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ABSTRACT

It is well-known that the discrete Fourier transform (DFT)eofi-
nite length discrete-time signal samples the discrete-tifrourier
transform of the same signal at equidistant points on the airi
cle. Hence, as the signal length goes to infinity, the DFT @gites
the DTFT. Associated with the DFT are circular convolutiom a
periodic signal extension. In this paper we identify a lacipss
of alternatives to the DFT using the theory of polynomialefigas.
Each of these Fourier transforms approaches the DTFT juttteas
DFT does, but has its own signal extension and notion of danvo
tion. Further, these Fourier transforms have Vandermotrdetare,
which enables their fast computation. We provide a few @rpen-
tal examples that confirm our theoretical results.

Index Terms— Discrete Fourier transforms, boundary value prob-

lems, spectral analysis, algebra, algebraic signal psiogsheory,
Vandermonde matrix

1. INTRODUCTION

The discrete-time Fourier transform (DTFT) for a discriiee sig-
nal with finite suppors = (so, ..., sn—1) iS given by
y(0) = Z see % 0 e (—m, 7). 1)

0<tl<n

Computingy () is equivalent to evaluating the polynomiglz) =
> o<ien sex’ on the unit circlee ™%, 0 € (—m, 7).

For concrete computation usually the discrete Fourieisfram
(DFT) is used, which computes

y(k) = Z Sze_]’%[,

0<i<n

0<k<n.

@)

Computingy(k) is now equivalent to evaluating(z) at then nth
roots of unitye™2"%9/" 0 < k < n and shows that the DFT in
(2) samples the DTFT in (1) at equidistant points on the unife

Hence, as: goes to infinity, the DFT approaches the DTFT. Further,

it is well-known that applying the DFT assumes that the digria
periodically extended and that the associated convoluignomes
circular convolution.
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The derivation of the alternatives to the DFT makes use of the

Beraha-Kahane-Weiss theorem [1] that describes the asyimpe-
havior of root sets of polynomials. We combine this theoreitt w
the theory of polynomial algebras [2], which is known to dés
the DFT [3] algebraically. This connection was recentlyeexted to
the algebraic signal processing theory [4].

Organization. Section 2 explains the polynomial algebra frame-
work underlying both the DFT and the alternative transfotinas we
derive in this paper. This framework reduces the problemeoive
ing the alternative transforms to finding sequences of mtyials
whose root sets converge to the unit circle. We identify gdarlass
of such sequences in Section 3 and consider a few concretetea
for experiments in Section 4. We conclude with Section 5.

2. BACKGROUND

The key to deriving alternatives to the DFT is its interptietain the
framework ofpolynomial algebraC[z]/p (z), which we overview
in this section. Every polynomial algebra has an associatéidn
of boundary condition, signal extension, convolution,ctpen, and
Fourier transform, as explained in the algebraic signatessing
theory [5, 4]. As running example, we uggz|/(z™ — 1), which is
known to be associated with the DFT [3].

In short, we will show in this paper that polynomials(z) other
thanz™ — 1 can be used to define alternatives to the DFT.

Polynomial algebra. An algebrais a vector space that is also
aring, i.e., permits the multiplication of its elements.ayles in-
clude the complex numbefs and the complex polynomialS[z].

Letpn(z) = 2" + Y, ,., Biz’ be a (normalized) polynomial
of degreeleg(p) = n. The set of all polynomials of degree less than
n,

Clal/pu(2) = {s(2) = Y sea’ | deg(s) < n}
0<t<n

with addition and multiplication modulp(z) is called gpolynomial
algebra As a vector spac&;[z]|/p(x) has dimensiom. As a basis,
we choose = (1,x,...,z"" ). Fors(z) € C[z]/p(z), we denote
the list of coefficients witls = (so, ..., Sn—1).

As an exampleC[z]/(z™ — 1) is a polynomial algebra.

Boundary condition and signal extension EveryC[z]/pn (z)
has an associated (right) boundary condition which is abthiby
reducingz™ modpy, (z) = =3 -, Bizt. Similarly, the (right)

Contribution. In this theoretical paper we derive a large setSignal extension is given by reducing’ modp, (x) for m > n.

of alternative transforms to the DFT, each of which appreadhe

In our examplep,(z) = 2" — 1, i.e., 2" modz™ —1 =1is
m modn

DTFT asn goes to infinity. Each of these transforms has its own asthe cyclic boundary condition. Further!” modz™ — 1 = = ,

sociated boundary condition and signal extension (whiehhance
not periodic) and notion of convolution. Further, each efshtrans-
forms has a Vandermonde structure, which enables its fagpot@-

tion using at mosO(n log?(n)) operations. We show experimental

results with examples of these transforms that confirm oewreti-
cal result and that compare them to the DFT when applied grebi
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i.e., a periodic signal extension.

Convolution. The convolution associated withi[z]/pn(z) is
the multiplicationh(z)s(xz) modp(z).

In our examplé:(z)s(x) modz™—1 is equivalent to the circular
convolution of the coordinate sequenteands[3].

Spectrum and Fourier transform. We assume,, (x) has pair-
wise distinct zerosx = (ao,...,an—1). Then the Fourier trans-
form associated witlC[z] /p, (z) is given by the Chinese remainder
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Fig. 1. The structure imposed on the signal by the polynomial algewherea;(x) € C[z] andao, ar # 0. Then,z € C is a limit of zeros
braC[z]/(z™ — 1) and hence by the DFT. if and only if one of the following holds:
i. |z] =1.
theorem [2], which decomposes it into a Cartesian produchnet ii. [2| <1andao(z) = 0.
dimensional polynomial algebras: ii. |z|] >1andax(z) =0.

F: Cla]/pn(z) — @Bpcpen Clal/(z —ax),

s(x) +—  (s(ao),...,s(an-1)).

In other words, Theorem 1 states that the limits of zerosepibly-
nomial sequence in (5) is the entire unit circle, plus pdgdihitely
many additional points, namely the roots @f(z) inside the unit
F is a linear mapping (even an isomorphism of algebras). Henceircle and the roots af (z) outside the unit circle.

with respect to the basisof C[z]/p.(z) and (z°) = (1) in each This result can be readily extended by combining such fasili
of theClz]/(x — o) it is represented by a matrix which takes the of polynomials, which yields the following corollary.

form of a Vandermonde matrix (evaluating all basis elemanisat

(©)

all zeros ina): F = [0lJock.ecn. (4) Corollary 1 Letp,(x) = S, ai(z)z " d_)J with a;(z) € Clz]
=" andao, ar # 0, d = deg(ar). Thenz € C is a limit of zeros for
Note that this class of transforms does not contain theeliscosine  this sequence if and only if one of i.iii. in Theorem 5 holds.
and sine transforms, which can be captured in the algelraice-
work by using Chebyshev polynomials [6, 4]. pn(z) = 2™ — 1is a special case of the sequence in Corollary 1.
In our example, the zeros af® — 1 areay = Wk wn = To prove Theorem 1, we use a theorem from Beraha, Kahane,
exp(—2mj/n). HenceF = [wFo<re<n = DFT, is exactly and Weiss [1] explained next.
the discrete Fourier transform, i.e., thg in (2) are computed as The Beraha-Kahane-Weiss theoremSuppose{q, | n > 0}
y=FsY= Yoy, Yn—1)- is a sequence of polynomials satisfying theth degree recursion

Visualization. The operation of: on the basi$ of C[z]/pn ()
can be represented by a graph. E.g., in our exapyple) = =" — 1, _ i , ,
we obtain the directed circle in Fig. 1. Note how the grapHhuas Intm(7) = — Z Fi(@)antm—; (@), ©)
the boundary condition™ = z°. Intuitively, the graph is the struc- =t

ture imposed on a signal by the polynomial algebra. . where thef; € C[z] are polynomials. For each € C, (6) is an
Fast algorithms. Every general Fourier transform in (4) is @ qrginary linear recurrence for the numbergz), n > 0. With this
Vandermonde matrix and hence possesses algorithm&Mittiog? (1)) ghservation, we can solve (6) following the standard praoedor
runtime [7]. In the case of the DFT, eveX(n log(n)) is possible. linear recurrences [8, app.A], except that the resultsmtbpaz.
The characteristic equatiomssociated with (6) is
3. ALTERNATIVE DISCRETE FOURIER TRANSFORMS m
Problem statement. We are interested in finding polynomial alge- @a(A) = A"+ Z fi(@A" = 0. )
brasC[z]/p» (x) such that the set of zeros@f converges to the unit =t
circle asn goes to infinity. The theory in Section 2 yields for each | et ), (z),..., A, (2) be them zeros of ofQ,. Ifthe \; (z) are

choice ofpn(x) the associated notions of signal extension, convopajrwise distinct for a particular, theng,, (=) has the form
lution, spectrum, and Fourier transform. By constructite, latter

will approach the DTFT in (1) as goes to infinity, just as the DFT m
(which arises from the special casg(z) = 2™ — 1) in (2) does. gn(@) =Y ay(@)A(2)", (8)
We will use the following definition. i=1

o where then; are determined by solving a systenvoflinear equa-
Definition 1 Let {p,(x) | n > 0} be a sequence of complex poly- tjons obtained by letting. = 0,1, ...,m — 1. If the \;(z) are not
nomials of increasing degreleg(p.) = n. We say that € Cisa  pajrwise distinct, (8) is adjusted in the usual way [8, agp.A

limit of zerosfor this sequence if there is a sequedeg | n > 0} We assume that the following twmndegeneracy conditiorse
such thap, (z,) = 0 and lim z, = x. satisfied:

As an example, the limits of zeros of the sequence given by * {gn} does not satisfy a recursion of degree less than

pn(z) = 2™ — 1 are precisely all points on the unit circle. Letus ob- e There are na, j such that\;(z) = w;(x) for a constantu
serve that we can extend the definition above for fam{liggx) } of with |w| = 1.
polynomials with increasing degrees (not necessarily lemgudneir

! Under these conditions, the following theorem holds.
index).

Main theorem. The main result of this paper is the follow-
ing theorem, which yields a large class of sequences of patyn
als whose zero sets converge to the unit circle. We deteramde
experimentally test the associated alternatives to the IBf€T. ). M) >N (2)],2 <j <m,andai(z) =0

Theorem 2A point z € C is a limit of zeros of{¢, } if and only if
the \;(z) can be ordered such that one of the following holds:



(iD). [Ai(2)] = |X2(2)] = ... = [\u(z
m, for somel > 2.

N>R 0+1<5<

Proof of Theorem 1. To apply Theorem 2, we show that our

polynomial sequence (5)
e satisfies a linear recursion,

¢ allows for a simple computation of the rootg(x) and of the
coefficientsa; () in (8), and

o satisfies the nondegeneracy conditions.

Lemma 1Let {¢.} be the sequence defined in (5) andllet {i |
0<i<kaz)#0} =0=t1<i2<...<im=k). Then

{gn} satisfies the following recurrence of order = |I|, and no
recurrence of smaller order:
=Y 1i(@)gn—s (@), 9
j=1
where the polynomialg; are defined as
FIOEIC DD | £ (10)

JCI,|J|=j L€t
Further, the characteristic equation takes the simple form

/\’"+ny =[x =",

i€l

AT (11)

which implies);(z) = z%; hence the nondegeneracy condition is

satisfied. Comparing (8) with (5), this also shawsz) = a, ().

In particular, the recurrence for thg does not depend on the

a;(z) in (5); thea; will affect only the initial conditions.

Proof. First we prove thafq. (z) } indeed satisfies the relation above
by induction on|I|. If m = 1 (implying k£ = 0) the statement holds,

sinceg, (z) = ao(z) = gn-1(z), fi(z) = —1,andQ.(\) = A\—1.
Suppose now that the statement is truerfor- 1 > 1. We shall

prove it also holds forn (implicitly, m > 2 and therefore: > 0).

Letl, = I\ {k} # 0 (i.e., I without its maximum element) and

Z bi(x)x

i€l

Tn—1(z) = gn(x) — mkqn_1(x) = i("_l), (12)

where for alli € Iy, b; ( ) = ai(z)(z' — z*) # 0. Definef; (z) =

- [T =%, wherel < j <m —1. As|I| = m — 1,
JCIy,|J|=5Led

by applying the induction hypothesis to the sequepeg}, we find

m—1

Tn— 1 f]
Jj=1

)rn—1—j(x)

H

m—

= — fi(x)gn-1( — fi1(@)a")gn—j (@)

j=2
+ J?m—l (m)mkqn_m(m).

We conclude the proof of the first claim in our lemma by observ-

ing that — fl( ) = —fi(x) — 2", fm-1(x)z® = —fm(z), and
—fi (@) + fi-1(z)x k:ffj(x)for1<j<m,which implies

Z fix

an(x) = rn1(2) + 2"gn_1( Yan—j(x). (13)

-1

/A

@O—P @—P oo —Pp @—P oo —p @ —Pp @
1 -1
370 T :L,Ln/Qj " ™

Fig. 2. The structure imposed on the signal jz]/(z" —
5z"/2] 1 1) and its associated Fourier transform.

To show thaf ¢, } does not satisfy any recursion of order smaller
thanm, we use proof by contradiction but omit the details due to
space limitations. O

At this point we have shown that Theorem 2 is applicable to (5)
To complete the proof of Theorem 1 we inspect which pointisfyat
one of the two conditions in Theorem 2. If forzac C, exactly one
of |\;(2)| = |2%| is maximal, therz| # 1. In the casdz| > 1,
we know|z*| > |2¢|, fori € T\ {k}, and soz is a limit of zeros
for {¢»} if and only if ax(z) = 0. In the casdz| < 1, we have
1 = |2° > |#Y, fori € T\ {0} andz is a limit of zeros if and
only if ap(z) = 0. This completely handles the first condition in
Theorem 2. Alternatively, if for € C, there are,,j € 1,4 # j,
such thatz*| = |27|, then necessariliz| = 1. Since for allz on the
unit circlel = |zi|,z’ € I, we conclude that any such point is a limit
of zeros for{g, }. This completes the proof of Theorem 1.

Associated Fourier transforms. For each polynomial sequence
pn Of the form considered above, and hence polynomial algebra
C[z]/pn, the general theory from Section 2 provides the associated
notions of boundary condition and signal extension (whidlhmwot
be periodic in general), convolution, spectrum, and Four&ns-
form. The latter will be an alternative to the DFT, and has s fa
algorithm due to its Vandermonde structure (Section 2).

4. EXAMPLE AND EXPERIMENTS

Example. As a first example, we consider the polynomiglgz) =
z™ — 2z1"/2) 4 1, which match Corollary 1, and apply the theory
in Section 2.

The boundary condition if[x]/p is given byz™ = 3z l"/2] -
1, which yields the visualization in Fig. 2. Convolution istmul-
tiplication of polynomialsh(z)s(x) modp. (z). The Fourier trans-
form F in (4) is determined by the zeros pf,. For evenn = 2m
they can be explicitly computed as

/s —m 1
« :( \/iwm /2+k7 Tﬂwm /2+k)1§k§
We order the roots by their angles fromr to 7. The roots distribu-
tion for n = 20 and80 is shown in Fig. 4(b) below.
Hence the Fourier transform in the case- 2m becomes

(=11
Fom =[2 m

k _m
wilzdti=8)t (14)

]ng,l<2m-

Experiments. For our experiments, we consider four sequences
of polynomials; the first is associated with the DFT:

pn(z) =2" — 1, (15)
pu(z) = 2™ — 2zl 41, (16)
pu(z) = (42° + 1)a" % + (5% + 1)mt%J + (72° + 1), (7)
pu(z) = (22° +3)2" % — (2° — 2). (18)

In each case, we numerically compute the root sep,dfr) for
n € {20,50,80}, construct the corresponding Fourier transform,
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Fig. 3. Sample signal.
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Fig. 4. Roots of polynomial®,, (z) for n = 20, 50, and80.

and apply it to the first coefficients of the sample signal shown in
Fig. 3, which is one row of a gray-scale image.

According to Theorem 1, all roots of the polynomial sequence
(15) and (16) converge to the unit circle. The sequence (&%) h
five limits of zeros inside the unit circlez, = {/1/7e™ k175,

0 < k < 4. The sequence (18) has three limits of zeros outside th
unit circle: zx = §/3/2e™(2+1/3 0 < k < 2. This is confirmed
by Fig. 4, which shows the root sets forc {20, 50, 80}.

Fig. 5(a)-5(b) shows, fon € {20, 80}, the associated Fourier
transform applied to the signal in Fig. 3. We observe thatsttec-
tra become similar fon = 80 as expected. In the last case, the
three limits of zeros outside the unit circle cause the theseciated
spectral values be unbounded with respeat.ttn contrast, the five
limits of zeros inside the unit circle in the third case do centise this
behaviour.

3
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n/2 n/2
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Fig. 5. Fourier transform of the sample signal f6fz]/p. (x) for
n = 20, 80.

5. CONCLUSION

The question we addressed in this paper is arguably fundairten
signal processing: why do we use a periodic signal extersiwh
hence a DFT for finite length discrete-time signals? We slativat

if only asymptotic convergence to the DTFT is required, ¢reme in-
deed many choices, each of which with its own signal extenasim

notion of convolution. Further, each of these alternatre@tforms
possesses fast algorithms, which makes them in princigiiufor

applications. The question of these applications stillaiEs One
source may be those, such as image processing, in whichsinaps
tion of periodicity is unrealistic. For those, our class @isforms
may prove useful.
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