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Robust Coding Over Noisy Overcomplete Channels

Eizaburo Doi, Doru C. Balcan, and Michael S. Lewicki

Abstract—We address the problem of robust coding in which the
signal information should be preserved in spite of intrinsic noise
in the representation. We present a theoretical analysis for 1- and
2-D cases and characterize the optimal linear encoder and decoder
in the mean-squared error sense. Our analysis allows for an ar-
bitrary number of coding units, thus including both under- and
over-complete representations, and provides insights into optimal
coding strategies. In particular, we show how the form of the code
adapts to the number of coding units and to different data and
noise conditions in order to achieve robustness. We also present
numerical solutions of robust coding for high-dimensional image
data, demonstrating that these codes are substantially more robust
than other linear image coding methods such as PCA, ICA, and
wavelets.

Index Terms—Channel capacity constraint, channel noise,
mean-squared error (MSE) bounds, overcomplete representa-
tions, robust coding.

1. INTRODUCTION

ANY approaches to optimal coding focus on rep-
Mresenting information with minimum entropy codes
derived by approximating the underlying statistical density of
the data, such as principal or independent component analysis
(PCA or ICA), or by developing encoding/decoding algorithms
with desirable computational and representational properties,
such as Fourier and wavelet-based codes. Another important,
but less commonly addressed, aspect of coding is robustness:
How much information about the signal is retained when the
representation is subject to noise, i.e., when the representation
has limited precision?

Standard approaches to coding often fail tests of robustness.
Although a code may achieve maximum dimensionality reduc-
tion with minimal error or may be statistically optimal in terms
of minimal entropy, the representation is often assumed to be
real valued and noise free, which implicitly assumes a repre-
sentation whose coefficients have infinite precision. If the co-
efficients are subject to noise or their precision is limited, op-
timality of the representation cannot be guaranteed. Optimality
under limited precision is a common practical concern. It would
be useful if the data can be represented with small error and with
low-bit precision. This issue is also relevant to biological neural
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representations where the coding precision of individual neu-
rons has been reported to be as low as a few bits per spike (for
a review, see [1]).

In this paper, we present a new coding scheme called robust
coding that makes use of an arbitrary number of coding units
to minimize the reconstruction error. One characteristic of ro-
bust coding is that it can introduce redundancy in the code in
order to compensate for channel noise, unlike PCA or ICA that
aim to reduce redundancy. Because noisy, low-precision codes
can be interpreted as a representational bottleneck, the problem
might appear similar to dimensionality reduction or compres-
sion. However, it is a fundamentally different problem. To take
an example, if a great number of coding elements were avail-
able while their coding precision were significantly restricted,
the apparent dimensionality would increase while the total rep-
resentational capacity would still be limited.

This paper is organized as follows. First, in Section II, we
formulate the problem. In Section III, we analyze the solutions
in the general case, and then derive the optimal solutions for
the 1- and 2-D cases. In Section IV, we demonstrate robustness
of the proposed coding method in the context of image coding.
Finally, in Section V, we summarize our results and discuss re-
lated studies.

II. PROBLEM FORMULATION

To define our model, we assume that the data are /V-dimen-
sional with zero mean and covariance matrix X, . For each data
point X, its representation r in the model is the linear transform
of x through a matrix W € RM*¥ | perturbed by the additive
noise (i.e., channel noise) § ~ N (0, 02I5)

r=Wx+6=u+6é. (1

We refer to W as the encoding matrix and to its rows as en-
coding vectors. The reconstruction of a data point is the linear
transform of the noisy representation using matrix A € RV*M

X = Ar = AWx + Aé. 2)

We refer to A as the decoding matrix and to its columns as de-
coding vectors. The term AWX in (2) determines how the re-
construction depends on the data, and Aéd expresses the influ-
ence of the channel noise on the reconstruction. If there is no
channel noise (§ = 0), then AW = I is equivalent to perfect
reconstruction. A graphical description of this system is shown
in Fig. 1.

1057-7149/$25.00 © 2007 IEEE
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The goal is to form an accurate representation of the data that
is robust to the presence of channel noise. More precisely, we
seek an optimal pair of linear encoder and decoder, and quan-
tify the accuracy of a representation by the mean-squared error
(MSE) of the reconstruction. The error of each sample point is

e=x—%x= Iy —AW)x — Aé 3)
and the MSE &€ = (eT€) = tr((ee’)) in matrix form is

E(A,W) = tr{(Ixy — AW)Z, (Iy — AW)T}
+oitr{AAT}. &)

Note that the optimal values of A and W depend solely on
second-order statistics, i.e., the covariance matrix of the data
3« and the chanel noise variance o'g.

We are interested in the system in which the precision of the
code is limited, i.e., the representation r has a limited signal-to-
noise ratio (SNR). In order to limit the SNR, we fix the variance
of each coding unit

(uj) = 0. Q)

which yields the SNR
2
O—U
7= (6)
Os

Here, we assume that the SNR is the same for each unit.
As the channel capacity of information is defined by
C = (1/2)logy(v? + 1) [2], limiting the SNR is equiva-
lent to limiting the capacity for each unit. We will refer to this
constraint as the channel capacity constraint.

III. OPTIMAL SOLUTIONS AND THEIR CHARACTERISTICS

The goal is to minimize the MSE (4) subject to the channel ca-
pacity constraint (5). In this section, we first analyze the problem
in the general case as far as possible, and then present the op-
timal solutions for 1-D and 2-D data.

First, let us consider how to incorporate the channel capacity
constraint in the analysis. Equation (5) is expressed in terms of
W as

diag(WE,W7') = 021y, @)

where 17 = (1,...,1)T € RM. It takes a convenient form
diag(VVT) =1y, 3

when we define V by a linear transform of W

V = WES/g, ©)
where ¥ = EDE is the eigenvalue decomposition of the
data covariance matrix S = D(/2) = diag(v/A1, ...,V x),
and A\ = Dyy are the eigenvalues of 3. To summarize, the

channel capacity constraint is now written in terms of W so that
its linear transform V should have row vectors of unit length.
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Next, let us consider a necessary condition for the minimum
&, i.e., the first derivative of £ should be zero with respect to all
free parameters. 9 /0A = O yields

1
A = —~’ES(Iy ++2VTV)"IVT

Ou

(10)

(see Appendix A for the derivation).

Using the channel capacity constraint (9) and the necessary
condition with respect to A (10), the MSE (4) can be simplified
as (Appendix B)

E=tr{D - (Ix +7*VIV)~1} (11)

As a result, the problem has been reformulated as finding V
that minimizes (11) where V should satisfy the channel capacity
constraint (8).

A. One-Dimensional Data

In the 1-D case, the encoding (1) and the decoding (2) become

r=wz+6é (12)

z=alr (13)

where 02 = ¥, € R,a = AT €¢ R"M andw = W ¢
RM>1 From (9), V = v € RM*! is by definition

v=w-1l-0,/04. (14)
Accordingly, the problem is to minimize
E=tr{o2 - (L+~*vIv) '} (15)
subject to
diag(vv’) =1y & v = 1. (16)

The optimal w is determined solely from the channel capacity
constraint (16)
O-’U

wj =+—.
Ox

a7

Plugging it into (10) and (15), we obtain the optimal a and the
minimum MSE

1 'y?
= — 18
a] wj M’Yz-i—l ( )
2
o
E=—2= 19
M~2 +1 (19)

This simplest case already exhibits characteristics of the more
general cases. The encoding (17) is just repeating the same mea-
surement of the data (up to sign) M times (with the appropriate
scaling in order to satisfy the channel capacity constraint), while
the decoding (18) depends on the SNR (y?) in such a way that
the reconstruction becomes less representation-dependent if the
SNR is small (a; — 0 as v — 0). This dependency is coun-
teracted by the increase of the number of units (M). Accord-
ingly, the minimum MSE depends on the SNR and the number
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of units, monotonically decreasing with respect to both, and
a decrease in SNR can be compensated by an increase of the
number of units to maintain the reconstruction accuracy. An-
other aspect of the minimum MSE is that the second term in (4),
o2tr(AAT) = ||al|} leads the optimal a into having as small
length as possible, while the first term prevents it from being
arbitrarily small; the optimum is given by the best tradeoff be-
tween them. It implies that AW = Iy is not optimal when
02 > 0 [i.e., the identity in the data-dependent term in (2) is not
optimal under the presence of channel noise].

B. Two-Dimensional Data

The constraint (8) implies that the row vectors of V should
be on the unit circle. We can parametrize V as

cosf; sinf;

V= (20)

COSs 19]\/[ sin 91\1

where 6; € [0,2) is the angle between the jth row of V and
the principal eigenvector of the data e (E = [e1,es], A1 >
Ao > 0)

Using this parametrization, (11) is further simplified as (see
Appendix C)

A1+ A2) (A2 +1) = L (A — Ag)Re(2)

€= M 2_1 @h
(2 +1)" = 7422
where, by definition
M M
Z =Y zj=) (cos20; +isin26;). (22)
7=1 7j=1

Now, the problem is reduced to finding a complex number Z
that minimizes £ [note that once Z is determined, we can obtain
feasible {6, } ;‘il in 'V, which, in turn, determines W and A by
(9) and (10)].

In the following, we analyze the problem in two cases: when
the data variance is isotropic (i.e., A\ = Ao in terms of the data
variance along the principal axes), and when it is anisotropic
(A1 > A2). As we will see, the solutions are qualitatively dif-
ferent in these two cases.

C. Isotropic Case

Due to the isotropy of the data variance, \; = Ao = o2, and
without loss of generality, E = I. These simplify (21) as
202 (Y% +1
£=— - (37 1) . (23)
(52 +1)" = 2P

In this case, € is minimized whenever |Z|? is minimized.
1) If M = 1: By definition (22), | Z|? = |21|*> = 1, yielding
the optimal solutions as

w=2uv

O

(24)
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2
Oz Y T
A=—. Vv 25
o V2 +1 (23)

where V. = V(6;),V6; € [0,2m). Equations (24) and (25)
mean that the orientation of the optimal encoding and decoding
vectors is arbitrary (Fig. 2, M = 1) and that the length of those
vectors is adjusted exactly as in the 1-D case [(17) and (18) with
M = 1]. Accordingly, the minimum MSE is given by
a2 2
&= i1 + 0.

(26)

The first term takes the same form as in the 1-D case [(18) with
M = 1], corresponding to the error component along the axis
that the encoding/decoding vectors represent, while the second
term is the whole data variance along its orthogonal direction
(along which no reconstruction is made), as depicted in Fig. 2
with M = 1.

2) If M > 2: There always exists a set of angles ¢; for which
|Z)? is 0. This can be verified by representing Z in the complex
plane (the Z diagram in Fig. 2): There is always a configuration
of connected, unit-length bars that starts from, and ends up at
the origin, indicating Z = |Z|? = 0. Accordingly, the optimal
solution is

W:%V 27)
2
Oy ’Y T
A=2._T 28
ou 5P+l e

where the optimal V. = V(#y,...,0,) is given by such
{6, ;‘il for which Z = 0. Namely, as illustrated in Fig. 2,
if M = 2, then z; and 2z must be antiparallel but are not
otherwise constrained, making the two decoding vectors (and
also the two encoding vectors) orthogonal, yet free to rotate.!
Likewise, if M = 3, the decoding vectors should be evenly
distributed yet still free to rotate, due to the equilateral triangle
of Z configuration. If M = 4, the four vectors should be two
pairs of orthogonal vectors since the Z configuration should
be a rhomboid, consisting of two pairs of antiparallel bars. If
M > 5, there is no obvious regularity anymore. In all cases,
the norm of the decoding vectors gets smaller by increasing M
or decreasing v2, while the norm of the encoding vectors are
always constant [i.e., 0,, /o, from (27)] as observed in Fig. 2.
With Z = 0, (23) is minimized as

202

=g (29)
Xy +1

It takes the same form as in the 1-D case (18) considering that in
both cases the numerator is the data variance, tr(Xy ), and that
the factor of 72 is the overcompleteness ratio, M/N.

D. Anisotropic Case

Considering the anisotropic condition (A1 > Az), (21) is min-
imized when Z = Re(Z) > 0 for a fixed value of | Z|?. There-

Note that both the encoding (27) and the decoding (28) vectors are parallel
to the rows of V. Also, from (20) and (22), the angle of z; from the real axis is
twice as large as that of a; and of wj .
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Fig. 2. Optimal solutions for isotropic data. M is the number of units and 72 is the SNR in the representation. “Variance” shows the variance ellipses for the data
(gray) and the reconstruction (solid). For perfect reconstruction, the two ellipses should overlap. “Encoding” and “Decoding” show encoding vectors and decoding

vectors (solid bars), respectively. The gray bars show the principal axes of the data, e, and e,. “Z diagram” represents Z = S

1% (22) in the complex plane,

where each unit length bar corresponds to a z ;, and the end point indicated by “X” represents the coordinates of Z. The set of dark gray dots in a plot corresponds
to optimal values of Z; when this set reduces to a single dot, the optimal Z is unique. In general, there could be multiple configurations of bars for a single Z,
implying multiple equivalent solutions of V' (and, therefore, those of A and W). At M = 2 and 42 = 10, we show with dotted bars an example of Z that is not

optimal (corresponding encoding and decoding vectors not shown).

fore, the problem is reduced to seeking a real value Z = y €
[0, M] that minimizes

2
00
%74’!/2

()\1+/\2)( +1)—
(Y2 +1)°

1) If M = 1: In this case, from (22), Z = Re(Z) > 0 iff
61 = 0, which determines the optimal solutions

A
e 2)y

(30)

Oy
W= ﬂ_ei 31)
1
2
Ao (32)

o Y2+1

where ¢ = £1. As illustrated in Fig. 3, with M = 1, the en-
coding and decoding vectors are fixed along the first principal
axis (e1), which contrasts to the isotropic case where the angle
is arbitrary [Fig. 2, M = 1]. Accordingly, the minimum MSE is

At

e=-21
72 +1

This has the same form as in the isotropic case (26) except that
the first term is now specified to the variance along the first
principal axis, A1, by which the encoding/decoding vectors can

most effectively be exploited for representing the data, while the
second term is specified as the data variance along the second

principal (or minor) axis, A2, by which the total misreconstruc-
tion is mostly minimized.

2) If M > 2: We can derive the optimal y from the necessary
condition for the minimum, d€/dy = 0, yielding

G (o 2)

VAL VA,

The existence of a root y in the domain [0, M] depends on how
2 compares to the following quantity:

2 _ Ve -1 5)

’-YC M

which we shall call the critical point.
If v2 > ~2, then (34) has a root within [0, M|

v v ( + M) (36)
\/_ +VA

with y = M if 42 = 2. Accordingly, the optimal solution is
given by

_ GU/\/)‘—I 0 T
T
2
A VMtV 7 oon (38)

20y, My 41
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Fig. 3. Optimal solutions for anisotropic data. Notations are as in Fig. 2. We arbitrarily set \; = 1.87 and A, = 0.13. v? > ~2 holds for all M > 2 but the one

with M = 2 and 2 = 1.

where the optimal V. = V(6y,...,0,) is characterized by
the Z diagram as illustrated in Fig. 3, which we will describe
shortly.2 Accordingly, the minimum MSE is

_ b (VR

_%72—{—1 2

(39)

Note that (37)—(39) are reduced to (27)—(29) if A1 = As.

If v2 < 42, then d€/dy = 0 does not have a root within
the domain. However, d€/dy is always negative, and hence &
decreases monotonically in [0, M]. Therefore, the minimum is
obtained for y = M, yielding the optimal solution

W = %te{ (40)
1
2
A=YM T (41)

o M 2 +1
where t € RM,¢;, = 41, and the minimum MSE is given by

M

E=————+ Ao
M’72—|—1+ 2

(42)
This shares the same form as in M = 1 (33) except that we can
now decrease the error by increasing the number of units. It im-
plies that the best strategy is to devote all the representational
resources solely along the first principal axis if the representa-
tional power is too limited, either by M (the number of coding
units) or 72 (the SNR), so that v2 < ~2.

20ne can see that the optimal encoding and decoding vectors are restricted on
an ellipse and a circle, respectively. The decoding vectors are given by rotation
of V using E followed by the uniform scaling (38). The encoding vectors are on
the ellipse whose principal axes are the eigenvectors of the data with the scaling
that flatten along the first data principal axis (37).

Let us describe the characteristics of the optimal solutions
using the Z diagram (Fig. 3). First, the solution depends on the
SNR relative to the critical point. If 42 > +2, the optimal Z cor-
responds to a certain point between 0 and M on the real axis.
Specifically, for M = 2 the optimal configuration of the bars is
unique (up to flipping about the real axis), meaning that the en-
coding/decoding vectors are symmetric about the first principal
axis; for M > 3, on the other hand, there are infinitely many
configurations of unit-length connected bars starting from the
origin and ending at the optimal Z, and nothing can be added
about their regularity. If 42 < ~2, the optimal Z is M, and,
therefore, all the bars must line up along the real axis (recall
each bar has unit length). In this case, encoding/decoding vec-
tors are all parallel to the principal axis (e;), as described by
(40) and (41). Such a degenerate code is characteristic of the
anisotropic case.

Second, the optimal solutions for the overcomplete represen-
tation are not trivial in the sense that they are not a replication
of the optimal code for the lower number of units. For instance,
under 42 = 1 in Fig. 3, the optimal solution for M = 4 is not
identical to the replication of the optimal solution for M = 2.
We can prove it in the general case using (36): The optimal y for
M = mj+ms is not equal to the sum of ys for M = m; and for
M = ms, implying that combining two optimal solutions for
M = mq and M = my will not be optimal for M = m 4+ m..

Finally, robust coding represents the major (first principal
component) axis more accurately than the minor axis. This is
obvious for the degenerate case (e.g., Fig. 3, M = 2, 72 =1),
where, as in M = 1, the optimal strategy is to preserve infor-
mation along the major axis at the cost of losing all information
along the minor axis. Such a bias exists for nondegenerate code
as well, where the data along the major axis is more accurately
reconstructed than that along the minor axis. More precisely,
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TABLE I
MINIMUM MEAN-SQUARED ERROR
M=1 M>2
1-D oz oz
¥2+1 M-~v2+4+1
2-D U2 20‘2
Isotropic 7+ o3 S BN
P 72 +1 M.oy241
2-D A A L
Anisotropic 42 +1 + A2 m + A2 if v2 <~
1 A A2)2
N (VAP e s 2
541 2

the error along e; and along e with respect to the data variance
has the ratio /)2 : v/A1 (note the switch of the subscripts), im-
plying that the percentage of the error is smaller for the major
axis (see Appendix D for the derivation). This is illustrated in
Fig. 3, where the reconstruction ellipse is thinner than the data
ellipse; if there were no bias, the reconstruction ellipse should be
similar to the data ellipse. The biased reconstruction also implies
that the variance of reconstruction error should be proportional
to the standard deviation of the data for the optimal solution,
not proportional to the data variance nor a constant irrespective
of the frequencies (i.e., white noise), as is often assumed in the
literature [3]-[5].

E. Summary of the Minimum MSE

We summarize the formulas of the minimum MSE in Table I.
They define the error bound that the linear encoder and decoder
can achieve under the presence of channel noise. There are sim-
ilarities between them, as we have emphasized throughout this
section. For M = 1, the form of 1-D solution appears in the 2-D
case, and for the anisotropic case the first term is fixed for the
large eigenvalues in order to minimize the MSE. For M > 2,
the increase of M reduces the MSE by virtually increasing the
SNR ~2. Specifically, for 1-D data the solution shares the same
form as in M = 1. For the 2-D isotropic case, the solution is
not the same as the M = 1 solution but shares the same form as
in 1-D solution, considering that the numerator is the data vari-
ance and the factor of 72 is the overcompleteness ratio M/N.
For the 2-D anisotropic case, the degenerate solution has the
same form as in M = 1; the nondegenerate solution does not
have the same form asin M = 1, but it is reduced to the solution
for the isotropic data with M > 2 if A1 = Ao.

Based on these observations, we also conjectured that the
minimum MSE for N-D data should be

1 (Zi\f:l m)z

£ =
M.oy241 N

(43)

where we assume that the code is nondegenerate but the data
can be either isotropic or anisotropic.

IV. APPLICATION TO IMAGE CODING

In this section, we examine robustness of the proposed model
to channel noise in the application to image coding. Since we

have not had analytic characterization in the high-dimensional
case, we numerically derive the optimal code. Note that robust
coding results for 2-D data can be interpreted in the context
of image coding by translating the first and second principal
axis into lower and higher spatial-frequency dimensions, con-
sidering the general tendency of 1/f amplitude spectra of nat-
ural images [6]. For instance, it is shown that robust coding for
image data will preserve the lower spatial-frequency compo-
nents more accurately than the higher spatial-frequency com-
ponents (for more details, see [7]).

We only need to derive the optimal W because A can be de-
termined through (10) once W (or equivalently V) is given. W
should minimize £ and satisfy the channel capacity constraint
(7). This is a constrained optimization problem [8] and the op-
timal W can be derived by minimizing

(44)

()
C=E+n) In=3
=1
where k > 0 is the so-called penalty parameter that controls the
influence of the second term. This penalizes such W that does
not satisfy the channel capacity constraint [7] (the second term
becomes 0 if all the coefficients’ variances are equal to the target
value, 03; in this study, « is selected so that the largest deviation
of the actual variance from the target variance should be within
0.5%). The update rule of W is given by the gradient descent
of (44)
AW x AT(Iy — AW)Z,
In[(u? 2
— kdiag (Rmi)z)/"]) W(xxT). (45)

The data consists of 8 x 8 pixel image patches (therefore,
N = 64), and we use 65536 samples as a training set. These
are randomly sampled from the 512 x 512 pixel test image. For
comparison, we also examine the robustness of traditional linear
image coding methods under the same channel capacity condi-
tion, namely, we set the capacity for all coding methods as 1 bit
by adding Gaussian noise to the representation (Fig. 1).

First, let us demonstrate the limitation of PCA when it is ap-
plied under noisy conditions. PCA represents the data according
to the data variance, and, hence, it is the most effective linear
method for dimensionality reduction. In Fig. 4(a), we show the
original image data, and, in Fig. 4(b), its reconstruction using
PCA with 32 coding units, which utilizes only a half of the
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Fig. 4. Image coding under the presence of channel noise. For each reconstruction its percent error is indicated. (a) Original image. (b) PCA (M = 32) with
noiseless representation. (¢) PCA (M = 32) with 1-bit precision code. (d) Robust coding (M = 32) with 1-bit precision code. (¢) Robust coding (M = 64)
with 1-bit precision code. (f) Robust coding (M = 512) with 1-bit precision code. (g) PCA (M = 64) with 1-bit precision code. (h) ICA (M = 64) with 1-bit
precision code. (i) Daubechies 9/7 wavelet with 1-bit precision code. The reconstruction errors in SNR [dB] are [from (b) to (i)]: 22.96, 4.75, 11.97, 14.17, 22.17,

4.79, 4.79, and 5.64. PSNR [dB] can be obtained by SNR — 3.34.

input dimension (its overcompleteness ratio is depicted by
0.5x%). Its reconstruction error is small (0.5%),3 and it is hard
to see a difference from the original. However, when the code is
noisy, the reconstruction becomes significantly poor (c; 33.7%
error). This is somewhat obvious because PCA is not designed
for the presence of channel noise.

The proposed robust coding is optimized for the noisy rep-
resentation, and it can reduce the error considerably using the

3The percent error is defined by (MSE)/(data variance) x 100, indicating
the unexplained portion of the data variance in the reconstruction. Using the
notation in this paper, it is given by £/tr(Xx) X 100.

same number of the same noisy units [Fig. 4(d), 6.4% error].
Moreover, robust coding can further reduce the error by utilizing
a greater number of coding units. Fig. 4(e) and (f) shows the re-
sults using 64 (1x) and 512 (8x) coding units, reducing the
errors to 3.8% and 0.6%, respectively.4

For comparison, we also examined the reconstructions using
all PCA coefficients in Fig. 4(g), using ICA in Fig. 4(h)—the
most efficient representation in terms of coding cost, and using

4The errors predicted by the conjecture (43) were consistent to the errors of
the numerical solutions, i.e., 6.1%, 3.8%, and 0.6% for 0.5, 1x, and 8X,
respectively.
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the “Daubechies 9/7” wavelet in Fig. 4(i)—one of the most
widely used image codes.> All of these traditional linear coding
methods yielded a large amount of the error, confirming a sig-
nificant robustness of the proposed robust coding.

Finally, we examined some intuitive methods to construct a
robust code. One reasonable method would be to allocate the
limited representation resources according to the data variance.
This can be implemented by repeating in the encoding and de-
coding matrices the eigenvector of the data covariance matrix so
that the repetition is proportional to the associated eigenvalue.
Such a code, with 1-bit representation and 64 coding units (1x),
yielded 8.1% error, which is better than the traditional linear
codes such as PCA (33.3%) but not as good as robust coding
under the same conditions (3.8%). The proposed method outper-
forms the replication method because it provides a rigorous way
to reach the error bound. Another approach for compensating
for channel noise is to introduce redundancy by overcomplete
representations. For example, simply replicating an existing 1 X
code should be able to reduce the error. To compare with 8x
robust coding, we examined 8X replications of PCA and 8x
replications of an optimal 1 X robust code. The resulting errors
are 4.2% and 1.3%, respectively, demonstrating that the optimal
8 X robust code (which yielded 0.6% error) can reduce the error
more than what is possible simply by replicating an existing
code.

V. DISCUSSION

A. Mean-Squared Error Versus Mutual Information

In this study, we measured the accuracy of the representation
by the MSE of the reconstruction, which is one of the most com-
monly used measures (e.g., [3] and [4]). Alternatively, we can
use as an accuracy measure the mutual information between the
data and its reconstruction I(x, X) and try to maximize it, which
is known as the infomax principle [5], [9]. The optimal solu-
tions for the infomax differs from those for the MSE objective.
For example, assuming that the data are Gaussian and the rep-
resentation is complete (i.e., M = N), the mutual information
is upper bounded (Appendix E)

1 N
I(x,%) = In det(vy?VVT +1y) < 3111(72 +1) (46)

with equality iff VV? = I. Because VV7 is the correlation
matrix of the representation u [note VV' = WX, W7 /52
from (7)], the optimal coding strategy for the infomax is to un-
correlate (more precisely, to whiten) the data, irrespective of the
data distribution being isotropic or anisotropic.

Such a decorrelation strategy is an important difference to
robust coding. Decorrelation allows us to send the maximum
amount of information through channels with a limited informa-
tion capacity, in which the coefficients are uncorrelated. To min-
imize the MSE, however, correlation among coefficients could
be advantageous in order to compensate for channel noise, even
if there is no redundancy in terms of the number of coding units

5The wavelet transform is applied to the whole image instead of image
patches, and the ratio of the number of coefficients to the number of pixels
is about 1.06, therefore, it is approximately 1X representation. In order to
compare a wavelet code under strictly the same conditions to the other codes
(i.e., using 8 x 8 pixel blocks and 1X number of units), we also examined a
three-level Haar wavelet which yielded 33.2% error.
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(i.e., a complete representation). The proposed robust coding
provides a rigorous way to achieve this goal. Considering that
ICA is one form of whitening, the reconstruction results in Fig. 4
can be seen as demonstrating the suboptimality of the infomax
solution in the MSE sense.

B. Relations to Previous Studies

The optimal MSE code over noisy channels was examined
previously in [10] and [11]. However, there are two important
differences between these and our analysis. One is that in the
previous works the capacity constraint was defined for a pop-
ulation, not for each coding unit as in our study. The other is
that their analysis is limited to the undercomplete case (i.e.,
M < N), while the approach described here can have an ar-
bitrary number of units, which allows for the arbitrary improve-
ment of robustness—and the arbitrary reduction of error—even
for highly noisy units.

The so-called frame expansion is a linear encoding and de-
coding method that also employs overcomplete representations
to compensate for channel noise [12], [13]. One significant dif-
ference from our approach is that the frame expansion is defined
in a data independent manner; in other words, it is not adaptive
to the data covariance matrix. Consequently, robust coding out-
performs the frame expansions when the MSE is evaluated over
the joint probability of channel noise and the data.

For example, the MSEs for the 2-D isotropic case are

1
9,22
& =20,0% - %0% e (47)
for robust coding and
1
gframe — 20_20,2 . 48
xz”é %032: ( )

for the frame expansion with a uniform tight frame [13], where
we set 0, = o, for a fair comparison between the two methods.
These show that the MSE is smaller by using robust coding if
there is channel noise (o2 > 0).

Frame expansions and robust coding are highly related. For
example, the optimal encoding vectors of robust coding for 2-D
isotropic data forms a tight frame, and our characterization of
such optimal representations turned out to be a rediscovery of
that for the tight frame [13]. However, the optimal robust en-
coders for 2-D anisotropic data are not tight frames, and, further-
more, they are not even frames in the degenerate case. Also, ro-
bust coding may be resilient to an erasure of some representation
components even if it is not explicitly optimized for this type of
noise. In the 2-D isotropic case (and, again, with o, = 7,), an
erasure of one representation component changes the MSE as

B U§/03+M—1

g =28l LT ¢ 49
! o2/o2+ M -2 (“49)

which gives the smaller effect of the erasure than that in the
frame expansions with the tight frame

M -1
M -2

frame __ frame
51 : g

(50)

where £; and £ lfmme are the MSEs with one component erasure,
respectively [13].
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C. Concluding Remarks

In this paper, we have proposed and characterized robust
coding: The optimal linear encoder and decoder in the MSE
sense subject to the presence of channel noise. Our results
are summarized as follows: we derived the error bound for
the linear encoder and decoder subject to channel noise, and
described the optimal configurations of linear encoder and
decoder for 1- and 2-D data—particularly, we demonstrated
that a completely redundant degenerate code can be optimal.
The proposed coding scheme allows for a large number of
coding units to arbitrarily reduce the residual error, and it is
carried out by more than just replicating some code so as to
cancel channel noise. Namely, the robustness is achieved by
more accurately representing the major data axis than the other,
by the optimal scaling of decoding vectors, and by employing
overcomplete representations. Finally, numerical solutions of
robust coding for high-dimensional image data significantly
outperform traditional linear image coding methods such as
PCA, ICA, and wavelets when channel noise exists.

APPENDIX

Here, we derive some of the formulas given in the main text.

A. Expression of the Decoding Matrix A in the General Case
(10)

From (4)
o€ 0
— = () — 2 tr(AWE,
Ty aA{tr( )= 2 tr(AWS,)
+ tr(AWE, WTAT) + ggtr(AAT)} (51)
= 28, WT 4 2AWS, WT £ 252A. (52
Then, 06 /0A = O yields
A (o3I + WEWT) =5, W7 (53)

By replacing ¥, with ES?E” and W with 0, VS~'ET (9)

A =3, W7 (62 + WE,WT) ™ (54)

-1
= 0, ESVT (aglM + 03VVT> . (55)

This involves inverting an M X M matrix (it exists when
o2 > 0), which could be computationally expensive if the rep-
resentation is highly overcomplete. Using the Sherman—Mor-
rison—Woodbury formula [14, p. 50]

-1
(UgIM + aﬁVVT)

-1
1 1 1 1
= Iy — —0lV <1N + VT—203V> V7T —
Os 0§ O Os
(56)
1
= {In = ¥’V(Ix +7°VIV)T'VTLL (57)
6

Therefore 1
A= UUESVTG—(%{IM —’V(Iy +9*VTV)"'VT}

(58)
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1 1
= —~’ESV? — —42ES

u a.’ll
x {Ixy +v2VIVY - Ix|(Ix +12VIV)TIVT
(59)
1
= —?ES(Ix +*VIV)~ VT, (60)
0-11,
O

B. Simplified Expression of MSE & in the General Case (11)
The term AW is simplified using A (10) and V (9) as

AW = ’ES(Iy +*VIV)"IVIV(ES)™  (61)
= ES(Iy +7*VIV)™
x {(In +7°VTV) — Iy }(ES) (62)
=1Iy —ES(Iy ++*VIV)"Y(ES)! (63)
which yields
(Iy — AW)Z, (Iy — AW)T

= {ES(Iy +~1*VTV) L(ES) ' }ESSET

x {ES(Iy ++*VIV)"HES)" 1} (64)

=ES(Iy +*VIV) Iy ++*VIV)"T(ES)T.
(65)
The second term of £ is also simplified by replacing A (10)
4
AAT =T
O—U

x (Ixy +7*VTV)~TSE”
2

ES(Ixy +7?VIV)~ivTv
(66)

— L[ES(Iy ++°V'V) TSE”
O—U
—ES(Iy +~*VIv)!
x (Ixn +7*VTV)~TSE"] (67)

and
2
o2tr(AA") = 07 L a[ES(Iy +7°VTV) TSE”
U'u

—ES(Iy +~*VTv)!

x (In +7*VIV)~TSET] (68)
= tr[ES(Ixy +~+*VTV) TSE’]
—tr[(Iy — AW)E, (Iy — AW)7T]. (69)
Therefore

& = tr[(Iy — AW)E, (Iy — AW)7]

+ tr[ES(Iy 4+ 2 VTV)~TSE’]
—tr[(Ixy — AW)E, (Ixy — AW)T] (70)

= tr[SETES(Iy ++2VTV)~ 1]

= tr[D(Iy +°VIV)™. (71)
O

C. Simplified Expression of MSE & for 2-D Data (21)

IfN =2,(11)is € = tr{D- (I, +y2VTV)~1}. Using (20),
we get (72)—(75), shown at the bottom of the next page, where
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7 is defined in (22). Therefore, we get (76)—(78), shown at the
bottom of the page, where we used Re(Z) = Zj\il cos26;. O
D. Error Variance of 2-D Data Along the Data Principal Axes

Reconstruction error of each sample point along principal
axes is given by ET'¢, and its variance over a set of samples is

diag((ETee” E)) = diag(E” (e’ )E) (79)
= diag[S(I> + v*VTV)~1S]  (80)
1V VR <\/)\—1 ) @0
T2 14 M2 \ VA

where we used (ee”) = ES(Iy +42VTV)~ISE” [see (70)].
It implies that the error along kth axis, whose data variance is
given by M, is proportional to /Ay, or, equivalently, the ratio
of the error to the data variance is

YRV

N (82)

O

E. Maximum Mutual Information Solution for N -Dimensional
Complete Case (46)

The mutual information between the data x and its recon-
struction X is defined by I(x,%) = H(x) — H(x|X%X) where
H(-) denotes the (conditional) entropy of a random variable
[2]. If the data distribution is Gaussian, it is straightforward to
show that the mutual information is given by
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When M = N (complete representation), it can further be sim-
plified as

2 T T
(%) det(A)det(12VVT + Iy)det(AT)

det(A)det(AT)
5 ndet(y 2vv7t 4+ 1y)

In

1
2
1
= (84)
where det(A) need to be nonzero. Using the eigenvalue decom-
position VVT = PQPT

det(v?VVT +Iy) = det( 20 +1y)

H Yowr + 1 (85)
where P is orthogonal and diag (€2 ) = (w1,...,wy). From the
inequality of arithmetic and geometric means

N /N L
{H(72wk+1)} Nz'ywk—l—l
k=1 k=1
=72 +1 (86)
where we used Zgzl Wy = tr(VVT) = N [from (8)], and the
equality holds iff wy, = 1,Vk. O
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