

= tr

(
S2V (diag(

1

1 + γ2σ2
1

, . . . ,
1

1 + γ2σ2
K

) ⊕ IN−K) VT

)
(A-16)

Proof of Lemma 1. Fix arbitrary permutation matrix P, and define matrix PN = P⊕IN−K .

Then,

G(PΣKPT ) = min
V∈ON (R)

F(PΣKPT ,V) = min
V∈ON (R)

F(ΣK ,VPN) = min
V′∈ON (R)

F(ΣK ,V′) = G(ΣK).

(A-17)

Proof of Lemma 2. Due to the inverse ordering of elements on the two diagonals, by Hardy-

Littlewood-Polya rearrangement lemma we know that for any permutation π of {1, 2, . . . , n} we

have:
n∑

i=1

aibπ(i) ≥
n∑

i=1

aibi. (A-18)

Let us inspect the function we intend to optimize:

tr
(
DAVDBVT

)
= tr

(
D

1/2
A VDBVTD

1/2
A

)
= ‖D1/2

A VD
1/2
B ‖2

F =
n∑

i=1

n∑

j=1

aic
2
ijbj

= aT (V ◦ V)b

where a = (a1, . . . , an)T
, b = (b1, . . . , bn)T

.

Remark. For any orthogonal matrix V = (vij) ∈ On(R), the Hadamard product V◦V =
(
v2

ij

)

is a doubly stochastic matrix. This property is simply a restatement of the fact that the rows and

columns of V are unit length vectors.

Birkhoff’s theorem [62, p. 527] states that for any n × n doubly stochastic matrix Q (in

particular, for Q = V ◦ V), we can write Q as convex combination of permutation matrices.

In other words, there exist m ∈ N
∗, nonnegative coefficients α1, . . . , αm with

m∑
k=1

αk = 1, and

permutations τ1, . . . , τm of {1, 2, . . . , n} such that Q =
m∑

k=1

αkP(τk). Consequently,

tr
(
DAVDBVT

)
= aT

(
m∑

k=1

αkP(τk)

)
b =

m∑

k=1

[
αk

(
aTP(τk)b

)]
=

m∑

k=1

[
αk

(
n∑

i=1

aibτk(i)

)]

≥
m∑

k=1

[
αk

(
n∑

i=1

aibi

)]
=

(
n∑

i=1

aibi

)
·

m∑

k=1

αk =
n∑

i=1

aibi = tr (DADB) .
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The cost is minimized for those and only for those orthogonal matrices V such that V◦V is a

convex combination of matrices corresponding to permutations τ for which
n∑

i=1

aibτ(i) =
n∑

i=1

aibi.

Consequently, we obtain the desired result.

Proof of Theorem 5.2.1. Let J = K. Let us characterize the ensembles (σi)1≤i≤J that

minimize

GJ(σ1, . . . , σJ) =
J∑

i=1

s2
i

1 + γ2σ2
i

(A-19)

subject to
J∑

i=1

σ2
i = M , and σ1 ≥ . . . ≥ σJ ≥ 0.

If J = 1, then the solution is obvious: there is only one nonnegative value (namely σ1 =√
M ) satisfying the constraint and therefore it will also be optimal. If J > 1, we need a more

elaborate way of analysis and for this purpose we shall use an auxiliary lemma which will allow

us to relax the constraints, without critically influencing the optimal solutions.

Lemma. With the above notation, we have:

min
J∑

i=1
σ2

i =M

σ1≥...≥σJ≥0

GJ(σ1, . . . , σJ) = min
J∑

i=1
σ2

i =M

GJ(σ1, . . . , σJ) (A-20)

Proof. It is sufficient to prove that the minimum value on the left-hand side (i.e., on the more

restricted domain) is no larger than the one on the right-hand side. First, let us observe that GJ

is a continuous function. If we define this function on the compact SJ(0;
√

M) (the surface of a

ball), GJ reaches its minimum at a point (x1, . . . , xJ)T ∈ SJ(0;
√

M). But since GJ is even in

each of its arguments, we have

GJ(x1, . . . , xJ) = GJ(|x1|, . . . , |xJ |) (A-21)

and so we can assume without losing generality that xi ≥ 0, 1 ≤ i ≤ J .

Moreover, GJ(x1, . . . , xJ) ≥ GJ(xτ(1), . . . , xτ(J)) with equality if xτ(1) ≥ . . . ≥ xτ(J). This

means that we can also assume without losing generality that x1 ≥ . . . ≥ xJ ≥ 0. Thus the

lemma is proved.

We transformed our problem into minimizing a continuous function on a less restricted do-

main, which will help us describe the optimal ensembles in a simple fashion. We will employ

a slightly different parametrization of GJ , which not only embeds the constraint, but also allows

us to optimize a continuously differentiable function defined on a closed ball (as opposed to the

surface of such a ball).

Namely, let HJ : BJ−1(0;
√

M) → (0,∞),

HJ (σ1, ..., σJ−1) =
J−1∑

i=1

s2
i

1 + γ2σ2
i

+
s2

J

1 + γ2
(
M −∑J−1

i=1 σ2
i

) (A-22)
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which is a continuous function on the compact BJ−1(0;
√

M), and therefore has at least a mini-

mum point (σi)1≤i≤J on this set. Such a point can lie either on the border of the ball, or on the

interior. The first case implies that
J−1∑
i=1

σ2
i = M , and so σJ = 0. The problem is then reduced to

finding the minimum of the analogously defined cost function GJ−1, subject to
J−1∑
i=1

σ2
i = M .

As the sum of σ2
i ’s is M , there must exist an index i for which σi 6= 0. We can assume

without losing generality that J is the largest such index. As noticed before, if J = 1, we are

done. Otherwise, the minimum point (σ1, . . . , σJ−1) of HJ lies on the interior of BJ−1(0;
√

M).

From Lemma 5.5, we can assume that the optimal ensemble satisfies σ1 ≥ . . . ≥ σJ > 0.

Since HJ is differentiable on the interior of its domain, it follows that for all 1 ≤ i < J :

∂HJ

∂σi

=
−2σiγ

2s2
i

[1 + γ2σ2
i ]

2 +
2σiγ

2s2
J[

1 + γ2

(
M −

J−1∑
j=1

σ2
j

)]2 (A-23)

= −2σiγ
2





s2
i

[1 + γ2σ2
i ]

2 − s2
J[

1 + γ2

(
M −

J−1∑
j=1

σ2
j

)]2




(A-24)

and the gradient is null in (σ1, . . . , σJ−1). We obtain

s2
i

[1 + γ2σ2
i ]

2 =
s2

J[
1 + γ2

(
M −

J−1∑
j=1

σ2
j

)]2 =
s2

J

[1 + γ2σ2
J ]

2 , ∀ 1 ≤ i < J (A-25)

and consequently

si

1 + γ2σ2
i

=

J∑
i=1

si

J + γ2
J∑

i=1

σ2
i

=

J∑
i=1

si

J + γ2M
, ∀ 1 ≤ i ≤ J (A-26)

γ2σ2
i =

si

J∑
j=1

sj

(
J + γ2M

)
− 1, ∀ 1 ≤ i ≤ J (A-27)

We observe that the existence of an interior minimum point depends on how sJ∑J
i=1 si

(J + γ2M)

compares to 1. This is the same as saying that, in order for such a solution to exist, not even the

smallest among the si should be too much smaller than their “average”6.

6 We used quotes here because the lower bound is strictly smaller than the actual average.
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Let us denote by R the largest index J ≤ K such that

sJ∑J
i=1 si

(
J + γ2M

)
> 1. (A-28)

Such an index indeed exists, as for J = 1 the above condition is satisfied, and the set {1, . . . , K}
is finite. We shall prove now that for any index J ≤ R, it too satisfies condition (A-28).

Denote tj =
j∑

i=1

si, 1 ≤ j ≤ K. As observed before, the case J = 1 is clear. Assume J > 1.

Then condition (A-28) is equivalent to

sJ >
tJ

J + γ2M
⇔ tJ − tJ−1 >

tJ
J + γ2M

⇔ (tJ − tJ−1)(J + γ2M) > tJ

⇔ tJ(J − 1 + γ2M) > tJ−1(J + γ2M) ⇔ tJ
J + γ2M

>
tJ−1

J − 1 + γ2M
.

But then, since the sj values were ordered in decreasing order, we have:

sJ−1 ≥ sJ >
tJ

J + γ2M
>

tJ−1

J − 1 + γ2M

which proves that if J satisfies (A-28), then so does J − 1. Thus, we showed the existence of an

index R as in the statement of the theorem.

It follows immediately that the optimal values σi are

σi =






1

γ

√
si

tR
(R + γ2M) − 1, if 1 ≤ i ≤ R

0, if R + 1 ≤ i ≤ K.
(A-29)

We can easily verify that both constraints on the σi are verified by the values above, and thus the

theorem is completely proved.

Cauchy-Schwartz fails. Let us try to minimize
K∑

i=1

s2
i /(1 + γ2σ2

i ) s.t.
K∑

i=1

σ2
i = M , using

the Cauchy-Schwartz inequality:
(

n∑

i=1

a2
i

)(
n∑

i=1

b2
i

)
≥
(

n∑

i=1

aibi

)2

(A-30)

with equality if and only if either all bi’s are zero, or if there exists a real constant ρ, such that

ai = ρbi, ∀1 ≤ i ≤ n. In our case, this becomes

(
K∑

i=1

s2
i

1 + γ2σ2
i

)(
K∑

i=1

(1 + γ2σ2
i )

)
≥
(

K∑

i=1

si

)2

(A-31)

⇔
K∑

i=1

s2
i

1 + γ2σ2
i

≥

K∑
i=1

(1 + γ2σ2
i )

(
K∑

i=1

si

)2 =
K + γ2M
(

K∑
i=1

si

)2 . (A-32)
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We may be tempted to say that we have equality in the relation above, if and only if:

si√
1 + γ2σ2

i

= ct., ∀ 1 ≤ i ≤ K. (A-33)

Unfortunately, this is not always true, as this condition would necessarily imply the condition

in eq. (A-27). Nor should it be so, since we are overconstraining the quantities involved in the

Cauchy-Schwartz inequality (namely, we impose that all |bi| be supraunitary).

Proof of Correctness for Algorithm 5.2
First, we need to prove that it is indeed possible to construct the matrices Ui mentioned

above. Assume we are at the ith step in the loop (1 ≤ i ≤ M − 1). Namely, we know that the

first i−1 diagonal entries of matrix Qi−1 = Ui−1 . . .U0(Σ
2
K,min⊕0M−K)UT

0 . . .UT
i−1 are equal

to 1. We will search for the orthogonal matrix Ui such that the first i − 1 diagonal entries of

Qi = UiQi−1U
T
i remain unchanged, while the ith entry becomes 1. We will restrict our search

to orthogonal matrices of a particular form, namely to Givens rotations:

Gα,β(θ) =





1
. . .

cos θ · · · sin θ
...

. . .
...

− sin θ · · · cos θ
. . .

1





. (A-34)

where 1 ≤ α < β ≤ M , and θ ∈ [0, π). In our particular case, we shall take Ui = Gi,βi
(θi) and

we show how to find parameters βi and θi such that the invariant is satisfied.

To simplify the description, let us denote Ql =
(
q
(l)
jk

)

j,k=1,M
. Then, by assumption we

have q
(i−1)
jj = 1, ∀ 1 ≤ j < i. Let us observe that due to the particular form of Ui, we have

q
(i)
jj = q

(i−1)
jj , ∀ 1 ≤ j ≤ M, i 6= j 6= βi. In the simplest case (namely if q

(i−1)
ii = 1), we take

θi = 0, α = i and β = i + 1, which gives Ui = IM . Then q
(i)
jj = 1, ∀ 1 ≤ j ≤ i. Now, assume

without loss of generality that q
(i−1)
ii < 1. Since M = tr Qi−1 =

M∑
j=1

q
(i−1)
jj , it follows that there

exists an index βi, i + 1 ≤ βi ≤ M , such that q
(i−1)
βiβi

> 1. We will search now for θi such that

q
(i)
ii = 1. Let g ∈ R

M be defined by

gj =






cos θi, if j = i

sin θi, if j = βi

0, otherwise.

(A-35)
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(In other words, vector g is the transposed of the ith row of matrix Ui.) Then:

q
(i)
ii = gTQi−1g (A-36)

=
(

cos θi, sin θi

)
(

q
(i−1)
ii q

(i−1)
βii

q
(i−1)
iβi

q
(i−1)
βiβi

)(
cos θi

sin θi

)
(A-37)

=
(

cos θi, sin θi

)
(

q
(i−1)
ii cos θi + q

(i−1)
βii

sin θi

q
(i−1)
iβi

cos θi + q
(i−1)
βiβi

sin θi

)
(A-38)

= q
(i−1)
ii cos2 θi + 2q

(i−1)
iβi

cos θi sin θi + q
(i−1)
βiβi

sin2 θi (A-39)

We notice that sin θi = 0 will not give an acceptable solution, since then q
(i)
ii = q

(i−1)
ii < 1.

Therefore we can assume sin θi 6= 0. Then

cot2 θi + 1 =
1

sin2 θi

=
q
(i)
ii

sin2 θi

(A-40)

=
q
(i−1)
ii cos2 θi + 2q

(i−1)
iβi

cos θi sin θi + q
(i−1)
βiβi

sin2 θi

sin2 θi

(A-41)

= q
(i−1)
ii

cos2 θi

sin2 θi

+ 2q
(i−1)
iβi

cos θi

sin θi

+ q
(i−1)
βiβi

(A-42)

= q
(i−1)
ii cot2 θi + 2q

(i−1)
iβi

cot θi + q
(i−1)
βiβi

(A-43)

Now, all need to do is to solve a quadratic equation in t = cot θi:

(1 − q
(i−1)
ii t2 − 2q

(i−1)
iβi

t + 1 − q
(i−1)
βiβi

= 0 (A-44)

Since we assumed 1 − q
(i−1)
ii > 0 and 1 − q

(i−1)
βiβi

< 0, it follows that the discriminant is

positive:

∆ = 4(q
(i−1)
iβi

)2 − 4(1 − q
(i−1)
ii )(1 − q

(i−1)
βiβi

) > 0 (A-45)

and therefore we can take θi = cot−1

(
q
(i−1)
iβi

±
√

∆/4

1−q
(i−1)
ii

)
.

Proof of Lemma 5 (Error lower-bound). Let us recall that

min MSE = min
B,T

E = min
T

F = min
ΣK ,V

F = min
ΣK

G (A-46)

where in each case we assumed the appropriate constraint. Due to eq. (5.20) and to the formula

(5.23) on the optimal singular values, we have:

min E =
R∑

i=1

s2
i

1 + γ2σ2
i

+
N∑

i=R+1

s2
i =

R∑

i=1

s2
i

si
R∑

j=1
sj

(R + γ2M)
+

N∑

i=R+1

s2
i (A-47)

=

R∑
j=1

sj

R + γ2M

R∑

i=1

s2
i

si

+
N∑

i=R+1

s2
i =

(
R∑

j=1

sj

)2

R + γ2M
+

N∑

i=R+1

s2
i . (A-48)
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This gives an exact formula for the lower bound of the error function.
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Chapter 6

Conclusions

We have studied several ways in which related existing frameworks for signal representations,

particularly those pertaining to visual signal encoding, can be extended and improved. Since the

description of a signal or of an entire class of signals is intrinsically suboptimal if it does not

account for statistical properties of that class, we embrace the adaptive encoding point of view

as essential to an optimal design. The main challenge is that in so many cases adaptivity is too

impractical to employ, and therefore trading optimality for computation might not necessarily

be worth it. We beg to differ. As such, we suggested several ways in which the particularity of

the problem can be exploited to allow for practical adaptive solutions. In each of the instances

hereby studied, we follow two main goals: to clearly identify the theoretical principles which

govern the representation’s optimality, and to convey the most efficient algorithm to compute it.

Multiresolution ICA. We designed and implemented a hybrid multiresolution adaptive method

(MrICA) for image encoding. We demonstrated that it combines the advantages of multireso-

lution methods (representational power, and computational efficiency) and of adaptive methods

(statistical optimality), thus improving over both classes of representations. We illustrated the

practical merits of MrICA (specifically, its coding efficiency) by direct comparison with the cur-

rent image coding standard for images JPEG2000. The new method demonstrated that for a large

range of encoding rates, the average quality of the reconstruction (both perceptual, and measured

by SNR) is significantly better than that of JPEG2000. This strongly supports the idea of using

adaptivity as a source of practical improvement for modern image coders.

Point Coding. Existing approaches for the adaptive sparse encoding of large signals are known

to involve significant computational costs. A particularly useful approach in this respect is rep-

resenting the signal via a set of adaptive variable-size shiftable kernels (much smaller in size

than the signal itself). We studied the particularities of applying such an approach to images.

The most important merit of our method (called Point Coding) is that it produces a very efficient

adaptive code, by what can be considered a direct approach towards an approximately shift-

invariant representation. This is especially desirable in modeling natural or artificial encoding

systems necessarily robust to signal shifts, such as the visual sensory system. A significant con-

tribution of our implementation, is that both the encoding and the learning steps are performed
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using computationally efficient (e.g., fast and superfast) algorithms, thus allowing a practical way

to attain optimality.

Robust Coding. Finally, we provide a detailed mathematical study of Robust Coding - the prob-

lem of optimal linear coding with limited precision units. We show how to characterize optimal

encoding solutions in the case of Gaussian channel noise and arbitrarily many encoding units,

and derive efficient and stable algorithms for their computation. By conveniently expressing the

limit of optimization as the closed-form bound, we formally explain the intuition that noisy en-

coding units can preserve signal information if sufficiently many are used - a case very relevant

to modeling neural encoding systems such as the retina.

Future Research Directions

The research topics I have shortly presented here describe various situations when existing sig-

nal representations are improved by exploiting either the theoretical properties, or the statistical

structure of the signals, or both. These ideas can be extended and refined, sometimes with far-

reaching consequences.

Sparse ICA. Multiresolution ICA is limited in that the representation depends highly on the

associated multiscale transform; moreover, the correspondence between the subband ICA bases

and the full-scale optimal basis is not straightforward. A direct approach to deriving efficient

adaptive representations for large images can exploit an observed by-product of ICA for images:

namely, basis elements look like localized oriented edge features [14], which implies that the

basis matrix is sparse. By restricting the optimization to matrices satisfying some (fixed) spar-

sity pattern, the search space reduces considerably. In addition to estimating fewer parameters,

requiring less memory, and exploiting fast sparse-matrix algorithms, this method should likely

be very efficient, comparable to unconstrained ICA in this respect. The idea of speculating the

structure of optimal solutions suggests a general and simple recipe for designing adaptive repre-

sentations for large signals.

Algebraic Signal Processing Theory. Rigorously classifying signal transforms and their algo-

rithms is a primary goal of algebraic signal processing theory. The DFT, the sixteen trigonometric

transforms, and many other linear transforms [98] proved to be particular cases of polynomial

transforms fit by the general theory via algebraic matrix structure. An exciting direction is recon-

ciling the two apparently divergent views – deterministic and stochastic – on signal processing.

The first steps were made by establishing, for instance, conditions for the equivalence of Gauss-

Markov random fields and algebraic signal models, which connects the concept of Karhunen-

Loève transform to the Fourier transform. We plan to push these ideas further, by investigating

what are the correspondents of other adaptive linear transforms – Robust Coding, ICA – in the al-

gebraic theory. The immediate outcome would be our better understanding the structure of these

transforms. On the long term, this could lead to discovering more efficient algorithms, which

would make adaptive representations suitable for general-purpose hardware implementation.
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Online Matching Pursuit. A direction of particular interest to me is designing efficient algo-

rithms for nonlinear, greedy approximations of time-varying signals (sound, video). Matching

Pursuit has proven to be a very practical choice for spike extraction, in the case of shifted-kernel

dictionaries [107]. To apply it properly though, the entire signal must be available ahead of time;

however, in some situations (e.g., recording speech, music, or video) the encoding must be per-

formed in real-time and in and online manner. The main bottleneck in Matching Pursuit is not as

much updating the residual, as it is selecting the next atom in the representation. In the case of a

small set of kernels, the first issue is easily solvable. As for the second, a solution is to only fo-

cus on a small, “sliding window” area of the signal and thus process the signal in a quasi-online

fashion. The ability of such an approach in producing a sparse set of atoms remains open for

now, yet by inspecting partial results it seems comparable to that its offline counterpart. This

approach to online greedy approximation has a potentially high impact not only within signal

processing, but also in other research fields. For example, Spike Coding [107] has been shown

to produce a representation that is relevant to modeling the auditory nerve. However, the spikes

in the representation are computed in an offline fashion, unlike the real neural spikes. We expect

that an online greedy approach will fix this shortcoming, and thus improve the biological rele-

vance of Spike Coding. This promising idea could be of great potential help in manufacturing

better prosthetic hearing devices.
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[84] B. Mailhé, S. Lesage, R. Gribonval, and F. Bimbot. Shift-invariant dictionary learning for

sparse representations: extending K-SVD. In Proc. EUSIPCO, 2008. 4.1

[85] S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation.

IEEE Trans. Pattern Anal. and Mach. Int., 11(7):674–693, July 1989. 3.1

[86] S. Mallat. A wavelet tour of signal processing. Academic Press, 1998. 2.1, 3.1

[87] S. Mallat and Z. Zhang. Matching Pursuits with time-frequency dictionaries. IEEE-Trans-

SP, 41(12):3397–3415, December 1993. 2.3, 2.4, 4.2, 4.3

[88] G. Monaci, Fr. Sommer, and P. Vandergheynst. Learning sparse generative models of

audiovisual signals. In EUSIPCO’08, 2008. 4.1

[89] M. Narozny and M. Barret. ICA-based algorithms applied to image coding. In Proc. IEEE

Int. Conf. Acoust., Speech, and Signal Proc., pages I–1033 – I–1036, 2007. 3.1

[90] B.K. Natarajan. Sparse approximate solutions to linear systems. SIAM J. Comput, 24(2):

227–234, 1995. 2.3, 4.2, 4.3

[91] B. Olshausen. Sparse codes and spikes. In R.P.N. Rao, B. Olshausen, and M.S. Lewicki,

editors, Probabilistic Models of the Brain: Perception and Neural Function, pages 257–

272. MIT Press, Cambridge, MA, 2002. 2.4, 4.1

[92] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy

employed by V1? Vision Res., 37:3311–3325, 1997. 3.1, 3.1, 4.1

[93] B. A. Olshausen, P. Sallee, and M. S. Lewicki. Learning sparse images codes using a

wavelet pyramid architecture. In Advances in Neural Information Processing Systems,

volume 12. MIT Press, 2000. 3.1, 4.4

[94] V.Y. Pan. Structured Matrices and Polynomials: Unified Superfast Algorithms.
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