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Abstract

One common approach to imitation learning is
behavioral cloning (BC), which employs straight-
forward supervised learning (i.e., classification)
to directly map observations to controls. A sec-
ond approach is inverse optimal control (I10C),
which formalizes the problem of learning se-
quential decision-making behavior over long hori-
zons as a problem of recovering a utility func-
tion that explains observed behavior. This pa-
per presents inverse optimal heuristic control
(IOHC), a novel approach to imitation learn-
ing that capitalizes on the strengths of both
paradigms. It employs long-horizon 10C-style
modeling in a low-dimensional space where in-
ference remains tractable, while incorporating an
additional descriptive set of BC-style features to
guide a higher-dimensional overall action selec-
tion. We provide experimental results demon-
strating the capabilities of our model on a sim-
ple illustrative problem as well as on two real
world problems: turn-prediction for taxi drivers,
and pedestrian prediction within an office envi-
ronment.

1 Introduction

Imitation learning is an important tool for modeling
decision-making agents (Ziebart et al., 2008b) as well
as for crafting automated decision making algorithms,
particularly in robotics (Pomerleau, 1988; LeCun et
al., 2006; Ratliff et al., 2006; Silver, Bagnell, & Stentz,
2008; Kolter, Abbeel, & Ng, 2007). The majority of
imitation learning techniques rely on an approach we
will term behavioral cloning (BC) (Bain & Sammut,
1995), in which one attempts to predict actions di-
rectly from an observed feature vector that describes
the environment. This approach has been applied suc-
cessfully in a number of applications. Perhaps the
most well-known of these applications is the problem of
learning to steer a vehicle within a road lane or around
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Figure 1: Left: Obstacles in the roadway that could in-
fluence a driver’s actions in a behavioral cloning approach.
Right: The inverse optimal control setting for navigating
(cyan line) to a destination (red X). Driver behavior is best
explained as a combination of these two approaches.

obstacles (Figure 1) using camera images (Pomerleau,
1988; LeCun et al., 2006).

An alternate approach that has recently been suc-
cessful for achieving coherent decision making— es-
pecially sequential decisions over multiple time-steps
about distant future goals— has been to treat the imita-
tion learning problem as one of inverse optimal control
(IOC). Here the goal is to take training examples in the
form of trajectories through the state space (Figure 1)
and train a planning algorithm to predict the same set
of decisions. Moreover, these algorithms train plan-
ning behavior that generalizes to new domains unseen
during training. They demonstrate strong empirical
and theoretical success on a wide variety of problems
ranging from taxi route preference modeling and driver
behavior modeling (Ziebart et al., 2008a; Abbeel & Ng,
2004) to heuristic learning for legged locomotion and
mobile robot navigation through rough terrain (Ratliff
et al., 2006; Ratliff, Bagnell, & Zinkevich, 2006; Silver,
Bagnell, & Stentz, 2008; Kolter, Abbeel, & Ng, 2007).

In this work, we integrate these two previously dis-
parate forms of imitation learning to engage the ca-
pabilities of both paradigms. The success of inverse
optimal control centers around its ability to move be-
yond a one-step look-ahead paradigm and to learn a
policy that correctly predicts entire sequences of ac-
tions. When applicable, these algorithms substantially
outperform alternative techniques such as behavioral
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cloning. Unfortunately, as the dimensionality of the
state space increases, the corresponding Markov Deci-
sion Process (MDP) becomes increasingly difficult to
solve, severely limiting the application of these tech-
niques. By contrast, behavioral cloning methods ben-
efit from the scalability of existing supervised learning
algorithms to handle high-dimensional feature spaces,
but they ignore modern planning technologies and
make decisions without explicitly considering their fu-
ture consequences.

We frame the training of our combined model as an
optimization problem. Although the resulting objec-
tive function is non-convex, we present a collection
of convex approximations that may be optimized as
surrogates. Further, we demonstrate both empirically
and theoretically that the objective function is nearly
convex. Optimizing it directly leads to improved per-
formance across a range of imitation learning prob-
lems. Section 5 begins by illustrating the theoreti-
cal properties of our algorithm on a simple problem.
We then demonstrate the algorithm and compare its
performance to previous approaches on a taxi route
prediction problem (Section 5.2) and on a pedestrian
prediction problem (Section 5.3) using real-world data
sets.

Prior work has previously examined combining aspects
of behavioral cloning and inverse optimal control (un-
der the names direct and indirect approaches) (Neu &
Szepesvéri, 2007), however, the authors focus on only
the relationships between the loss-functions typically
considered under the two approaches. The techniques
described in that paper remain limited by the low-
dimensionality restrictions of inverse optimal control.
Formally, similar to previous work (Neu & Szepesvéri,
2007; Ramachandran & Amir, 2007; Ziebart et al.,
2008a), our technique fits a Gibbs/Maximum Entropy
model over actions based on features in the environ-
ment. In this paper, however, we take a direct ap-
proach to training and propose to use our Gibbs-based
model to learn a stochastic policy that predicts the
probability that the expert takes each action given an
observation.

2 Inverse optimal heuristic control

In this section, we examine a relationship between be-
havioral cloning and inverse optimal control that be-
comes clear through the use of Gibbs distributions.
After discussing this relationship in Section 2.1, we
propose a novel Gibbs model in Section 2.2 that com-
bines the strengths of these individual models. Section
2.3 presents an efficient gradient-based learning algo-
rithm for fitting this model to training data.

2.1 Gibbs models for imitation learning

Recent research in inverse optimal control has intro-
duced a Gibbs model of action selection in which
the probability of taking an action is inversely pro-
portional to that action’s exponentiated Q-value in

the MDP (Neu & Szepesvari, 2007; Ramachandran &
Amir, 2007). Denoting the immediate cost of taking
an action a from state s as c(s,a), and the cost-to-
go from a state s’ as J(s'), we can write Q*(s,a) =
c(s,a) + J(T2), where T* denotes the deterministic
transition function.® The Gibbs model is therefore

efc(s,a) —J(T7)

N a’y
S wren, € ) =IT

(1)

plals) =

where the function Q*(s, a) = ¢(s,a)+J(7.2) is known
as the energy function of the Gibbs model.

The form of this inverse optimal control model is strik-
ingly similar to a multi-logistic regression classifica-
tion model (Nigam, Lafferty, & McCallum, 1999). We
arrive at a straight-forward behavioral cloning model
based on multi-logistic regression by simply replacing
the energy function with a linear combination of fea-
tures: F(s,a) = w’ f(s,a), where f(s,a) denotes a
function mapping each state-action pair to a represen-
tative vector of features.

2.2 Combining inverse optimal control and
behavioral cloning

The observations presented in Section 2.1 suggest that
a natural way to combine these two models is to design
an energy function that utilizes the strengths of both
paradigms. While inverse optimal control has demon-
strated better generalization than behavioral cloning
in real-world settings (Ratliff, Bagnell, & Zinkevich,
2006), the technique’s applicability is limited by its
reliance on an MDP solver. On the other hand, the
range of application for behavioral cloning has histor-
ically surpassed the modeling capacity of MDPs.

To prevent needlessly restricting our model, we con-
sider a general class of policies in which the agent sim-
ply maps observations to actions p(alo) o« e~ F(©®)
where a € A is an arbitrary action and o € O is a

given observation.

In many cases, there exists a problem specific MDP
M that can model a subproblem of the decision pro-
cess. Let Sy and Apq be the state and action
spaces of our lower-dimensional MDP M. We re-
quire a mapping ¢(o0,a) from an observation-action
pair to a sequence of state-action pairs that repre-
sents the behavior exhibited by the action through
the lower-dimensional MDP. Specifically, we denote
@(0,a) = {(s1,a1), (s2,a2),...} and use 7* to indicate
the state resulting from following the action-trajectory
¢(0,a). Throughout the paper, we denote the cost of
a trajectory £ through this MDP as C'(£), although for
convenience we often abbreviate C(¢(o,a)) as C(o,a).

Our combined Gibbs model, in this setting, uses the
following energy function

E(o,a) = E(o,a) +Qj\/[(07a)7

In this paper, we restrict ourselves to deterministic

MDPs for modeling the lower-dimensional problem.
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where Q}(0,a) = C(o0,a) + Jpm(7S) denotes the
cumulative cost-to-go of taking the short action-
trajectory ¢ (o, a) and then following the minimum cost
path from the resulting state to the goal. Intuitively,
the learning procedure chooses between BC and I0C
paradigms under this model, or finds a combination of
the two that better represents the data.

In what follows, we denote a trajectory as a sequence
of observation-action pairs £ = {(ot,at)}tTil, the set
of all such trajectories starting from a given observa-
tion o as =,, and the set of actions that can be taken
given a particular observation o as A,. Sections 3 and
4 present some theoretical results for the Gibbs IOC
model. In those sections, we refer to only a single
MDP, and we can talk about states in place of obser-
vations. When applicable, we replace the observation
o with a state s in this notation.

Choosing linear parameterizations of both terms of the
energy function we can write our model as

ewafv(ofa)waﬂF/’\kA (0,a)

E e efwg‘fv (o,a)wa“F',’(/l (0,a)’
a

(2)

plals) =

where we define Fu(§) = Y, fe(s¢,a¢) as the sum of
the feature vectors encountered along trajectory &, and
denote

Fi(o,a) = Fp(é(o,a)) +

Z fc(st,at),

(st,ar)€€*

where £* is the optimal trajectory starting from 7
and f.(s,a) denotes a feature vector associated with
state-action pair (s,a). Below we use w to denote the
combined set of parameters (w,,w.). This notation
utilizes the common observation that for linear costs,
the cumulative cost-to-go of a trajectory through an
MDP is a linear combination of the cumulative feature
vector (Ng & Russell, 2000). Choosing w, = 0 results
in a generalized Gibbs model for IOC in which each
action may be a small trajectory through the MDP.

We often call f,(s,a) and f.(s,a) value features and
cost features respectively because of their traditional
uses for value function approximation and cost param-
eterization in the separate behavioral cloning and in-
verse optimal control models.

2.3 Gradient-based optimization

Following the tradition of multi-logistic regression
for behavioral cloning, given a trajectory & =
{(o¢,a¢)}_,, we treat each observation-action pair as
an independent training example and optimize the
negative log-likelihood of the data. Given a set of
trajectories D = {&}Y ,, the exponential form of our
Gibbs distribution allows us to write our objective

U(D; wy, w.) = —log sz\il p(&) as

N T;—1
UD; wy, we) = Z Z wy, fo(or, ar) +wg Exq(or, ar)

i=1 t=1

. A
Flog Y et Solon T alon) 4 Silu]?, - (3)
acA

where we denote T; = T, for convenience; A > 0 is
a regularization constant. In our gradient expressions
and discussion below, we suppress the regularization
term for notational convenience.

This objective function is piecewise-differentiable; at
points of differentiability the following formula gives
its gradient in terms of both w, and w,:

N T;—1

V(D) =" fulor,ar) = Ep,(afoy)Lfo(01, a)]
=1 t=1
N T;—1

Vu (D) = Z F/T/l(ohat) - Epw(alot)[Fj{/l(Ot7 a)l,
=1 t=1

where we use py(alo) o exp{—w!f,(0,a)
wl' F3,(s,a)} to denote policy under our Gibbs model
parameterized by the combined vector of parameters
w = (wy;w.). At points of nondifferentiability, there
are multiple optimal paths through the MDP; choos-
ing any one of them in the above formula results in
a valid subgradient. Algorithm 1 presents a simple
optimization routine based on exponentiated gradient
descent for optimizing this objective.

3 On the efficient optimization of
inverse optimal heuristic control

Our experiments indicate that the simple gradient-
based procedure of Section 2.3 is robust to variations
in starting point, a property often reserved for convex
functions. This section demonstrates that, in many
ways, our objective closely resembles a convex func-
tion. We first note that for any fixed w. the objective
as a function of w, is convex. Moreover, we demon-
strate below that for w, = 0, the resulting (general-
ized) I0C Gibbs model is almost-convex in a rigorous
sense. In combination, these results suggest that an
effective strategy for optimizing our model is to:

1. Set w, = 0 and optimize the almost-convex I0C
Gibbs model.

2. Fix w, and optimize the resulting convex problem
in wy.

3. Further optimize w. and w, jointly.
Optionally, in (2), one may use the fixed Q-values as

features thereby guaranteeing that the resulting model
can only improve over the Gibbs model found in step
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Algorithm 1 Optimization of the negative log-
likelihood via exponentiated gradient descent

1: procedure OpTIMIZE( D = {(&, M;)}N, )

2 Initialize log-parameters w! « 0 and w’, « 0

3 for k=0,...,K do

4: Initialize g, = 0 and g. =0

5: fori=1,...,N do

6 Set w, = s and W, = eve

7 Construct cost map 5% = w’ f.(s, a) for
our low-dimensional MDP M;

8: Compute cumulative feature vectors
F3,(0,a) through MDP M; for each
potential action from each observa-
tion found along the trajectory

9: fort=1,...,7; do
10: 9o < folor,ar) — By, (aoy) [fo (0, a)]
11: 9‘2 — FMi(Otaat)

_Epw(a\ot)[Fin(Ota a)]
12: end for
13: end for
14: Update w!, — w) — o 377, gt and
wh — w, — g Y o

15: end for . .
16: return Final values w, = e%» and w, = e%e
17: end procedure

(1). The final joint optimization phase can then only
additionally improve over the model found in (2).

In what follows, we derive our almost-convexity results
strictly in terms of the Gibbs model for IOC. Similar
arguments can be used to prove analogous results for
our generalized IOC Gibbs model as well.

Definition 3.1: Almost-convexity. A function
f(z) is almost-convez if there exists a constant ¢ € R
and a convez function h(zx) such that h(z) < f(z) <
h(z) 4 ¢ for all x in the domain.

The notion of almost-convexity formalizes the intu-
ition that the objective function may exhibit the gen-
eral shape of a convex function, while not necessarily
being precisely convex. In what we show below, the
negative log-likelihood of the Gibbs model for IOC is
largely dominated by a commonly seen function in
the machine learning literature known as the percep-
tron objective.? The nonconvexities of the negative
log-likelihood arise from a collection of bounded dis-
crepancy terms that measure the difference between
the hard-min and the soft-min functions.

2We call this function the perceptron objective because
the perceptron algorithm that has been used in the past for
various structured prediction problems (Collins & Roark,
2004) is a particular subgradient algorithm for optimizing
the function. We note, however, that technically, as an
objective, this function is degenerate in the sense that it
is successfully optimized by the zero function. Many of
the properties of the perceptron algorithm cited in the lit-
erature are specific to that particular algorithm, and not
general properties of this objective.

The negative log-likelihood of an example trajectory
&, under this model is

T-1 e~ Q" (st,ar)

—logp(¢) ==Y log

t=1 ZaGAst e_Q (Sma)

(4)

Q" (st,at) + log Z e~ Q" (s1,0)

t=1 a€A,

By expanding Q*(s,a) = c(s,a) + J(72), and then
pushing the sum through, we can write this as

T-1
—logp(§) =C(&)+ Y | J(T2) +log Y el
t=1

a€As,

where we denote the cumulative cost of a path as
T—1
c§) = Zt:l (st ag).

By noting that 72t = s;41 (taking action a; from state
s¢ gets us to the next state along the trajectory in a
deterministic MDP), we rewrite the second term as

S AT = S (s = () 3 ()
t=1 t=2 t=1

For the final simplification, we added and subtracted
J(s1) = mingez, C(€) and use the fact that the cu-
mulative cost-to-go of the goal state st is zero (i.e.,
J(st) = 0). We additionally note that J(s) =
minge 4, ¢(s,a) + J(7,*). Our negative log-likelihood
expression therefore simplifies to

~logp(¢) = C(¢) — min C(¢)

EM
T-1

. * 1 —Q*(s¢,a)
min @*(se0) +og 3" ¢

ae
t=1 st ae_ASt

Finally, if we denote the soft-min function by
ming . 4 Q*(s,a) = —log ZaeAs e~ Q7 (59 we can
write the negative log-likelihood of a trajectory as

—logp(¢) =C(&) — min C(¢) (5)

Esq
T-1

+ Z minaAeAStQ*(st, a).

t=1

where we use the notation minfq = min,; ¢; — minjc;
to denote the discrepancy between the hard- and soft-
min operators over a set of values {¢;}.

When the cost function is defined as a linear com-
bination of features, the cost function itself is linear,
and the @Q* function, as a min over linear functions,
is therefore concave (making —Q* convex). Thus, the
first two terms are both convex. In particular, they
form the convex structured perceptron objective. In-
tuitively, these terms contrast the cumulative cost-to-
go of the given trajectory with the minimum hypoth-
esized cost-to-go over all trajectories.
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The non-convexity of the negative log-likelihood ob-
jective arises from the final set of terms in Equation
5. Fach of these terms simply denotes the difference
between the soft-min function and the hard-min func-
tion. We can bound the absolute difference between
the hard- and soft-min by logn, where n is the num-
ber of elements over which the min operates. In our
case, this means that each hard/soft-min discrepancy
term can contribute no more to the objective than the
constant value log | A|. In particular, we can state the
following

Theorem 3.2: Gibbs IOC is almost-convex. De-
note the nmegative log-likelihood of € by f(w) and let
h(w) = C(§) — minge=, C(§). If n > |Agl for all
s and T = [£| is the length of the trajectory, then
h(w) < f(w) < h(w) + [¢|logn.

Proof. The soft-min is everywhere strictly less than
the hard-min. Each discrepancy term minZ. A, Q" (s¢,0)
is therefore positive. Thus, h(w) < f(w). Additionally, we
know that min; ¢; —logn < —logy_, e~ for any collection
{ci}i=1. For a discrepancy term, this bound gives

LA . e
ming ¢; = min ¢; + log E e
3

k3

< minc¢; — (mine¢; — logn) = logn.
K K

Applying this upper bound to our objective gives the de-
sired result. O

Section 5.1 presents some simple experiments illustrat-
ing these results.

4 Convex approximations

The previous section demonstrates that the general-
ized Gibbs model for inverse optimal control is almost-
convex and suggests that directly optimizing the ob-
jective following algorithm 1 will work well on a wide
range of problems. While our experimental results
support this analysis, without a proof of (approxi-
mate) global convergence, we cannot guarantee these
observations to hold across all problems. This sec-
tion, therefore, presents three convex approximations
to the negative log-likelihood that can be efficiently op-
timized to attain a good starting point for algorithm
2.3 should arbitrary initialization fail.

We present the first two results for the traditional IOC
Gibbs model, although analogous results hold for our
generalized Gibbs model as well. However, to empha-
size its application to our full combined model, the dis-
cussion in Section 4.3 of what we call the soft-backup
approximation is presented in full generality. In par-
ticular, steps (1) and (2) of the optimization strategy
proposed in Section 3 may be replaced by optimizing
this convex approximation.

4.1 The perceptron algorithm

Given the discussion of almost-convexity in Section 3,
the simplest convex approximation is the perceptron

objective

N

h(w) = 3 C(&) - min C(E). (6)

€=
i=1 ¢

See (Collins & Roark, 2004) for details regarding the
perceptron algorithm. Since each discrepancy term is
positive, this approximation is a convex lower bound.

4.2 Expert augmentation

Our second convex approximation can be derived by
augmenting how we compute the action probabilities
of the Gibbs model. Equation 1 dictates that the
probability of taking action a from state s; is in-
versely proportional to E(s;,a) = Q*(st,a) through
our MDP. We will modify this energy function only for
the value at the action a; chosen by the expert from
that state. Specifically, we will prescribe E(s;,a;) =

C(Et)—zz;t c(s¢, ar); the energy of the expert’s action
now becomes the cumulative cost-to-go of the trajec-
tory taken by the expert.

The negative log-likelihood of the resulting policy is
convex. Moreover, for any parameter setting w, since
Q*(st,at) < Q(&) and the energies of each alternative
action remain unchanged, the probability of taking the
expert’s action cannot be smaller under the actual pol-
icy than it was under this modified policy. This obser-
vation shows that our modified negative log-likelihood
forms a convex upper bound to the desired negative
log-likelihood objective.

4.3 Soft-backup modification

Arguably, the most accurate convex approximation we
have developed comes from deriving a simple soft-
backup dynamic programming algorithm to modify
the energy values for the expert’s action used by the
Gibbs policy. Applying this procedure backward along
the example trajectory & = {(o¢, a;)},_, starting from
the or and proceeding toward o; modifies the policy
model in such a way that the contrasting hard/soft-
min terms of Equation 5 cancel.

Specifically, as detailed in Algorithm 2 the soft-
backup algorithm proceeds recursively from observa-
tion or replacing each hard-min J-value Jy(o;) =
minge 4 C(og,a) + Ja(7) with the associated soft-
min. We define

Ta(o) = —log Y emClonal=Iml) o (7)
acA

with j(’]:,‘;) = J(7;) when a # a;. Our new policy
along the example trajectory, therefore, becomes

o~ Elor,0)=C(or,0)=Tn(T5,)

(8)

p(alOt) = ZG/GAS e—E(ot,a/)—C(ot,a/)—jM(T(ﬂ;)
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Algorithm 2 Soft-backup procedure for convex ap-
proximation

1: procedure SOFTBACKUP( &, ¢c: S — A)

2: Compute cost-to-go values Ja(s) for s in M
that can be reached by at most one action
from any o; € €.

3 Initialize Jaq(s7) =0

4 fort=T-1,...,1do

5 Set oy = Z e A\ e*E(Ot’G)*C(Ot’a)*JM(TSZ)
6 Set & = e—E(ot,at)—C(ot,at)—jM(otJrl)

T: Update Jaq(0t) = —log (ay + o)

8 end for

9 return Updated J-values.

10: end procedure

Theorem 4.1: The negative log-likelihood of the

modified policy of Equation 8 is conver and takes the

form
Ww;§) = Z (E(or, at) + Clos, ar)) — Ja(o1).

(ot,ar)€€

Proof (sketch). The true objective function is given in
Equation 3. Under the modified policy model, each en-
ergy value of the Gibbs model becomes E(o, a)+ C(o0,a) +
I (7). In particular, for each ¢ along the trajec-
tory, the modified J-value in that expression cancels
with the log-partition term corresponding to observation-
action pair (0¢41,a:+1). Therefore, summing across all
timesteps leaves only the energy and cost segment terms
> E(os,a¢)+C (o, ar) and the first observation’s modified
J-value j(ol). This argument demonstrates the form of the
approximation. Additionally, since each backup operation
is a soft-min performed over concave functions, each term
J(o¢) is also concave. The term —J(o1) is therefore convex,
which proves the convexity of our approximation. O

Setting the value features to zero w, = 0, we can addi-

tionally show that this final approximation I(w) is also
bounded by the perceptron h(w) in the same was as
our negative log-likelihood objective I(w). Moreover,

l(w) < l(w) everywhere. Combining these bounds, we
can state that for a given example trajectory & and for
all w,

Bw) < lw) <Tw) < h(w)+[€|log|A.  (9)
This observation suggests that the soft-backup con-
vex approximation is potentially the tightest of the
approximations presented here. Our experiments in
Section 5.1 support this claim.

5 Experimental results

In this section, we first demonstrate our algorithm on
a simple two-dimensional navigational problem to il-
lustrate the overall convex behavior of optimizing the

negative log-likelihood, and compare that to the per-
formance of the convex approximations discussed in
section 4. We then present two real-world experiments,
and compare the performance of the combined model
(with value features) to that of the Gibbs model alone
(without value features).

5.1 An illustrative example

In this experiment, we implemented Algorithm 1 on
the simple navigational problem depicted in the left-
most panel of Figure 2 and compared its performance
to that of each convex approximation presented in Sec-
tion 4 using only the traditional IOC Gibbs model.
We manually generated 10 training examples chosen
specifically to demonstrate stochasticity in the behav-
ior. Our feature set consisted of 14 randomly posi-
tioned two-dimensional radial basis features along with
a constant feature. We set our regularization parame-
ter to zero for this problem.

As we predicted in Section 4, the backup approxima-
tion performs the best on this problem. Although it
converges to a suboptimal solution, the negative log-
likelihood levels off and does not significantly increase
from the minimum attained value in contrast to the
behavior seen in the perceptron and replacement ap-
proximations. The center two panels show the cost
functions learned for this problem using Algorithm
1 (center-left) and by optimizing the soft-backup ap-
proximation (center-right).

5.2 Turn Prediction for Taxi Drivers

We now apply our approach to modeling the route
planning decisions of drivers so that we can predict,
for instance, whether a driver will make a turn at
the next stoplight. The imitation learning approach
to this problem (Ziebart et al., 2008a), which learns
a cost function based on road network features, has
been shown to outperform direct action modeling ap-
proaches (Ziebart et al., 2008b), which estimate the
action probabilities according to previous observation
proportions (Simmons et al., 2006; Krumm, 2008).
However, computational efficiency in the imitation
learning approach comes at a cost: the state space of
the corresponding Markov Decision Process must be
kept small. Table 1 shows how the number of states
in the Markov decision process grows when paths of
length K decisions are represented by the state. Pre-
viously, the model was restricted to using only the
driver’s last decision as the state of the Markov De-
cision Process to provide efficient inference.

As a consequence, given the driver’s intended destina-
tion, decisions within the imitation learning model are
assumed to be independent of the previous driving de-
cisions that led the driver to his current intersection.
We incorporate the following action value features that
are functions of the driver’s previous decisions to relax
this independence assumption:
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Figure 2: This figure shows the examples (left), the cost map learned by directly optimizing the negative log-likelihood
(middle-left), the cost map learned by optimizing the soft-backup approximation (middle-right), and a plot comparing
the performance of each convex approximation in terms of its ability to optimize the negative log-likelihood (right). The
training examples were chosen specifically to exhibit stochasticity. See Section 5.1 for details.

Table 1: State space size for larger previous segment
history.
States

315704

901046

2496122

7733620

23281701

History (K)

T W N

k /2 3% % 10°

e Has the driver previously driven on this road seg-
ment on this trip?

e Does this road segment lead to an intersection
previously encountered on this trip?

We compare our approach with a combination of these
action value features and additional cost-to-go features
that are road network characteristics (e.g., length,
speed limit, road category, number of lanes) with a
model based on only cost-to-go features. Additionally,
the Full model contains additional unique costs for ev-
ery road segment in the network. We use the problem
of predicting a taxi driver’s next turn given final desti-
nation on a withheld dataset (over 55,000 turns, 20%
of the complete dataset) to evaluate the benefits of our
approach. We include baselines from previously ap-
plied approaches to this problem (Ziebart et al., 2008b)
and compare against the Gibbs model without value
features, and our new inverse optimal heuristic control
(IOHC) approach, which includes value features.

Table 2 shows the accuracy of each model’s most
likely prediction and the average log-probability of the
driver’s decisions within each model. We note for both
sets of cost-to-go features a roughly 18% reduction in
the turn prediction error over the Gibbs models when
incorporating action value features (IOHC), which is
statistically significant (p < 0.01). We also find cor-
responding improvements in our log-probability met-
ric. We additionally note better improvement in both
metrics over the best previously applied approaches for

Table 2: Turn prediction evaluation for various mod-
els.

Model Accuracy | Log Probability
Random Guess 46.4% -0.781
Markov Model 86.2% -0.319

MaxEnt 10C (Full) |  91.0% -0.240
Gibbs (Basic) 88.8% -0.319
IOHC (Basic) 90.8% -0.246
Gibbs (Full) 89.9% -0.294
IOHC (Full) 91.9% -0.226

Figure 3: The three images shown here depict the office
setting in which the pedestrian tracking data was collected.

this task.

5.3 Pedestrian prediction

Predicting pedestrian motion is important for many
applications, including robotics, home automation,
and driver warning systems, in order to safely inter-
act in potentially crowded real-world environments.
Under the assumption that people move purposefully,
attempting to achieve some goal, we can model a per-
son’s movements using an MDP and train a motion
model using imitation learning.

In this experiment, we demonstrate that trajectories
sampled from a distribution trained using momentum-
based value features better match human trajecto-
ries than trajectories sampled from a model without
value features. The resulting distribution over states
is therefore a superior estimate of future behavior of
the person being tracked.

Tracks of pedestrians were collected in an office en-
vironment using a laser-based tracker (see Figure 3).
The outline of the room and the objects in the room
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Figure 4: This figure compares the negative log-likelihood
progressions between a traditional Gibbs model (without
value features) and an IOHC model (with value features)
on a validation set. Access to features encoding dynamic
characteristics of the actions substantially improves mod-
eling performance. The full collection of pedestrian trajec-
tories is shown on the right from an overhead perspective.

were also recorded. The laser map was discretized into
15cm by 15cm cells and convolved with a collection of
simple Gaussian smoothing filters. These filtered val-
ues and one feature representing the presence of an
object make up the state-based feature set. Addition-
ally, we include a set of action value features consisting
of a history of angles between the current and previ-
ous displacements. These action features incorporate
a smoothness objective that would otherwise require a
higher-dimensional state space to incorporate.

We constructed a Gibbs model (without value fea-
tures) and an IOHC model (with value features) us-
ing a set of 20 trajectories and we tested the model
on a set of 20 distinct validation trajectories. Figure
4 compares the negative log-likelihood progression of
both models on the test set during learning. The algo-
rithm is able to exploit features that encode dynami-
cal aspects of each action to find a superior model of
pedestrian motion.

6 Conclusions

We have presented an imitation learning model that
combines the efficiency and generality of behavioral
cloning strategies with the long-horizon prediction per-
formance of inverse optimal control. Our experiments
have demonstrated empirically the benefits of this ap-
proach on real-world problems. In future work, we
plan to explore applications of the pedestrian predic-
tion model to developing effective robot-pedestrian in-
teraction behaviors. In particular, since stochastic
sampling may be implemented using efficient Monte
Carlo techniques, the computational complexity of
predictions can be controlled to satisfy real-time con-
straints.
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