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ABSTRACT

Simulations of computer systems have traditionally been performed on a
singls, sequential computer, even if the system to be simulated contains a
number of components which operate concarrently. An alternative would be to
simulate these systsms on a network of processors. With this approsch, each
processor would simulate one component of the system, hemce the component
simulations could proceed concurrently. By exploiting the modularity and
concurrency im the system to be simulated, the simulation would itself be
modular and concurrent.

-An accurate simulation must model the time behavior of the system as
well as its input-ountput behavior. In order to avold real-time constraints omn
the processors and communication nstwork in the simulation facllity, the
simulation of the timing must use a time-independent algorithm. ‘That is, the
simulated behavior of each component should not depend on the speed at which
the simulation is performed. ‘

With this time-independent apprcach, additional coordinstion operations are
required to prevent a deadiock of the simulation. This coordimation cam be
provided without any centralized control. Instead, the program for the
simulation of sach component is modified, so that each component simulation
will communicate status information to other component simulations. Additional
termination operations are also required to assure that the stmulation will
terminate under the exact same conditions that the system being simulated
would terminate, These operations can also bs provided without any
centralization of control or resl-time constraints. Furthermore a simulation
which uses these coordination and terminstion operations is provably correct.
That is, the simuiation will accurately model both the time behavior and the

input-output dbehavior of tho system.
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Chapter 1

Introduction

Computer. Systems have traditionally been simulated on a single, sequential
computer, e@ if the system to be simulated contains a number of components
which operate in parallel., One of the primary purposes of simulation languages,
such as GPSS and Simscript II [13], is to order the simulation of the events
occuring in the differgnt components in such a way that the simulation wiil
correctly model the operation ‘of the system to b_a simulated. An alternative
approach would be to simﬁlate parallel systems on a network bf computers, such
as a network of mlcroprpcessois [2,14,21] or the Arpanet {15], where each
‘processor would simulate the operations of one component of the system. This
would allow the siui_ulation to exploit the modularity a_nd concurrency of the
systam to be simulated and thereby ﬂself achieve 'a high level of modularity
and concurrency. The simulatioﬁ of packet communication architecture systems
[6] seems particularly .suitéd for this approach, since these systems are highly
modular - the components _of the system operate independentiy and communicate
with each other only by sending message packets, Hence these systems can be

simulated dy a network of processors which communicate by message passing.

Packet Communication Architscture

A packet communication architecture system consists of a number of -
independent proce;ssor modules which communicate- by sending packets of
informetion to one another. A single program is implemented as a number of

saperate Processss, such that sach process runs on one of the modules, hence the



-8 -

components of the program can be executed in parallel.

"The modules in & packet communication architecture system can
;:ommunicnte; only in a limited fashion. All communication with a module is in
the form of pa_cket#, except the initial state of the module, which can be given
to the module in nonpacket form, Thus, a module conid be initlalized with a
program and initial data, but thereafter it can receive infermation only in
packets. Furthermore, a module can communicate with only & limited number
of other modules. -Each module recelves and sends out packets through its
_ input and outz-mt,p'orts. A particular input ﬁo‘rt to a module can receive packets
only from a particular output port of some module, or from a particular source
outside the system. Input porﬁ of the latter type .are calied system input ports,
since they are the only means for .an external source to send data to the system.
Similarly, from a partict_llar output port .of a module, ﬁackets can be sent only
to a._parﬁculalr input port of some module or to a particular external destination.
Output ports from chﬁ packets are sent to exterpal desiinstions are called

system output ports.

Packets are carried along one-way data channels from the output port of
" one module to the input port of another. Thess channels canhot alter the values
of the packets, and they must preserve the sequentisl ordering of the packets,
Thus, a channel can be viewed as a FIFO queue between two ports. The

fnterconnections between modules cannot be changed dynamically.

The modules in a pecket communication architecture system Ooperate



aﬁtonomously; There is no central conirol in the system, and any menitoring of
. the system operation must be passive. That is, only an external observer is
illowe& to monitor the modules or channels in tﬁe system, ém_d the monitoring
is nbt vital to the system's correct operation. As a result of this autonimity, a
module can operate Ia.s soon as the necessary data packets have arrived regardless

of the status of other modules in the system,

A pocket éommuni-cation architecture system i3 designed so no component
of the system will be required to fulfill any timing constraints. Instead, the
syltom must be designed t0 operate correctly re.gm'dless of the dslay times or
throughputs of the modules and channels. For example, one module cannot
require another qunle to have a minimum response time. As a res}nt, modules
" must use asynchronous communication protocols, so that a module cannot send a
data value to amother module which lacks .mfficiant buffer space. This
oommt-xnit;ati.on protocol, however, must be implemented as packets sent back and
forth h@tWeen two modules for each data transfer. Othorwiza, an
acknowledgement signal recelvad from a modul@ to which data has been sent

would constitute a form of nonpacket input information.

As a @nsequence of this time-indepondent design, the speed of the system
or any of its components is a performance issue and not a necessary requirement
for correct operation. If one module or chamnel is parumﬂarly slow, 1t might

. slow down the entire system. but it will net cause any malfunctions.

Examples of packet commui:ication architecture systems include the data



flow process:.:rs of Dennis snd Misunas [7,8,9] and the data flow processor of
. Rumbaugh [20]. While not' precisely a ﬁcht communication architecture
system (due to dynanﬂcally changeable intercomnections) the Distributed
Computing System at the University of California, Irvine, when running with

the DCOS operating system [18], embodies many of the same design philosophies.

Advantages of Paocket Communication Architecturs Systoms
.'l‘hese systems have several major advantsges over both traditional computer.
systams aﬁd other designs for parallel systems. First, the modules in the system
can operate oonc‘un_'ently, fimraby achieving & high raie of computation. Since
there i3 no central -'control, there is no component which will inherently cause
a bottleneck in the system, or which must have an extremely high throughput

in order to keep the rest of the system operating at a reasonable rate.

Second, the system can be designed modularly, by first specifying the
functional faquire_ment ro: each module as well as some conneciion standards
and then designing the modules individually. Since modules can interact only in
limited and well-defined m, 28 opposed to systems which contain shared
‘memories or allow interrupts, for example, a module has a very clean interface
with the rest of the system. Furthermore, since there are no timing restrictions
On a modq_xle, the specificatiom:s ‘for its operation need contain omly its functional

operation, i.e. the output packets produced in response %0 a set of input packets,

Once a system has been designed, we can try t0 maximize ity performance,

This involves identifying the modules and channels in the system which are



consistently. heavily loaded and hence form bottlenecks in the aystem. A
E _bottieﬁeck _t':an ba emninated by redesigning the module or channel to operate
_fa‘ste; or by sﬁlitting one module into several modules. Because the system is
designed to be speed indepondent, the spesed of one module can be varied

without cau;ﬂng malfunctions.

One further result of this modularity of design is that these systems can
be proved correct much moré‘ easily than other computer systems. To prove the
eorrectness of a p.acl:et- commﬁnication architecture systemn, one can specify the
W properties of each module, prove that each module satisfies these
B properties, and then prové that the system will operate correctly if ail modules
satisfy their requirements. In other words, the correctness of the system can be
Proved mo&ﬁlarly. - (eneral methods of proving the correctness of packet
communication architecture sirstems Vara currently being investigated by Ellis

[10]).

- Examples of Packet Communisation Architecture Modules

| Three basic module types: functional operators, switches, and arbiters
illustrate some of the operstions which can be performed by paicketx
communication architecture modules. Examples of their operation’ are shown in
Figure 1.1, In the disgrams the lines represent the channels connected to the
input and output ports of the modules, and the dots on these lines represent

data packets being trans_mitted over. the channels,

A functionsl oj:erator computes several functions (one.for each output port)
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A. Functional Operator

(x) mod g)
—&—> rem. b———— . —) rem. a—>
divide - > divide
{y) (x/y)
——> quo. |————> _ — quO . f—— >

8. Suiteh

(-5)

C. Arbiter

{x)

:' $13)
——aZ ————1 2

Figure 1.1 - Examples of Operation for Three Simple Module Types.
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with input packets as arguments. It can fire as soon as one packet is recelved
at each input port, meaning that it absorbs these input packets, computes the
ogtput values, and sends one output packet from each _output port. For
example, the DIVIDE module of Figure 1.1z computes two functions: the

quotiont and the remainder of the input values.

A switch module provides a means of routing data to different modules in
the system. It can fire as soon as a packst i3 received on its input port. In
firing, it absorbs the input packet and then sends an identical output packet
from one of several output ports, depemding on the packet's value. In the
example of Figure 1.1b, the output port selected depends on whether the packet

value 15 positive, zero, or negative,

As a final example, the arbditer inq;lule serves to merge together the
streams of output packets -fmﬁ several modules, It can f{ire as scon as a packet
is roce.lved on elther input port. In firing, it absorbs a packet from one of the
input ports and sends am identical packet from its output port. If packets are
received at two input ports simultaneously, the module will first fire, absord
one of these packets, aid send it out., By the rules of operation, any packst
whic_:h is xm_t_ absorbed will remain at the input port, I-Ie_mqe, ther module will

fire a second time, absorb the remaining packet, and send this ome out.

Other paekét communication architecture moedules can have btehaviors
which depend on other factors, such as past activities of the module, the arrival

times of the inpué packets, and stochastic processes within the module, The
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general rules of operation for the modales will be discussed in Chapter 2.

' The‘Néad for Simulation

Once the -functional behavior of all components have been developed and
~ proved correct, thepe -ara other issues to be settled bofore the system can be
implemented.' 'l'_hsa implementation must meet other requirements on the overall
speed of operations of the total cost of the system., Thus, for a particular
1mp19mentation, a designer will want to measure the performance of the system
for different sets of input data. Thesa measurements can include smch factors
as the overall speed of ghe system, the load on particular components, and the
buffering requirements at the input ports. Once measurements for a particular
implementation have .’i;een made, the designer will want to make measurements
when such parameters as throughjut or delay time for particular components
have been wvaried, or modifications have been made to the original design. -By
this method, the designer can maximize the speed and minimize the cost of the

system.,

Measurements of a system's perfomiance are required not only to find an
optimum implementation, but also to compare the system o other system
tiesigns, or to conventional computer systems. Whiie packet communication
architecture systems are pdtenﬂally very fast due to the high level of
parallelism, a method of comparison with tiraditional compuier systems is

desirad,

Developing mathematical methods of ypredicting the performance of
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particular systems seems to be very difficult, One cannot simply count the
nuniber of instruction cycles required for a particular program with a particular
set of input dafa; While the modules interact with each other in a very
limited and well-defined way from a functionality viewpoint, the performance ‘
| of a module can have very subtle effects on thé rerformance of the overall
system. For example, increasing the throughput of one module can cause
another moduie to beéome a Mtﬁeneck in the system. Thus, a "modular”
approach to ﬁo:formance analysis will not work. l-‘urthgrmore, the system
designer wants to know more than just the average or worst case performance
of some syst_em. _He wants to Aknow the detalled performance measurements for
each con‘mo-nqn.t of the system. This amount of detail could never be provided

accurately by a mathematical analysis of performance,

An. accurate simulation of a system would provide the desired
measurements for a particular set of input data, While it might be hard to

Judge the general performance of a system based on simulations for a few sets

of _input data, this approach seems {0 provide a great deal more information than

analytic methods.

To avnid oohfnslon bat;»veen the system to be simulated and the system
which performs the simulation, the former will be called the actual system, and
the latter will be called the simulation system. Even though the "actual”
systemm might in fact only exist ﬁn paper, this seeams like a reasomable way to
distinguish the two. Furthermore, the modules and channels of the actual

.system will ba called the actual modules and actual channels.
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Roquirementa for the Simulation

To provide the type of measurements required to evaluate an
implamanﬁuon of a system, the simulation must accurately mocdeil all aspects of
the system's operations. This includes modelling the detailed timing aspects of
the system as well as the functional behavior. If only the functional aspects
were modelled, the simulation would accurately model some implementation of

the system, but most likely not the implementation we are interested in,

An accurate modelling of the system cannot rely on any stochastic methods
~of simulatién, unless the modules themselves behave stochastically. For one
thing, like analytic methot_ls, methods of stochastically modelling packet
communication architecture systems have not yet been developed. Thus, unless
the system is affected by stochastic processes within the modules, a simulation
of a system sliould provide all mi\'ormation aboutrthe activities of each module
for a given set of initial states (i.e. module programs and imitial data), and a
particu.lariseq_uence of input packets ‘presaixted to each system input port. If the
moduigs behave stoéhastlcally, the stochastic processes must ba. modelled, so that
any random variables will be chosen with the same probability in the
simulation as they are in the aciual system. A single simulation will only
model the system's activity for onme choice of random wvariables, but a number of

simulations can give an idea of the distribution of the system's performance.

Meothods of Simulation
One approach to the simulation of a packst communication architecture

system 1is with a sequential computer system. With this approach, a single
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éomputer would simulate the activities of every moﬁule and every
communication channel in the system. While this approach would bs rather
slow, | it is not difficult to lmpiement. For every packet on an input port of
some module in the system, the simulation keaps a packet descriptor of the
form -(M.p.v.tl, where

"M = the module nuxhber

£ = the input port number

v = the value contained in the packet

¢t = the time at which the packet arrived at the input port.
These packet descriptoré are stored as a sequential list called a time line, in
which the ilegcriptors are ordered by their time values. The simulation looks at
the time line and decides which module in the system would fire the soonest.
It then simulates the firing of this module by removing _tlie absorbed input
packets froin the time line, computing the output values andl' delay time for the
module, and then lnsertlng ‘new packet descriptors for each output packet into
the time lire. Each new packet descriptor contains the module and input port
nnmbér of the input port which receives the packet, the value of this packet,
and the time at which the input port would receive the packet. This process is
repeated for the new time line, and so onm, untl! no module in the system is
‘able to fire. .As long as the simulation always simulates the carliest firing in
the system for a given state of the time lime, it can be certaln that all imput
packets .wh'k._;h would have been received by this module at firing time are
present on the time line, Since a module cannot be affected’ by new input

packets arriving while it is firing, the entire firing of the module can be

simulated without looking at other modules in the system. Simulation
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languages, such as GPSS and Simscript II [13], wse a variant of this time line In
simulating the activities of a number of conmcurrent processes . on 8 single

computer.

A large fraction of the simulation time will be spant looking at the time
une‘ to decide which module would fire earliest. Whereas it is not difficult to
determine whethei' simple mddules, such as functional operators, switches, or
" arbiters are ready ‘to fire and at what time, these computations could take much
longer for modules with more complex behavior. Moreover, as the size of the
system increases, there will be more modules to check, and more descriptors or
the time line, Hence, the time spent on overhead in the simulation can, in the
worst case, increase as the square of the system size: thers will be a linear
increase in the total number of firings to be simulated, and for each firing a
linear increase in the time requlred to decide which module wrould fire earliest,
The time spent to actually simulate the activities of the modules, om the other
hand, wlll increase onilf Hasarly with the system size. As the size of the

system is increased, the proportion of simulation tline spent on overhead will

- increase,

An ailternative to simulation on a sequgntial computer i3 to simulate tha
system on a computer system consisting of a number of Interconnected
stxﬁulation processors, such as the Packet Architecturs Simulaticm Facility of
Leung, et al {14}, sﬁown in Figure 1.2. In this facility microprocessors serve
as simulation processors. Each simulation processor slmulastes one or, for a large

system, several of the modules in the system, The pms satd pockets to
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one another, just as the modules .1n the actual system would. The packets are
sent over a c'ommunicétion network, which provides connections among all pairs
of simulation processors., During a simulation, howéver. a processor would send
pa_ckats to another processor only if the first is simulating a module which can
send packsets to a module. being simulated by the second. The communication
network is provided to allow the simulation of any system configuration. In
addition, a host computer can load programs into the modules, initiate the

simulatioﬁ. and monitor its progress.

L L T T e e o e o e e Y o Y oy oy oy S R LT T

Communication Netuork

Froceaaor Pracessor , » . » Processor

1 | 2 k

o 7

HOST

Figure 1.2 - Structure of Simulation Facility
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This approach seems very natural, since the structure of the simulation is
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much like that of the system being simulated. It should aiso be faster, since
the siﬁ:ulation processors can operate in parallel. Hopefully, the amount of
overhead will not ba too great, either, so that a large fraction of processor time

can be spent simulating the activities of the modules,

Purpose of Thesis
In this thesis, methods of simulating packet communication architecture
systems on a distributed computer system will be developed. The design goals

for these simulation methods include:

1.) Generality of Simulating System. The simulation should not
require a -highly specialized computer system on. which to perform
the simulaton. It should work on any system which supports
communicating processes, such as the Packet Architecture Simulation
Facility [14], a network of microprocessors [2,21], the Distributed
Computing System [11,18], or even more traditional systems such as
the Burroughs B8700 [16].

- 2.) Generality of Simulation. The methods should enable the
accurate simulation of any packet communication architecture
system, A system designer should not be limited in the types of
systems which he can simulate,

3). Simplicity of - Software. The programs for each simulation
. processor should be reasonably simple to write, and short enough to
- be executed by small processors such as microprocessors.

4), Reasonable Efticiency: The simulation should make use of the
potential parallelism in the simulation system. Furthermore, the
amount of communication between processors to keep their efforts
coordinated should be reasonably small.

One way to satisfy the first goal would be for the simulation itself to have the

properties of ‘a packet communication architecture system. kirst, the simulation



processors should act autoﬁomously, with no caentral contrel. This will simplify
the computer system required to perform the simulation by removing the need
for a lmahly speclalized, high speed central controller, Of course, passive
monitoring might be allowed to observe the simulation activities. Second, all
communication bstween simulation processors should be in the form of packets.
As a reéult, the processors will ha\n_s a uniform form of input-output. Perhaps
most importantly, the simulation will be time-independent, That 1s, the
accuracy and correctness of the simulation will not depend on the speed of the
simulation processors or the colﬁmunicasion network. This will eliminate any
real time constraints on the simulation hardware and software, which will
greatly simplify the design. This will also enable the simulation to be
performed on any computer system which supports conimunicatlng. processes.
The simulation of each component of a system could be handled by a differemt
PrOCess. &wraﬂ of thess processes could be assigned to ome processor, which

could exacute them without any time constraints.

While the simulation might be faster on a highly specialized simulation
facility equipped with a high speed controller or processors designed for real
time applications, the amount of time @d money required to comstruct such a
facility would be jusﬁﬂed only if a very large number of simulations were to

be performed.

The prodlem then becomes developing simulation methods ‘based on packet
communication architecture principles, which will satisfy the other three goals:

generality, simplicity of software, and reasonable efficiency.: One means of
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-simplifying the task of mftﬁm design 1s to take a mocdular  approach to the
design of simulation--_program. The simulation program for a module must not
'onl_y simula-te '_the activities of the module, 1t must also comamunicate with other
-modul.e. programs to keep the simulation activities coordinated. Thus, the
specifi;:ations for each simulation program will include not only specifications of
the module to be simulated, bt also specifications of the coordination activities.
To keep the design modular, the coordination activities must be simple and
qum enough to be easily a_nd accurétely specified. Morecver, these
.coordination éctlvitlas must be both @neral and reasonably efficient. The major
task of this thesis is to develop coordination methods which fulfill the
requirements of simplicity, generality, axid efficlency for a simulation which is

itself & packet communicatior architecture system,

Qutline of Thesis

In Chapter 2 methods of simulating the components of a packet
communication architecture system, 1.e. the modules and communication
channels, will be discussed. First, rules of operation for packet com:ﬁunieation
architecture moduleé will be presented. Then, methods of simulatiﬁg both the
functional and timing aspects of the module will be developed. The‘emphasls'
will be on specifylng what a correct simulation of a module would do, rather
than on the more difficult problem of tramslating these requirements into actual
programs. The problem of producing i:rograms which will acchr&tely simulate a
medule, based on some specification of the module, is left as an area for further

rescarch,
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In Chapter 3 the ideas developed in Chapter 2 will be extended to aliow
the simulation of entire systems. As will be seen, if the simulation processors
are simply loaded with programs which simulate the activities of the system
components, the simulation might not accurately -moﬁel the system but instead
reach a ldeadlocllc.ed state, Besides simulating the activities of the modules, the
Slmulat;on prqcessor; must communicate with each other to keep their efforts
ooordina_ted. The main .pnr.pose of this chapter is to develop methods of
incorporating the coordination activitles into the simulatiom processor programs.
in this chapter a lproof will be described which shows that the simulation will
: aﬁenrately_ model the actual system, The full proof is contained in Appendix 1.
This proof demonstrates the benefits of the modular approach to the design of
the simulation, First, the 1mp.ortant requirements for the modules in the system
and .for the simuiation progﬁms of these modules will be specified. Second, it
wlll ba 'p'roved that the simulation and coordination methods of Chapters 2 and
3 satisfy these re&uiremants, E‘inaily, it will be proved that any simulation

which satisfies the requirements will accurately model the actual system.

In Chapter 4 methods of terminating the coordination activities, once the
imodules in the system have ceased activity will presented. Without this
'termina_tioﬁ. the simulation might run indefinitsly, esven though no module
activities are boing simulated, The last part of the chapter describes a proof of
the a'.;orrectne.:'.s. of the termination operations. The full precof is contained in
Appendix 2, First, it is pmvéd thét these operatioms will not .terminate .the

simulation too soon or in any other way interfere with the simulation
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operations. Hence, the requirements for the correctness of simulation proof will

still apply. Then, it will be proved that the simulation will eventually

terminate, if the actual'system would terminate under the same circumstances.

in Chapter 5, the coordination methods of Chapter 3 will be further
refined to increase the efficiency‘ of the simu_latidn. The ceordination methods
of Chapter 3 are designed to be very simple and uniform over all modules. As
a - result, the amount of coordination information passed between processors is
high, and th§ concurreﬁcy of the processors' activities can be unnecessarily
restrictgd. In some cases, the processor program for a module can be modified
slightly to take advantage of specific properties of the module. Two examples
of such modifications are presented. These two modifications will not increase
the complexity or modularity of the simulation programs significantly but can
greatly increase the efficiency of the simulation. Moreovér, these modifications
will lnot cause the simulation programs to violate any of the requirements for
the correctness proof of Appendix 1 to apply. This further decmonstrates the

benefits of a modular approach to correctaess proofs,

Finally, Chapter 8 contains conclusions, suggestions for other applications,
and suggestions for further research. Some of the other applications include
simulation of other types of systems, and application of the ccordination and

termination methods to other forms of distributed computation.

By working within the concepts of packet communication architecture, this

thesis develops simulation techniques which fuifill the iour design goals:
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.simpliclty of hardware, generality, simplicity of software, and reesonable
otﬂciency. Moreover, these techniques are provably correct. This is
mticuiarly comfomng conaidenng the subtle nature of parallel, asynchronous
computations, wh;ch can often have ueMtﬁ ﬁeadlocki, races, nontermination

probiems, or other malfunctions,

For any computation which is designed to be executed by a parallel,
uynchronpus system such as a packet communication architecturs system, a
proof of _oorrectnas; {s essential, The traditional approach of implementing an
initial wversion of a system and then debugging it will mot work for
- computations. fwhich must be time-independent. Even if the computation is
tested on a large number of test cases, one cannot be certain that 1@ will be
correct for all cases. A slight change in the timing of one part of the
computation might lead to a de;udlock. critical race, or other malfunction. Even
in trying to prove the correctness, one cam easily overlook some of the
subtleties ox'. the computation. However, by carefully developing a formal
mathematical description of the computation and them proving that &
computation wﬁich fulfills this description will operate correctly, these

subtistiss can b uncovered.
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Chapter 2
Simulating the Components of a

- Packet Communication Architecture Bystem

Introduction

Each processor in the simulation must simulate the operations of one or
more of the modules or communication channels in the actual system., This
lﬁcludes simulating the timing details of the module as well as the module's
data operations. If the simulation is to itself be a packet communication
architecture system, there can be no timing constraints on the simulation
processors or on the eomﬁmnication links betweon processors. Hence, a method
- of simulating the timing must be developed which is independent of the speed

of simulation.

Module Operation’

Mom metheds of simulating modules can be developed, the behavior
which will be exﬁoctad of thesse modules must ba preseated. In the interest of
generality, these .rules will be as unrastricti_ve as possible. As a result, some
f?rms of ﬁhaﬂor are allowed which are not quite in keeping with the
'pixﬂogopm” of packet communication architecture design. However, as
mentioned bafo.ré, the designer of a system should not be restricted in the types
of systems he can simulate, Furthermore, these allowances do not cause any

added difficulties for the simulation.

At any time, a module is in one of two modes: the wait mode or the firing
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mode. While in the wait mode, the module cannot produce any output packets,
| Once tﬁe necessary conditions for firing are met, the module fires, meaning that
it absorbs some of the input packets from its imput ports, performs
computations, and some time later sends packets from itz output ports. Then it
changes its internal state and reenters the wait mode, In general, an input port
can be a buffer which can hold a number of packets simultaneously. A packet
remainé at an input port until it is absorbed by the module. An output port, on

the other hand, is more like a door through which output packets pass.

The module must make the following decisions: when to fire, which input
packets to absorb, what eompﬁtauons to perform, the values of the output
packets and the times at which they are sent, and the new stata of the module.

These decisions can depend on the following factors:

i.) The values of all packets at the input ports.
2.) The time at which each of the imput packets arrived.
3.) The current time,
4.) The current state of the module,
8 Stochastic processes within the module.
However, while a module 13 in the firing mode, it cannot be affected by input

packets which have arrived since the medule entered the firing mode,

These rules of operation allow for modules whose behavior depends heavily
on time: the current time of the module, and the time at which dach input

packet arrives. While this doez not fit in well with the philosophy of
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time-indépendent design, it will not cause any particular difficulties for the

simulation.

A packet communication architecture module has only three forms of input
lnformthn: :
1.) The initial state S, of the module.
.'a.) The values of the packets received at each input port.
3.) The time at which each input packst arrived.
Similarly, 1t produces only three types of output information:
' 1) The final state S, of the module.
2.) The values of the output packets sent from each cutput port.
3.) The time at which each outpui packet is sent.
The output infqrmation produced i)y a module can depend only om the input
information and the stochastic processes witlun tha module. If the module
eo;mnm no stochastic processes, _then the simulation of the module should
produce. the correct output information based on the imput information. If the
modﬁle contains stochastic processas; then the simulétion should produce the
correct output information based on the input information and one set of
chojces for the random variables. Furthermore, the stochastic processes should
be simulated in such a way that the values of thé random variables are chosen
with the same probability in the simulation as they would bs in the actual

module,
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Module History

-The ‘input and output information received and sent by a module while it
13 operating can be formally described in terms of histories. The history of a
single port is a sequence of ordered pairs:

ho= Gegtgd, tegutgdyeee, teptyhens

where x i is the data value contained in the fth data packet arriving at or being
sont from the port, and ¢ i is thp thma at which it is received or szent. Since
packau are sent or received one at a time, we have tj > ‘j-t' for «il J z 1.
We also require f; > 8. This implies that no output port can produce a packet
at time 8, This restriction is part of the finite delay restriction which will be
discussed in Chapter 3. ' Furthermore, no input port can recelve a packet at time
@. Any packets present at an input port initially are considered part of the

mod_nle's mitgal gtate, and not part of the input port's history.

While | similar in idea, this definition of history differs from the
definitions used by Patil [18] and Kahn [12] in their work with determinate
systems, 'l‘h_éir histories are sequences of data values only and contain no time
values. Histories w;thout time values were useful‘for them, since determinate
systems have ttme-mdepexident Sehavior. For  simulation purposes, however, the
simulation of the timing ‘ls as- important as the simulation of the data
operations.  Moreover, the time values are part of the input ‘and output
information of the module. Hence, the time values are an important part of the

history.

Since an infinite number of data packets could eventually pass through a
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port, a history can be an infinite sequence. However, for any physical system,
there must be some minimum separation time 5 between any two packets.
Hence, no more than /6 packets can pass through the port before time r. This

implies that a history must be a countable sequence.

The history of an input port {; is denoted hi,, and the history of an
output port oy is denoted ho,. The inpu{ history of a module M with input
ports ig.ip,...,4, is the n-tuple of the histories of the input ports:

HI ;5h11.h13. v oo Ghip,
Sim‘ilarlyr the output Mry of a module M with output ports 04,05....,0, is an
m-tuple:

HO « <hos,hoy, . . . ,hop.

Just as the h’,istorles‘ of the input ports to a module can de combined
together, the _histdﬁes of the system input ports (those input ports which
receive packets from an external source rather than from other mocdules in the
system) can be combined into a system input history

I=c<hinhiy, ... hip,
where fg.{p,...,{, are the system input ports. Similarly, the histories of the
system output ports can be combined into a system output history

0 = <hog, hoy, . . . Lhop,

where 04.0p,...,0, are the system output ports.

It will be useful to define the relation "is an fnitfal segment of* between

two histories. First, a history h; is a proper initial segment of a history hy,
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denoted hy « h,, if
hy = Geptg), eputn), oo, gt ),
and éither
hy = (xgutgd, Gxputadyeney (ot ot pppntyag)seces (Zgutyd,
or
hp = (g tg), (xautgdsens bt ), Upppntyugdeeee .

Then h; is an initial segment of hy, denoted hy € hy, if hy c hy or hy « h,.

These relations can be extended to module input and module output
histories as follows: . |
4 4
HI = <hig hi,,...,hip
HI' = <hi}, hi},... hip
then HI & HI' if and only if:
hi; & hi}, for all 1sfsn.
The definitions for module output, system input, and system output histories are
similar.  Similarly, we can define the relation <C over ‘module and system

histories.

| A Tizal notation is to define the history up to some time 7. For a single
port, h(f) i3 a history, h', where h' contains all elements in h with time
values < ¢. Hence hir) & h. This idea can be extended to module histories, as
welk .

HI®) = <hig(0, hig), . . . ,hi > .

Thus HI() € HI = HI(e).



Using the' notion of histories, thar operation of a packet mmunication
afchitecture module can be stated precisely, It tl_ne m&ﬂe contains no
stochastic processes, then the output history HO and the final state S ¢ are
functions of the input ﬁlstory HI and the initial state §,. For modules
containing stochastic processss, HO and SJ are functions of HI, 8), and the

values of the random va:la{bles.

Note. that a medule which computes a function over histories as they are
defined here may not compute a fuﬁction over the histories defined by Patil
[18] and Kahn [12). Since our histories include time values, modules such as
arbiters -@d time clocks compute functions over these histories, whereas they

ara not functional over histories withont time values,

Cheannel Operation
In a packet communication architecture system, a communication channel

serves only to carry thé output packets from an output pori of one module to
an lhput port of another module. Furthermore, the channel! preserves the
brdering of riacket# Packets will be received at fhe input port in the same
order .ln which they sent from the output port. A channel's operations can be
stated formally in term::s of histories. If output port o, of module M, is
connected to input port {,. of module ﬁa, and op has output history

ho, - (x,;tl).-(xz;rzl.....(x,.r,)'.... .
then | r Will have an input history

hi, - (xl.t’ll.(xz,t’zl....,(xj.t'jl.... .

Due to the order preservation, ¢’ i t j-1- Furthermore, since values cannot be
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received “before" they are sent, t’ jEty

Whil'e a comm‘unJcation channel cannot change the values of data packets
or their ordering, it can introduce a delay between the time at which they are
_sent and the f",‘“’ at - which they are received. This delay must be simulated,
since it .will affect the input history of the module to which it is connected.
The communication ch@nel can be simulated by one of several means. First,
we can simply ignore the delay and consider hi, = ho p- This would be
appropriate in cases where the delay time of the channel is much smaller than
t_he delay time of the modules, For example, if the mcdules are close together
- and directly wired to one another, the channel delay time will be very small.
Second, we can simulate a module and the channels connected to its output
Ports as a éln‘gle' unit, Conceptually we can view this as extanéliné the
boundaries of a module M to include its output channels, as shown in Figure
2.1. The ‘ou{put ports of this extended module M’ are wired directly to the
input ports ~of: other modules. This solution is appropriate if the channels
cpnneqted to a x;qua operate independently of othqr channels in the system,
such as channels which are implemented as FIFO buffer units. Finally, the
most géneial approach would be to stmulate the éhannels as if they were packet
communication afchite_cture modules. This approach v&ould be required if the
channels do not oferate independently of one another. I-'.or example, if packets
are sent from. one ‘module to another over a netivork, -such as the ARPA
network [15], the delay time could depend on the total nﬁmher of packets being

sent over the network. In this case we would simulate the ARPA network as a
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Figure 2.1 - Extending Module Boundary to Include its Output Channels.
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liacket communicatibn architecture module,

For the remainder of this thesis, it will be assumed that the system to be
stmulated consists of a number of modules which are interconnected by
2ero-delay chaﬁnels. Some of these "modules”, however, might actually be
extended modules or communication channels which are to be simulated. Thus,
If output port o, of one .module 1s.connected to input port {, of another module,

| then ho, -. hi,.

Time IndepqndQnt Simulation of & Module

The idéa of a history leads qﬁite naturally to a means of representing time
in the sﬁnulatlon. The time at which a packst is sent frop:l an output pori can
b; deéM part of its value, rather than an implicit property. Thus, the
value of a packet is a pair (x,1), where % is its data value, and ¢ is its time

value, By expiicitly providing this time information in each packet, a
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simulation processor can simulate the operation of a module without any

real-time constraints,

For exa;ﬁple, guppose we wish to simulate a DIVIDE module as shown in
Figure 2.2. If the simulation processor recelves the packets, (x,18) and (y,20),
on its input ports, then jt will simulate the firing of the. module at time 29,
a‘nd, gince the delay time of the moduls is 5, produce ouiput packets
(X(mod y)»25) ‘and (x/9,25). The simulation is not required to operate at a
particular speed, since the actual time at which the output packets are sent

‘during the simulation is not important,
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(x,18) | Onod y»25)
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divide | :j divide
{y,28) {x/y,25)
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. ] delay=5 delay=5

Figore 2.3 - Example of Simulation Module Operation.’
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With. this means of simulating the timing, the ocutput of the simulstion of
a module is the entire output history of the actual module. This can be
described !‘orm;:ny by defining simulation historfes. - For any port in the
simulatlon.. the simulation history is the sequence of packets passing through
the ports |

hs L (xlgtl}g(xz,tzl"o-n.(xj.t‘,).o-t »
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where @ < y < ip < o0 < 1y < aue If the stmulation correctly simulates a
_port, then hs « h, where h 1s the history of the corresponding port In the

actugl sysiem.

Simulation histories can be defined for modules, too. ‘The imput simulation
history of & module is an a-tupla
HSI = <hsiy, hsiy,... 08l ,
and the output simulation history is em m-tuple
| HSO - <hso,,hso,,...,hsop.
The system input sﬁnulation. history SI and the system output simulation
history S0 are defined in a similar fasl_uoﬁ.‘ I"urthermofe, the relations & and C©
are defined over stmulation histories in the same manner as they are over actual

histories.

The requirements for the correct simulation of a module can be precisely
defined in terms of histories for modules with non-stochastic behavior:
Suppose an actual module produces an output history HO and
finishes in a fimal state S, when it is started in some initial state
S, and receives an imput history HI. Then the simulation of this
module must produce a simulation history HSO, such that HSO - HO,
and it must finish in Sf, when it is started in state S,), presented
with a simulation history HSI = HI and then notified that no more
input packets will be received.
The requirement that the simulation be notifiel when the last packet has
been received is needed to prevent the slmulation from hanging up, waiting for

packets which will never arrive. This will ba discussed later in this chapter.

Without any constraints on the times at which input packets arrive at the
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input ports of the modules in the simulation, there is no guarantee that the
relative orderlngs of packets qg difterent input ports will ba preserved., This
can lead to‘ a px;oﬁlam of premature firing, in which the firing of a module at
some time tfire is simulated before all input packets with time < ffire have
arrived. For example, if an arbiter in the simulation receives a packet (x,10)
on one inpﬁt _poit. it might simulate the firing at time {fir¢ = 18, and {assuming
it has a delay ume of 2) send the packet (x,12) from its output port. Suppose
-now, though, that a packet (y,5) is recelved on its other input port. The

arbiter has fired prematurely and the simulation cannot proceed properly.

To prevent this problem of premature firing, the firing of a module at
time tfire must not be simulated until the entire input simulation history
HSI {tfire} has been received. The only way the ;lmulauon can know it has
recelved h_sik(tﬂie) on input port ) 1s if 1t recelires a packet with time value 2
tfire on that input port. Thus if the simulation stores the time value of the
most recently received packet on each input port {y, denoted ftlasty, then the

firing of a module at time ifire can be simulated if tfire < 1o, (tasty).
The simulation of a module proceeds as follows:

1.) Determine whether the module can fire at some time (ffire <
ton, ltlasty) based on the data and time values of those packets at
the input ports with time values s ffire, the current state of the
module S,, and the outcome of simulations of any stochastic
processes.

' 2.) If the module can fire, then siimulate the firing of the module
as follows:

a). Remove the proper input packets from each input port..
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Only packets with time value < ffire can be removed.

b) Calculate the output data values and the outlput times.
These calculations can depend only on input packets with
time values s {fire. Furthermore, all output times must be
greater than tfire.

c). Send the output packets from the proper output ports.

d). Calculate the now state S, ,.

3.) Go to step 1.

Assuming the simulation will produce the propsr ocutput puckets aeach time
it simulates the firing of a module, the output of the simulation will always be
an initial ,segl_naﬁt of . the output history of the actual module, that is HSO L HO.
However, due to th? requirement that ifire < 121':2-. (tlesty), 1t -is ‘possible for the
simujation of a module to hang up by waiting for packets which will never
arrive. Suppose, for example, that an arbiter in the simulation receives a packet
(x,19) on inpwt port 1 but has received no packets with time greater than 5 on
input port 2. Then t!astk‘ = § < tfire = 18, hence the firing of the module
cannot be -élmt’xlated. If no more packets are ever received on input port 2, the
firing of the module at time 18 will never be simulated, even though the
module is enabled. The simulation mﬁst be notified somehow, when the last
packet has been sent to each input port, so that any remaining input packets

can be processed correctly. With this notification, the output of the simulation

will be the output history of the actual module, in other words HSCQ » HO,
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Conclusion
ﬁy .including the simuiation time ln. each data packet, the operation of a
module can be properly simulated without any real-time constraints. Although
this requires each simulatioh processor to compute time yalues as well as data
values, ;t enables us to simulate a wide variety of packet communication

architecture systems with complete accuracy.
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Chapter 8

Simulation of a Bystem

Introduction

In the previous chapter, methods of simulating the componenis of a packet
comamunication architecture system were discussed. If, in an attempt to
simulate the entire system, these module simulations were conngcted together,
the slmulation- would most Hkely deadlock. This deadlock results when the
modules in the simulation are waiting for packets from each other, but none
can be fired until one of them produces more output packets. Unlike deadlocks
which might occur in the actual system, which should be simulated, this form
of deadlock, called hanging up, prevents the simulation frqm fully simulating

the activities of the actual system.

For exﬁple. the simuilation program for the arbiter in Figure 3.1 has
received a packht with time 3 on input port 2, but nothing om input port 1.
Hence tlasty =~ 8 < tfire = 3, and the firing of the arbiter cannot be simulated.
However, no packet will ever be received on the other imput port until the
adder module fires, but this Will not happen until the arbiter f{ires. The
simulation has hung up. The actual system would not have deadlocked under
thesa cchm, though. The arbiter would have fired and sent the packet
(y}) at time § to the adder, which would have fired at time 19, and so on.
The simulation has ceased operation at an earlier time than the actual system
would have. A proper simulation would reach the same state that the actual

system would. Additional coordination between the processors is needed to
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prevent the simulation from hanging up.
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Figure 3.1 -~ Simulation which has "Hung Up."
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In this chapter, a means of providing this coordinstion will be presented
which preserves the principles of packet communication architecture, including:
autonomy of modules, communication by packets, and ume-indepenﬂence. One
further feature of this coordination method is that all coordination information
is sent along the same paths as the ‘da‘ta packets are, There is no need for

additional communication links between processors.

For each module to be simulated, a simulation processor must perform two
types of operations: - module activity simulation, and coordination. . These
operations together oomprise. the activities of a process called the simulation
module. If the simuiation‘ is it@alf to be a packet communication architecture
system, each simulation module must be a packet communication architecture
module. This meéns that the simulation modules can be viewed as autonomous

processes, even .if several of these processess are executed by one simulation
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Processor.

Coordination Algorithm

| Tha. @ulation hangs up when the simulation modules fail to communicate
their status to. each 6ther but instead wait passively for other simulation
modules to take action. lﬁstead, the simulation modules could send status
lnformatloh to each otﬁer in the form of time packets of the form f{r}, where ¢
is a time value, ‘Time packets ars sent along the normal communication linkas
between slmuiation modules, When a simulation module sends a time packet
{t) from an output port, this indicates that no packets with time values less

than or equal to ¢ will be sent from this output port in the future.

At any point in thé stmulation that a module is in the wait mode, if there
is no. value of {fire < tmin = 1;:; (tlasty) for which the module can’ fire, then
the module cannot possiblyv fire before or at time tmin. If ths module has a
minimum delay time deley between {firing end producing the [first output
packets, then the minimum output time is given by the formula:

| tout = tmin + delay |

= e, (tlasty) + delay.
The simulation module canmot produce more output data packets with time
values less than or equal to fouf, hence time packets (louf} can be sent from all
output poﬂs which have not already produced packets with time values greatel
than or equal to tout. Furthe;ﬁore, if the firing of a module at some time ffir(

is simulated, but no data packets are sent from an output port o j then a time

packet {ifiresdelay) can be sent from o4, since any future data packets from thi
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output port will have time values greater than tfire + delay.

As long as all time and data packets are sent from each output port of a
simulation module with strictly increasing time values, and the communication
links between -the si_mulatidn modules preserve the ordering of the packets, the
value of rlﬁ:rk for an input port is still the last time value received on that
input port, either as part of a data- packet or as a time packet, No new packets
can be received- at an input port with time velues less tham or equal to tlasr.
If the values of delay are greater than zero for all simulation modules, then as a
result of theaa- coordination ;;ctlvities. the simulation modules will send
WY larger time values f{o ome another, until one of the simulation

modules is able to simulate the firing of its module, thereby avoiding deadlockas.

In the example shown in Figure 3.1, The simulation module for the arbiter
has received a data packat with time value 3 on input port 2 and has received
notﬂu on ﬁlp'ut port 1, . The arbiter cannct possibly fire before time tmin =
min(tlas: I.t!a_st;g) = min(8,3)" . B. Hence it cannot produce any output packets
with ﬂmq value less than or equal to tmin + delay = @+2 « 2, Therefore it can
send a time packet {2} to _input port 1 of the adder's simulation modnle which
in turn would 'ixpdate tlasty to 2. The adder canmot possibly fire before time
‘tmin = min(2,10) and therefore cannot produce any output data packets with
time values less than or equal to tmin + deley = 242 « 4, Therefore a time
packet (4) can be semt back to the arbiter's simulation module which would
then set rlasty = 4, and, m‘:ee tfire = 3 s minitlasty, tlasty) = win(4,3), the firing

of the arbiter module would te stmulated.
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The operation of a simulation module can be stated as Tollows:

1.) Each time a time or data packet is received on imput port {,,
update tlast,.

2.) Determine whether the module can be safsly fired. That is,
whether the conditions are sufficlent for the module to fire af

some time ifire, where
}
tfire s BT, Ulasty),

a) If the module can be safely fired, then simulate the
operation of the module on those input packets with time
values 3 ffire and produce the output data packets. For each
output port o j from which data packets are ssnt, update the
value of rlast-out I which is the time walue of the mosl
recently sent output packet from o,. For easch output port o
for which tast-out; < tfire + deley, send a time pecket (tfire +
delay) from o; and update tlast-out .

b.) If the module camnot be safely fired them compute fous
where '

. tout = tmin + delay,

and send a time packet (towt}) from each output port o 1 fo1
which tout > tlast-out I Then update the value of tlast-out i fo
each of these output ports. The value of delay must be

greater than zero but cannot be greater than the mimimum
‘time required for the module to produce &n output packet

after firing.

3.) Beturn to step i.

These coordination operations are guite simple, especially since time packet:
are produced primarily when the siﬁulation module i3 otherwise inactive.: Ths
simulation modﬁle must store the value of tlasty for each imput port, and
tlt_m-ourk fo"r éach output port. However, no storage for time packets is regquired

since they are 'not ﬁeeded once the values of ;hmk have been updated.

Furthermore, the simulation requires some means of determining when ths

system input ports have received thelr final data packets. For instance, in th
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example shown in Figure 3.1, the firing of the arbiter at time 3 would dbe
' stmulated and - the packet {y,5) would be sent to the addet's simulation module,

a3 shown in Figure 3.2.

L L N T Y

~

{y,5)
1
+ 7

C In,10) | delays2 > 1

———.——ﬂ- 2
delay=2
3 g
— 2

Figure 3.3 - Simulation Requiring Packets on System Input Ports.
The numbers alongside the input ports represent the values of tlast for the
ports, '
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Suppose that no more packets are received at input port 2 of the arbiter (this is
a system input port.) Then the adder module will be enabled to fire at time ifire
= max(5,18) = 18, but the simulation module cmot stmulate this firing, since
tlasty = S < ffire = iﬂ. ‘Instead, a -_tix:iqmcket with value min(5,i8) + 2 will be
sent to the arbiter’s simulation module, This simulation module will compute
tout = min(7,3} + 2 = 5, hence no time packet will be sent., Once again, the
simulation has hung up. The simulation module for the arbiter is still
- expecting data packets on input port 2, but none will ever arrive, In order for
a gimulation to complete all operations up to some time {fina! time packets with
value 2 gﬂnal must be sent to zll system input ports after the last data packets

have been sent. If we want to simulate the entire operation of the system,
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time packets with value © must be sent to all system input ports, where o« i
greater than any other time value, This can lead t6 a nonterminating
simulation in which the simulation modules keep sending time packets to om
another indefinitely, even though no modules will ever be enabled to fire again

A means of terminating the simulation will be presented in Chapter 4.

In our example; we want to complete all operations with time < 108, If .
time packet (18} is sent to the arbiter's simulation module, it would comput
fout = min(7,18) + 2 « 9 and send this value to the arbiter. The adder stil
cannot be fired safely, but a time packet with value mini(3,16} + 2 = 11 woul
be sent back to the arbiter's simulation module which in turn would send bacl
a time packet _imh value win(i1,18) + 2 « 12. Finally, tfire = 10
min(tlasty, tlastz) = win(12,10), and the firing of the adder at time 18 could bv

simulated,

With the addition of time packets, the simulation histories contain mon
than just ﬂata. packets, When comparing simulation histories to actual histories
howo:wr.. only the dpta packets are of interest. The function data is applied t
simulation histories to give the sequence of data packets (including their tim
| values) contained in a simulation history. For sxample, if
hs « (x,1),(3}, (y,38), {£,35), (180},
| then

data(hs) = (x,1}, (y,38), (2,35),
The function data can be‘ apisued, to module simulation histories and systen

siu_mlation histories as well,
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Features of the Coordination Algorithm

This o‘t:ordinﬁtion algorithm preserves the philosophies of packet
communication architecture design, All coordination information is passed
hth simulation modules in the form of time packets. There are no time
constraints on the simulation modules, and the simulation modules can operate
lndepondantly. Furthermore, the coordination operations for each module are

very simp;e. Each simulation module performs identical coordimation operations,

which gllows uniformity in the simulation programs.

One further feature is that a simulation mcdule sends time packets only to
those simulation modules to which it also sends data_. packets, and thesa time
packets are sent over the normal data paths. This not only keeps the number
of input and output ports to a simulation module limited, it eliminates the need
to synchronize the coordination information with the data information. iIf, on
the other hand, time packets were sent along some other communication links,
special measures would be re¢ulred to prevent a time packet from arriving at an
input port béfore a data packet having an earlier ﬁme value does. Ry sending
time packets along: the normal communication links, we use the first-in,
first-out droperty of these links to ensure the proper sequencing of time and

data packets,

Etficiency of Coordination
This coordination algorithm is rather inefficlent in two respects. First, a
large number of time packets must be sent to keep the simulation coordinated.

In the example of Figures 3.1 and 3.2, a total of ssven time packets were



- 48 -

transmitted so that the arbiter and the adder could each fire omce. This cause:
both a delay in the simulation and a heavy load on the communication chapnel:
between ,sln.mlation modnlas..' For larger simulations, the number of time
packets would be overwhselming. Second, this method does not allow all
possible concurrency in the simulation. For example, ths two modules shown
in Figure 3.3 could potentially be simulated at the game tiine, The adder will
not fire until time 19 and hence cannot produce a packet with time < 12.
Therefore, the firing of the arbiter at time i1 ooul_d be simulated at. the same
time as the firing of the adder. .With the coordination algorithm described,
howsaver, the simulation module for the arbiter would receive a time packet
with value win(5,18) + 2 « 7 and hence the arbiter would not be simulated
until after the adder has beon simulated. This lack of concurrency compromises

the efficiency of the simulation, since it causes the simulation processors to

wait unnecessarily,
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{y,5)
] +
{(x,108}) | delay=2
——

{z,11}

Figure 3.3 - Modules which can be Simulated Concurrently.
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This inefficiency could be reduced if more use were made of the specific

properties of the modules being simulated. With the coordination algorithm
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| described only two prbperties are assumed about the modﬁ.les to be simulated:
lt.'hey wﬂl not. produce any output packets while in the wait mode, and for each
modul§ there is some minlmum' delay time delay between when it fires and
" when it produces the first output packets, This, of course, makes the
coord_inatlon procedures very simple, but it creates the two ineffictencies
mentioned above. If, on the other hand, we. make use of the fact that an ADD
module cannot fire without first recelving data packets on both input ports,
then for the example in Figure 3.1, the earliest possible time for it to produce
an output packet could be cailculated as
| tout = max(tlastg,tlast,) + 2
= max(8,18) + 2 « 12,

The time packet (12} could be sent to the ai-btter's simulation module which
Md then. fire the arbiter at tiﬁa 3 and send the packet {,5) to the adder's
simulation module, Mh@ore, an ADD module can only absord one data
‘packet at a time from each input port, hence the firing of the module at time
18 could be simulated even though iast; = 5 < tfire = 18. By making uss of
these two p@cular properties of ADD modules, only one time packet would be

transmitted in the simulation, as opposed to the original seven.

Of course, there is a trade-off between the complexity of the coordination
procedures within each simulation module, and the efficiency of the
coordinatlon. In the mbst extreme case, each simulation module could simulate
the e‘ntirel systt;m internally to determine whether a particular module can be

safely fired; This would certainly minimize the amount of coordination
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information sent between simulation modules, but it would be overwhelmingly
compléx. In Chapter 5, several refinements to the proposed coordination method
will be dgscrihéd. The -emphasis will be on refinements which do not increase

the complexity much but do increase the efficiency significantly.

Correctness of the Bystem Simulation

“The combination of the module activity simulation and the coordination
operations for each module will guarantee that when the simulation modules are
interoonneéted, they will accurately model the activities of the actual system.

A yproof of this is presented in Appendix 1 and will be described briefly here.

The proof applles_‘ only to modules whose output history and fimal state are
functions of the input history and initial state. The module cannot contain any
stochastic processes. However, for ;\ particular set of choices of random
vériahlos, the output hi#tory and final state of a modu.le will always be
functions of its initial state and input history, in which case the proof wil
apply. If the stochastic processes are simulated in such a way that the randonm
variables are chosen with the same probability as they would ba in the actua

system, the:simulation will stochastically model the actual systam.

To formaliyA describe the operations of the actual modules and the
simulations of these modules, six requirements are specified: three for the actua

modules and three for the simulations of these modules.

For the actual modules, the requirements are:

1.) Functionality of Output: The output history and final state of



- 49 -
module depends only on the initial state of the module and the imput
history. ‘

2.) Monotonicity of Output: The output of a module at time ¢ cannot be
affected by input received after time ¢, '

3.) Finite Delay: The output of a module at time ¢ cannot be affected by
input recelved at time ¢, In other words, there must be a finite delay
between the receipt of an input packet and the production of an output
packet which depends on this input packet,
If a module saus_fies_all three of these requirements, then the output history of
the module up to and including time ¢ is a function of the initial state and the

input history up to but not including time ¢.

These three requirements for the modules to bé simulated are not very
mmw. The monotonicity -of output requirement simply implies that a
module cannot look into the future and predict what input will arrive, nor can
it retract or alter any output packets once they ﬁaw been sent out. The finite
delay requirement states that a module c@not react instantaneously to an input
packet. This is ﬁ'ua for any physically reaﬁnble module. The [unctionality of
output requirement implies that the module | cannot recelve any impput
information oth_ell" than the initial state and packets arriving at the input ports.
Furthermore; the médule cannot contaln any stochastic processes, unless we

consider the operation of the module for a particular choice of random variables.

For the simulation of each module the requirements are:

1. Correct Module Simulation: Tho simulation of a module must produce
the same data packets with the same time values as the actual module
would for the same input conditions., That is, suppose the simulation of
a module produces a simulation history HS0 when it starts in initial state
S, and receives an input simulation history HSI where all of the data
and time packets arriving at each imput port have strictly increasing time
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values, Let

, tfinal = 2% (tlasty)
. after the input simulation history HSI has been received. That is, ffina
is the smallest of all the final time values received by the input ports oi

the simulation module. Then
datat{HS0(tfinal)) = HO(sfinall,

where HO is the output history of the actual module when it starts ir
the same imnitial state Sy and receives the imput history HI = data(HSI)
Furthermore, if tfinal = o (all input ports to the module receive tim
packets with value «), then the final state S, of the simulation of th
module will be the same as the final state of the actual module.

2.) Correct 'Ordpring of Output Packets: If the packets arriving at eacl

input port of a module in the simulation have strictly increasing tim:

values, then the output packets sent from each output port of the modul
in the simulation will have strictly increasing time values.

3.) Correct Coordination: 1f a simulation module receives an inpu

simulation history HSI then if tfinc! = 1;,:"&. {tlasty), eventually a time o

data packet with time value greater than tfinal will be sent from eacl

output port of the simulaticn module, unless {final « o, in which cas
time packets with value o will be sent from all output ports if th
corresponding actual module ever terminates.

The first step in the correctness proof is to show that the simulation an
coordination operations which have been developed will fulfill the thre
requirements for the simulation modules. Then, it iz proved thet for an
simulation in which the actual modules satisfy their three requirements and th
simulation modules satisfy their three requirements, the simulation wil

accurately model the actual system. This is stated in the fellowing theorem:

Theorem i. Correctness of Simulation.
Sappose a simulation has the following properties:

1.). The modules to be stmulated satisfy the monoticity of output, finit
delay, and functionality of output requirements.
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- 2) The simulation of each module satisfies the correct module simulation,
correct ordering of output packels, and correct coordination requirements,

3.) All m;hmunicaﬁon links between simulation modules operate properly,
so that if input port i; is connected to output port o, then hsi, « hso,.

4) The stmulation receives a system input simulation history SI, and
the sequence of time values received at each system imnput port is strictly
increasing.

Let ~ tfinal = min{tlasty,tlasty, ... tast ),

after the system input simulation history SI has been received, where
lgelpses ooy are the system input ports. Then the simulation module for any

module M i in the system will produce a module cutput simulation history HSO,
such that

data(H50,(tfinal)) « HO,(tfinal),

where HO i woﬁld be the output history of the corresponding module in the
actual system under the following conditions: '

1.) All modules in the actual system are started in the same initial state
as the corresponding simulation modules.

2) ‘l‘ho actual system receives the system input history I where
I « data(SI).

Furthermore, if tfinal = o, the final state of each simulation module which
terminates will equal the final state of the corresponding module in the actual
system. ’

'fha theorem is proved by ﬁduction on the saqixence of time values
Ctgubgrtaeeatpaee
where 7y = 8, and -
tg<ty< e <) <uis S0,
and each time value f;, ! > 8, is contained in some actual or stmulstion history
for the system, That is, ¢; is contained in one of the following histories: I,

the system input history to the actual system, HO IS the output history of some



module M § SI, the system input simulation history, or HSO I the output
simulation history of some module M. '
The induction hypothesis is as follows: For any ¢; € fp.8gseeeslps--- sucl
that ¢, < tfinal, ' '
a.) data{HSOJ(r,)) = HO,(¢;), for all modules M, and

b.) Either ¢; = o, or for any output port o
hso,.{t;}) c hso,.

In other words, not only will the simulation accurately model the actual systex
up to and including time ¢;, but in addition the coordination operations wil
cause each simulation module to send packets with time values greater than ¢
from all of its output ports Thus tﬁe simulation cannot hang up due to i
sﬁnulatlon module waiting for an input packet with time value s f;, as long a
t; s tfinal, Thefefore. by induction, the simulation will accurately model the

actual system up through time tfinal,

Conclusion

By incorporating some relitlvely simple coordination operations in the
simnlatioh modules, the siinulation will accurately model the actual syster)
while preserving the properties of a packet communication architecture system
As a result, bowwer, the simulation might fail to terminate even if the actua
system terminates, and the simulation will be rather inefficlent. These twn

difficuities will be deait with in the next two chapters.
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Chapter 4

Termination of the Simulation

Introduction

Due to the decentralized and time-independent nature of the simulation and
coordination operations, there are conditions for which the actual system will
eventually cease all operation, but the simulation will continue indefinitely.
The simulation modules can keep sqndlng time packets with increasingly larger
time values to each other long after all module activity simulations have been

completed.

For example, in system of Figu:q 4.1 the system input port (input port 2
of the aﬂslter)* has received a time packet with value o and the simulation
module for the switch has produced a data packet (x,97)., As can clearly be
seen, -all data operations by modules in the system have been completed. The
simulation, however, will keep going.. The arbiter will send a time packet
with value mln(lﬂa.;mhl = 181 to the functional cperator. This operator will
send a time paCi‘.Bt with value 181+2 = 153 to the switch, which will send a
time packet with value 163+1 = 164 to the next operator. This operator, in
_ turn, will send a time packet with value 184+3 = 187 to the arbiter, Then the
arbiter's simﬁlation module will start this cycle over again, even though

nothing is really being simulated.

In this chapter, termination operations which can be incorporated in the

simulation modules will be developed. These terminations operations guarantee
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Figire 4.1 - Nonterminating Simulation. ﬂ
The circles represent time packets; the dots represent data packets; and the
numbers alongside input ports represent the values of tlast for the input
ports.
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that the stmulation will eventually terminate if the actual system does, while
preserving both the correctness of the simulation and the principles of packet
communication architecture. Furthermore, as with the coordination, all control
information is sent between simulation modules along the mormal data paths,
No speclal hardware is requi;ed for termination, only additions to the simulation
progjrams. The last part of this chapter describes a proof of correctness for the

termination operations. The full proof is included in Appendix 2.

If there were 'st-n_ne means of simultaneously observing all simulation
modules and all éommunication links between them, then it could be determined
when the simulation has completed all data operations. The simulation has
completed all data ﬁperations and can be safely terminated once it reaches
point where: all system input ports have received time packets with value o,

no modules have sufficlent data packets to fire, and there are no data packets in
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transit. batx;\reen the simulation modules. This omniscient observer, however,
‘would not be in keeping with the philosophies of packet communication
architecture deslgn For our simulation, the simulation modules must send
control information to each other to determine whether the termination
conditions are satisfied. Furthermore, these termination operations must be

time-independent.

Most of the standard methods of determining whether a system is active,
such as time-outs, or waiting for a maximum count on the number of time
packets will i_xot work for this simulation. There are, however, special features

of packet communication architecture modules which can be taken adwmtage of.

Conneotivity Classes

A module M, can only receive imput information in the form of packets
arriving ai its input ports. Hence if there is no path from module M, to M,,
‘then the activities of M, cannot affect those of lla. To make use of this idea,
the meaning of patA must be defined more formally. First, a module M, "is
" connected .to" a module M, denoted M; — M, if an output poft of module M, is
connecté_d to an ini:ut port of M, There is a path from a module My to a
module- My, denoted M, -5 llé. if there exists a sequence

Mg My My N,
such that
| By = M, =By = = M, = N,

All communication with a module is in the form of data packets travelling

along data channels. Hence if there is no path from M, to M,, then there is no



way for :alll to send information to ;_!lz. sither directly or indiréctly.

The difficulties in terminating the simulation arise when the syster
contains cycles, A module lsl contained within a cycle if there is a path fror
one of its output ports to one of its input ports, that is M i 2 M j- . Fa
example the system of Figure 4.1 has a cycle O1 — S1 — 02 — Al — Ol
The simulation Jodules contained in cycles will not normally terminate - -the
.cannat send time packets («0) until time .packets (@) have been received on a
input ports, but the simmation modujes will not receive these time packe
unless they send ;t;-h'_qm' out. :Instead, the simulation modules will Xeep sendirn

time packets with values less than ® around the cycles indefinitely,

The cycles 4n the system can be identified by looking at the equivalem
ﬂm. formggl by the relation & whare Ny 5 N, If and only if either N 1
My (they m the same module), or H; 5 My and ¥y » M;. This relation
indeed an equivalence relation [17]: it is reflexive, symmetiric, snd transitiv
Héhce it defines a set of equivalence classes which are called connectivi
classes and are denoted C;,Cy,...,C,. For any connectivity class containys
more than ‘one module, any two modules in the class must have paths to ea
other. - That is, it My, —llz_c. c ), then

| My 2 M, and Ny 5 M,
An example of a bystem divided into its connectivity classes is shown in Figu

4.2,

The relation -5 can be extended to connectivity classss. €, -» C A a
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Figure 4.8 - System Divided into Connectivity Classes.
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only if ﬂi ‘t')uj for every t(ei, HJECJ. In fact i ﬁi -y ﬂj for any ui((;i,
“](Cj, then C". - c,. Moreover, if Ct 2 c,, then c‘! '?') Ct, or else they
would not be séparats equivalencs classes. Thus, if Ct 2 € I then the modules
in C; are not affected in any way by the modules in C j+ We can terminate

the modules in C,; without worrying about the modules in C J

Using the properties of comnectivity classes, the conditions for terminating
a connectivlﬁr class C j can be stated. When all of thess conditions are satlsfied,
the simulation modules in the class can safely terminate,

1a.) All system input ports which are input ports to modules in C |
‘have received time packets with value o, :

1b.) Al classes C; such that C; -» C; have been terminated.
2) No module M; ¢ C; has sufficient data packets to fire.

3.) None of the channels connected to input ports of the
simulation modules in C j contain data packets.

If there were some mean‘s" of detactmg. when a connectivity class could
be terminated, then all simulation modules in the class could sand out time
packets (o) from all of thaﬁ output ports. In this case, termination condition:
1a.) and 1b.) would be identical, from a connectivity class’ point of view. Thal
is, an input port iy to a mbd’ﬁl‘e Ilj e C j tecelves packets ‘from omne of three
sources: a. source external to the system, a module M; ¢« C; where Ci. 2 C oo
a module M; ¢ Cj. In the first case, {, is a system input port and hence would
receive a time packet with value . In the second case, the input port 7
woutld receive a time packet with value ® once the connectivity class' C; ha:

been terminated. Conditions 1a.) and: 1b.) can therefore be restated as:
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1.) Time packets with value o have bean received on all those
input ports of modules in the class C I which are not connected to
output ports of other modules in the class.
No special communication other than time packets is neaded between
conneétlvity classes or with the external world for termination. All that is
needed to terminate the simulation of a system iz some means of detecting

whon the modules in each class can be terminated.

If a class C; contains only a single module ¥ i then thi‘s.‘module either 1is
| not contained in any cycle in the system, i.e. IIJ -+ Ilj, or it is part of a
self-loop, in which there i3 a channel connecting an output port of the module
to an input port of the module, so that IIJ - K s .In the first case, the normal
coordination operations of the simulation module are sufficient for termination.
Since no input ports to the ﬁ_mdule are connected to outpﬁt ports of modules in
the class, time packets with value » wm eventually be received on all input
ports of the module. The firing of the module at any time ¢ o will then be
simulated. Then, since towl = «, time packets {®) will be sent from all output
ports, and the simulation processor can terminate the simulation of this module.
Thus, no special termination procedures are required for modules which are not

part of a cycle in the system.

For modules which are part of a self-loop and for connectivity classes
uﬁth ‘more than one module, héwever, the normal coordination operations are
not sufficient for terminating the module Slmulétions; For examble. th§
modules in f‘tgu’re -4.1 are all in the same connectivity class and therefore

would not termisate. Those input ports which are connected to output ports of
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modules in the class will never receive time paékats with value o without

special termlnaﬁon. procedures.

Termination Algorithm for Connectivity Classes Containing
Cyoles

A means of incorporating termination operations into the simulastion module
for each module in a connectivity class C j wili now be given. Thia
termination algorithm requires no changes in the topology of the system. There
is no need to add more mo@ules: or communication links to the system. .Unuke
the coordination operations, the termination operations are not identical for each
simulation module. ﬁr&t. one of ‘the modules in the class is designated as the
termination control! module, denoted T, for the class. Any of the modules in
| the class can. be: chosen for this rele. The simulation module for this module
must jnitiate and wvalidate the tests for completion of all operations by the
modules in the class. Next, for each module in the class other than T, one of
the output ports of the module must be selected as the signal output port of the
module. These signal output ports must be selected in such a way that if wx
look .only at the modules in the class, there is a path from every module to 1
roubwing- only channels coninected to the signal output ports of the modules
I"-innliy, for each module in the cl_ass. we must determine which input and
output ports are connected to output and imput ports of other modules in the
class. The set of all input ports of N j Which receive packets from modules ir
the: class is denoted from._class j- Similarly, the sst of output ports of M; whick

send: packets to other modules in the class is denoted to_class s
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The termination operations for the simulation module of the termination

conti'ol module T are as follows:

1.) Perform normal simulation and coordination activities until
every input port which is not in from_class; has received a time

packet with value co,

2.) When there is no way for the module to fire without
receiving more data packets, send fest packets (tast.+) from ail
output ports in to_classy.

3.) Wait until K test packets have bean received on tha input
ports, where
K=14+ Z (Ito_chsst! - 1.
“’l‘cf

In. this equation, |[to.class;|, is the number of output ports of

- module M; which are connected to input ports of other modules in
the class. '

-4.) If any data or time packets are received while waiting for the
test ' ‘packets, continue with the simulation and coordination
operations for the module.

§.) Determine the validity of the test as follows:

a.) If all K test packets have value test.+, and no data
packets were received while waiting for the test packets,
then send time packets (o) from 4!/l output ports of the
module,

"b.) If at least one of the returning test packets has value
test.- or a data packet was received while waiting for the
test packets, then send packets {reset) from all output ports

in to classr, wait for K (reset) packets to return, and go to
step 1. ;

6.) Once time packets (o} have been received on all input ports of
the simulation module, terminate the simulation of the module.

For mry other module M Il in the class, the termination operations for the

simulation module are as follows:

1.) Perform normal simulation and coordination operations until a
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test packet is réceived op some inpit port.

2.) When the first test packet is received, continue simulating the
module until all input ports which are not in from_class; have
recelved time packets with value o, and the data packets present at
the input ports are not sufficient for the module to fire. Then, i
the test packet has vilue test.+, and no data packets have beetf
récoived since the test packet arrived, send (tesat.+) packets from
all output ports in to_class . Otharivise sepd (test.-) packets fron

all ouitput ports in to_class.

3.) If: the module receives any more time or dasta packets, ther
continue the simulation and coordination operations as before.

- 4,) Any timme another test packet arrives, if the packet has valu
test.+, and no data patkets have beéen received since the previou
test packet was sent, then send a {test.+) packet on the signa
output port. Othérwise send a (test.-)} packet on the signal outpu
port.

§,) When .the first (reset) packet is received on an input . pori
send a packet (raset) from eath outpnt port i to_class j A
prepare for a new test. If any fuither (reset) packets are receive
before the next teést, sond tliem from the sighal output port. Whe
new test packets arrive, return to step 2.
8.) When a time packet {e)} is received on any input port 1
fromi_class ;, send packets (w) froni all output ports, unless this hi
already been done. '
7.) Once time packets with value ® have been received on a
input ports to the module, terminate the sirmulation of the module.
During the course of a test, unless some simulatior module can never 1
terminated, a test packet will travel through every communication link betwee
the simulation modules in the class, Hence, every simulation module wi
recelve at least one test packet, Initially, T sends out |to_classy| test packet
On receipt of Its first test packet, a simulation module M, will send o
. Itouclassy| test packets, thereby “creating" fto_class;] - 1 mew test packef

Thereafter, it will simply pass a test packet from an input port to an outp



port. Hence, a total of K test packets will be created. The values of these test
packets willl be test.+ only if no form of data activity is found anjrwhere in
the class. Because of the wa& in which the signal output ports ars chosen, all
K test ,l packets will be funneled back to T which can .them check the test

results,

Features of the Termination Operations

This termination algorithm preserves most of the desirable properties of the
coordination algorithm. In particular, the simulation modules still -fulfill the
requirements for a packet communication architecture system. Although one
module in each class is denoted as a termination control module, its only
function 1s to initiate and collect information about each test. This module has
no ability to monitor other modules or exercise any active control. Hence, the
simulation modules are still autopomous. Furthermore, all communication is by

packets,‘and the operations do not depend on any timing restrictions.

As with the coordination algorithm, all termination control information is
sent over the noj-inal data channels, This avoids the problem of monitoring the
communication links between simulation modules, Instead, the first-in, first-out
property of these links ensures that no data packets will be overlooked while
the} are tfavemng betweon- dﬁMation modules, No special hardware is

required for termination operations, only additions to the simulation modules.

One undesirable feature of these termination operations is their dependence

on the overall structure of the system to be simulated. Whereas the simulation
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and coordination operations of a module depend only on the moduls itself, the
termination operations depend on how the module is incorporated in the system.
This _compromises - the modularity of the ties?gn somewhat., Howevar, the
ltarminatlon operations of a module can be fully determined based on a very
limited amount of knowledge about the system, namely how modules in the
system are interconnected. No details about the operations of other modules in
the: system are required. Thus, while the ln_eo_rporation of the termination
operations into the simulation modﬁlas will decrease the modularity of design,

this decrease will be rather small, -

Effiocienoy of the Termination Operations

- The termination opertations for the modules in a connectivity class are
designed to be 'both simple -and efficlent. That is, they will not increase the
| complexity of the simulation modules greatly, nor will the speed of the
simulation be decreased g:eaﬂﬁ; The efficlency is a result of several important
features. First, the simulation’ and coordination operations need not be
interrupted while the termination operations are taking place. -Thus, if a test is
initiated while modules in the clﬁs= are still active, the simulation can keep
going, although at a slightly decreased speed. Second, the operations are
designed to keep the number .of tests initiated reasonably low. The first test
can be inmatqd- as spon as the termination control module has received packets
(o) on all input ports which are not in from_class;. However, all K returning
test packeu_. will not be received until a/l modules in the class have received

packets () on all of their {nput ports which recelve packeu from outside the
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class, and all modules at some time have ceased data operations. Thus the
second test cannot bes initlated until the first termination requirement for the
class is sattst;edo _Each successive test cannot be initfated until the previous ome
| has oompleted..' This not only simplifies the termination operations, it limits the

frequency with which tests can be initiated,

Correotness of the Termination Operations

The addltién of thé termination operations to the simulation modules will
not interfere with the simulation of the system, but they ‘wm cause the
simulation to terminate if the actual system does. This is stated in the

followling  theorem.

Theorem 2. Correctness of Termination

a.) Suppose a simuiation is performed in which the modules to be simulated
obey the three requirements: functionality of output, monotonicity of output, and
finite delay, and the simulation and coordination operations of each simulation
module obey the three requirements: correct module simulation, correct ordering
of output packets, and correct coordination, and furthermore the coordination
operations of ‘a simulation module cannot cause time packets (w) to be sent out
by the simulation module unless _
_ o, (tlasty) = o,

Then the addition of termination operations to the simulation modules as
described in Chapter 3 will not cause any of these requirements to be violated,

b.) If the actual system ever reaches a state in which no modules in the
system wiil aver enter the firing mode unless mors packets are received on the
system input ports, then every simulation module in the simulation of this
system will eventually produce time packets with value ® on all output ports,
if all system input ports in the simulation receive time packets with value o,

The proof of this theorem is included in Appendix 2 and will be described

here briefly. The termination operations for different connectivity classees are
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separate, hence we’ need only prove that the operations are correct for each
class. Moreover, slnce .the termination operations are .designed- not to interfere
with tim normal simulation and coordinatior operations, the only possible
adverse effect of the _termi-n_atlon operations is to terminate the simulation too
soon. Thus,. proving the first part of the theorem involves proving that the
simulation modules in a class will not terminste until a test of the clam
suceeds, and that a test mﬁu suceed only if the termination conditionz for the
class are satisfied. In other words, if the termination contrcl module T sends
out {test.+) packets, then all K returning test packets will have value test.+
only if the termination conditions are satisfied. Proving that a test of a class
will not overlook some simulation module Whlg:h is not yet ready to terminats

constitutes the most difficult part of the entire proof of correctness.

To prove the second part of the theorem, it must first be shown that &
‘test of the class and a subsequent reset will eventually be completed, unless the
: tarmina_tion conditions for the class are never satistied. In other words, any
time .- the termination control module sends out test or reset packets, it will
eventually receive K test or _reset packets, unless ;wme simulation module M,
never receives a time packet {(®) on some input port ‘which is not iz
fron__eh'si,_ or some actual module runs indefinitely. Thus, once th«
termination conditions for the class are satisfied, any previous test or rese
operations will be completed, and a new test will be initiated. Furthermore
the reset bperauons must cause all modules in the class to re_éeiva at least om

{resat). packet defore the new test packets are received. rinally, it must W
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shown that a test will suceed, once the termination condiuom are satisfied,

Conolusion

The relatively simple coordination operations of Chapter 3, which are
designed to keep the simuiation from deadlocking, created a much more difficult
problem of terminating the simulation. The solution of this problem requires
both _compromlslng the modularity of design of the simulation modules to some
degree and also adding termination operations which are more complex than the
origlnai coordination operatlon;. This lack of modularity and greater complexity
makes the coi'reétnéﬁs of the termination operations more difffcult to prove tham

the correctness of the simulation and coordination operations,

.However, tl_xé termination operations do satisfy the design goals for the
simulation. The simulation remains a packet communication architecture system
in which all communication is in the form of packets, the simulation modules
are autpnomous, and the design is time-independent. Furthermore, while the
termination operations are more complex than the coordination operations, t_hen'
.implementation should not ba particularly difficult, and they are efficient

enough to have little effect on the speed of the simulation,
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Chapter B

Improving the Effioclency of the S8imulation

Iniroduotion

The coo_rdination algorithm of Chapter 3 is rather primitive in that the
coordination operations of a simulation module make little use of the properties
of the actual modile, other than its minimum delay time delay. This leads to a
slmulati‘on which requires a great deal of coordination information o be passed
between simulation modules and which unnecessarily restricts the concurrency

of the simulation.

Any modification to the coordination methods must pressrve their desirable
properties. The ooordinatloﬁ operatloﬁs should be simple enough to be easlly
incorporated in the simulation program for a module. The simulation shounld
still be a packet communication architecture system, hence there should be no
centralization of comrbl or timing restrictions on the simulation modules or the
communication links between them. Finally, the design should be modular -
the coordination operations for a module should depend only on that module and

not on the structure of the rest of the system,

In this chapter, two méthods which can increase the effici_ency under some
conditions will be presented. These two particular modifications were chosen,
because they are easy to implement and apply to ﬁmy packet communication-
architecture systems. It will be shown that with either of thess two

modifications, the Correctness of Simulation Theorem, desciived im Chapter 3,
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Wm still apply.

Moﬁules ‘which Compute Monotone Functions
Many of the packet communication architecture modules which have been
designed to date compute monotone functions over their histories. That is, if
the module produces an output history HO; when given the input history HI,,
and an output history HO, when started in the same initial state and presented
with an input history HI,, where
| HI, & HI,,
then.
HO,; & HO,.
Modules - which eomput_e' monotone functions over thelr histories are
characteuzed‘ by the property that the decision about which input packets are
absorbed from each input port and used in a particular firing is independent of

the arrival times of any input packets.

In parficular, any determinate module computes a mopotone function,
wixere a' determ_in_ate module [12,18] is a module for which the sequences of
output packets ~s§nt _from the output ports depend only on the sequences of
input paciets arriving at the input ports, and not on their arrival times, For
example, the functional operator and switch modules of Chapter 1 are

determinate modules.

One would expect many packet communication architecture modules to ba

determinate, since théy embody the ultimate form of time-independent operation.
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For example, all of the data flow actors of Dennis [5] have determinate
behavior, so by the Closure Theorem of Determinate Systems of | Patil [18], any
module 'Which implements a data flow program must be datermmaje. One
important module which does not compute a monotone function over histories
and thefeforé is not determinate is the arbiter module. The order in which
packets are absorbed and subsequently sent out depends om the relative arrival

times of the packets on each input port.

Other modules are nondeterminate, but do compute a monotone function
over histories. For example, a system clock module which, when it receives a
packet "of the form (request_time), sends out a packet containing the time at
which the request packet arrived, computes a monotone function over ixistoriea,
but its output values depend on the timos at which the input values were

recelved,

Slmﬁhtiot; of Modules which Gomputé Monotons Fanctions

If a module computes a monotone fanction, then it can be safely fired in
tﬁe slmuiauon as gsoon as the necessary data ﬁqckets hzve srrived at the input
ports. There iz no néed to make sure that ffire s 3% (dasty). Thus, the

simulation module can use any of the input data packets, and mot just those

with tinia'values less than or equal to 1;;';,‘ (rlastkl.

For example, if the simulation module for an ADD module has received a
packet (x,18) on iﬁp_ut port 1, and a packet {y,20) on input port 2, then thers

is no need to wait until a packet with time 2 28 has beeu received on input
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port 1. Ihstead, the firing of the module at time 28 can be simulated right
_awaj?, since any' data packet received on input port 1 would not affect this

- firing.

As long as this revised firing rule does mot cause amy of the three
requirements for the simulation moduls to be violated: correct module simulation,
correct oi‘dcrin( of output packets, and correct coordination, the Correctness of
Simulation Theorem presented in Appendix 1 will still hold. To show that this
modlﬂéauoﬁ_ yvlll not vlplate the correct module simulation requirement, suppose
at some time a shnﬁlation module for a module which computes a monotone
function' has recelved an input history HSI’, where HSI' & HSI, the input
simulation history which will ultimately be received. Then if all possible
firlngs of the module on the data packets are simulated, and an output
simulation MW HSO® is produced, the effect of these activities will be to
simulate the operétion of the actual mod\ilé as u it had received an input
history HI', wlie‘re |

| | HI' = data(HSI').
- We ﬁow that
) HI' € HI,
where HI = datalHSI). Hence, since the module computes a monotone function,
HO' € HO,
where HO' is the actual module's output history in response to HI', and HO is
the actual module's response to HI, when started in the same initial state. In

simulating the actual module’s operations on the history HI', a simulation
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history HSO® has been produced where
| datalHS0') = HO" & Ho.
The revised firing rules wﬂl not cause the module to fire prematurely. Thus,
the first requirement, correct module simulation, will not be violated.
Furthermore, this modification will not affect the rules for producing time

packets, Thus, the othet tivo regillrements will still be valid: correct ordeéring

of output packets and corréct coordination. The Correctness of Simulavion

Theorem still applies.

This xhodif‘ﬁ:a"uon- wm improve the efficienicy of the simulation by
increasing the concirfency of modile sifmulatios. There is mo need for a
module which computes a monoctone fusction to wait for time or data packets
when sumcieﬁ.t data packets are alreadly present. Furthermore, it actually
simplifies coordination operatiois, siiice there is no longer any need to determine

whether a module can be safely firéd.

S8trengthening the Oalcﬁ'lailﬁn of the Minimum Output Time
In the coordination .al“gor‘i'tlim of Chapter 3, fout, the earlisst possidble time
at which the simulation could fiext send out a data packet, is calculated ss
tout = 21 (tlasty) + delay,
where tlasty 1s the ﬁf'me value of the last packet received on input port {,. In
otimr words, it was assumed that the firing of a module might be simulated as
soon as any packet arrives on whichever input port i, currently has the lowest

value of flasty. In many cases, however, the module would not be enabled to

fire, even if such a packet were received. For example, if the simulation



‘module for an ADD module has not recelved any data packets, and tlast, = 168,
and rt!astz - 19, t}_:sn the firing of the module for any time less than or equal to
- 189 will never be simulated. even if a packet with time value 11 is received on
input port 2. The coordination oparations. are overly cauticus. They assume
only something which is true 'for any module - i{f there are not sufficient
packets for the module to fire, then the module cannot {irs before the arrival
of the next p&cket. If the coordination operations could take advantage of the
firing requirements for a moduie, then it could often calculate values of fout

which are higher than those obtained by the method of Chapter 3.

-Any change in the method of calculating fout, will inevitably be more
complex than the calculation
towt = 5% {tlastki + Jelay.
Hence, the st;ength of the calculation, that is the closeness to the maximum
possible value, must be MCm with the simplicity of .the. calcnlation. The
following method of calculating fout represents a particular compromise between
strength and simplicity. It is very simple yet seems to be reasonably strong for

many modules.

Expressing the Firlng Requirements

First. a method of speclfying under what conditions a module might fire is
required., for any module, a boolean-valued function F can be given which
takes as arguments the values of p;, 1sfsn, where p; is the number of packets
yreéant at input port { J {4

F(p‘.ﬁZ'.'.’pn) - m,
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then the module might fire when p; packets are i:resent at each input ﬁort 1.
If the value of the function is falss, however, then regardless of the internal
state of ;he module,I thtla time, or any stochastic processes within the module, if
each input port {; contains exactly p; input packets for all j, 1sfsn, and the
module is in the wait mode, then the module cannot possibly enter the firing
mode. Thus, as long as the value. of the function is falge, the modulq cannot

produce ahy packets until more packets are received,

For example, an ADD module has a function

Faoo P12} = (pg21) A (pg21).
- It cannot fire unless each each of the input ports contains at least one packet.
The arbiter ha;s a function

Fag(Bpe02) = 1) v 1p21),
It can fire if there is a packet on either input -por-t.‘ As a final example, if the
behavior of the module is totally unpredictable, a function
Furua PgsP2eeerpp) = trus,

can al_wayS be used. This will apply even for modules which can sometimes
fire without receiving any packets, since there are no conditions for which the

value of the function is false, but the module can fire,

An equation for fout can be derived for a simulation module, if the

equation for F of the corresponding actual module is expressed in the following
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" form:

F(PI'_PB"“'p]} L
[([;Iacu) A (ﬁlezI’ A ses A ‘Pnacnill
v Upgega) A (po2ego) A vou A (ppacyal)

v {(pi_zch) A tpo2cgel A val A (pnzc")l.

in which each c, § is some constant greater than or equal to zero. This form of
the equation is called the sum of products form. Note that lf‘ Cpy = @, then the
Predicate (py2cy ;) must have value trus, thus these factors can be omitted from
the equation. Equations with all factors of the form' {pp20) removed are in
re&uced sum of products form. In the preceding examples, the functions F,,,

Foeys and Fo are expressed in reduced sum of products form.

Many fug_ctlons cannot be expressed in this sum of products form. In

fact, only those functions for which
Fipopareoerpy) = true

implies that for any values, kx-"z- .'...kn_ 8,

| Flpgthgiporhpseoe, pythy) = true,

can be axpressed in thi;« form. However, for any function F we can always

find a "v_“ceaker" function F’, such that if |
Fipgodosssespy) = trus

then |
F*(pgaparererty) = trus,

and an equation for F' can be expressed in sum of products form.

A sum of products equation for F can be translated into an equation for



tout as follows:
tour = HAXL n(rtast)) + delay ;B0 (3 u,wul) + delay—c ],

whera : '
tpy = the earliest possible time value of the /th packet on imput port i,
= the time value of the /th packet on {,, if ! < p,, ‘or
- tl&stk, ifl> ﬁk'

delay = the minimum t!elay time of the module, and
€ = any number greater than zero,
The second term .of the equation
1515 15kén “kc”’) + delay - ¢,

represents the calulation of the minimum output time based on the function F.

As will be proved shortly, for any value ¢’ such that

1] [}
Fcty= xgqu ol "kc”))-

if p, is the number of packets on input port {, with time values less than or
equal to {', then | |

CFU b by = falve,
Hence, the module cannot possibly fire again before time f,, and no data packets
with time values less than or equal to ¢, + delay can be produced by _th_a
simulation mo‘du-le; Since all packets in the simulation must be sent from each
output port in strictly increasing order, the term ¢ is required for fout to be

strictly léss than ihe time value of the next data packet.

I the calculation of ftout were based only on the function F, it might be
overly cautious, It is possible for the function F to have value true even when
the module cannot possibly fire, In this case, a calculation of the minimum

-output time based on the equation for F would give a value which is too low.
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Even if the function F has value trus at some point in the simulation, if the
data packets with time values less than or equal to 1;,':2,,“!6“3_1' are not
sufficlent for the module to fire, then no data pai:kets can be produced with
.time values less than or equal to 3% (tlasty) + deiay. Thus; the calculation of
tout must take the maximum of the two predictions of the minimum output

time - that based on the function F, and that based on the values of tlast,.

For example, for the ADD module the equation is
tout = Max[ minltlast s, tlasty) +delay 3 wax(tyq,tq) +delay-c ].
For the arbiter; the eqﬁation is
tout = MAXL min(elasty, tlast,y) +delay s minttyy,to ) +delay-c ],
= min{tlasty,tlasty) + delay,
This equation degenerates to the original equation for tout. .Pinally. for the
function F, . the equation is
tout « MAX] 50 telasty) edelay 3 @sdelay-c ]
. ran, ltlastp) + delay.

This equation also degenerates to the originel equation for fouf.

Correctness of the Calcﬁlation

this modified method of calculating fout will not cause the simulation to
violate any of the three requirements: corrsct module simulation, correct ordering
ol; output packets, or- correct coordination. Hence, the Correctness of Simulation
Theorem given in A_ppan_dii: 2 will still apply. Clearly the | correci module
simulation requirement will atill hold, since this modification will not affect the

data packets produced by the module in the simulation.
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As for the corréct ordering of output packéts requirement, a time packet

will not be sent out from output port o i with time value less than or equal to
tla:t-outj. since this is' checked for by the simulation module. The only danger
13 that a time packet with value tout might be sent out, and later a data packet

with time less than or equal to fout is sent out. The original proof shows this

cannot happen for tout = 50 (tlasty) + delay, hence the problem can only occur
i

tout = 1;;';" Roris (‘tksqul) + delay ~ e.
The claim, however, is that for any value £ such that

i {
1534 Yn “kc”’)-

‘t'. <tg=
if pp is the number of packets on input port i, with time values less than or
‘equal to ', then

| iF(p;.pé.....p;) = false, |
"'Hénce the module cannot fire ‘again in the simulation at any time, ¢’ < f,. To
show this, lwk at any ae,, for which

tkcll - max (tlcl"‘2c21' ss e .tnc"‘) »

By our assumption about £, and from the ‘équation for ¢,
<t S fhe,
and fye by definition is the earliest possible time value of the c,;th data
packet on input port t‘,_. Thﬁs, pi < Crpr which implies that the predicate
| (prcy;) = false, for any j, 1sj<q.
This means that for any j, the product term
'(piZc”) A tpg2cpp) A oo A (pp2c, ) = false.

Therefore, F, which is the sum of these product terms must have value false.
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'No firing of the module before time

t0 = 1515 1;;;.. “kc”’)'

can be simulated, hence no data packets can be produced with time values s f,
+ dclaj can be produced. If :

| tout = to + delay - ¢,
and ¢ > 0, the correct ordering of output packets requirement will not be

violated.

Finally, the correct coordination requirement will not be violated, since
tout 2 5% (tlasty) + delay > 5% (tlast)),
- unless 1;\'(;\ '(tlastk) = o, Thus, the Correctness of Simulation Tlhieorem of

Appendix 1 will still hold for this revised calculation of fout.

Compatibility with the Termination Operations

One difficulty caused by this‘ revised calculation of fout is that the
calculation might cause a simulation module to produce time packets with value
@ before time packets with value « have arrived on all input ports. This could
interfere with the termination operations for the connectivity class. If some
other simulation module receives one of these umé packets, it wm assume that
the most recent test succe_eded and will send out time packéts (0) from all

- output ports, which might not be valid.

One' way to prevent this problem would be to réqulre that no simulation
module send out () packets, until all input ports have received (o) packets.

Instead, when fout = @, it would send out time packets (t) where ¢ is some



"large” number, This seems: rather awkward; but it will prevent the foul

calculations: from: interfering with: the: termination: operations.

Features of the Caloulation

This calculation of the nil‘nimum output time uses information which is
already avatilable to 'tha simuiation module, namely the time values of each data
picl;et at the input ports and the values of tlasty. No attempt is made to
| predict the time value of the /th packet if pp < I, except that it ‘is_ greater than
' tla‘.stk. This avoids passing more ooo:dlnation.. information between simulation
modules‘, or requ.lring knowledge of the timing details of the other simulation

This t_:a'lcula_t_lon of tout is reasomably simple, in fact hardly more complex
than the original calculation. One reason for this simplicity is that it ignores
much of the information which is available to the simulation module. For
example, the data values of the Iinput packets are not considered, nor is the
state or time of the module. Under some circumstances this will lead to a
weaker calculation of tout than might be possible. If the conditions under
which a particular module can fire depend heavily on these factors, it would be

worthwhile to take these factors into account when calculating fout.

This method of calculating 'tout will increase the efficiency of the
simulation in two ways. First, it will decrease the number of time packets
sent between simulation modules. Not only will the difference between

successive time values tend to be greater, the need to send tme values around
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loops a number of times just to fire a module once can be reduced. For

example, suppose the module M g of Flgure 5.1 obeys the function
| | Fipgpa) = (pl) A (pg21).

Using the original method of caiculating tout, tout = min(18,108) + 2 = 12, Thyug
a time packet (12) would be sent to M,, which would send back a time packet
(13) and so onm, until after M, has sent 30 time packets, it would finally

receive the packet (188) and the firing at time 108 could be simulated. 1f
| instead we use th; éalculatlon

tout = MAX[ min(18,100)+2 ; max(18,100)+2-8.001 ] = 101,999,

the time packet (181.399) could be semt to M, which would send back
(162.999), and the firing of the module could be simulated. Thus, the

reduction in the number of pgckets sent during the simulation can be very

large.
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Figure 6.1 - System wmch can be Simulated More Efficiently with Stronger
toxt Calculations.



The second improvement: in: the: efficiency comes. in th_a,‘tc.orm of increased:
concurrency: of: thefrsimulattbnz In. the previous: example, II;I would not need: to.
wait for time packets to cycle through the loop. 30 times before firing.
Furthermore, if there were some module. llé_ connected: to output port o, of M,
‘which: is. waiting for a time packet with time greater than or equal to 58 from
M;, it would receive this packet: much soomer. By reducing the time spent
sending and waiting for time pacl@ts, the: simulation modules can spend a
proportionately lérger a!hount of time simulating the data operations of the

modules. This would increase the concurrency of the module simulations.

Conclusion

. These two modifications: were chosen, because they can be easily
implemented and make use of properties which are expected to be common in
packet communication architecture systems. Other modifications could improve
the efficlency of the simulation in other casss without compromising the

desirable properties of the original method.
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Chapter 8

Conolusion

Insights and Afterthoughts

As has been demonstrated here, it is indeed possible for the simulation of a
packet communication architecture system to itself fuifili the design
philosophies . of packet communication architecture, The modularity and
time-independence of the shnulation allows it to be performéed by virtually any
computer system which supports intercommunicating processes. Furthermore,
the operations which must be performed for each module in the system are
reasonably simple and therefore can be executed by small proéessors such as

microprocessors.

The methods which have been developed here are very general as well.
Few restrictions are placed on either the characteristics of the modules in the
system or on how these modules are i_nterconnected. Moreover, the methods are
provably correct, which is an important feature for any asynchronous, parallel

computation, due to the numerous and often subtle difficulties which are

_eneountered in the design of such systems.

The coordination and termination operations are simple enough to use only
a small fraction of the simulation module's processing time., However, it is
difficult to estimaté what fraction of the processing time will be spent waiting
for tile necessary time or data packets. This will depend a great deal on the

structure of the simulation facility and on the system to be simulated. Thus, it
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is difficult to estimate the efﬁclency of the simulation, that is what fraction of
the processing tlmé will be spent simulating the activities of the modules.
waever, considering the low efficiency of a simulation on a sequential
computer system, the efficiency of the parallel simulation seems quite reasonable

"~ by comparison.

Perhaps the fundamentai philosophy which is ekpressed in this work is
that a certain amount of | overhead, that is computation whose only purpose is
to x'nainmm proper operation of the system, is needed for all but a unutéd class
of computer systems. This fact was accepted long ago by designers of
uadiuénal. computer sygtems. For example, many of the functions performed by
a:g operattng system are overhead. Such operations as memory paging and
rebource. scheduling are incidental to the execution of & wuser's program.
Similarly, the mrdmuon and termination operations of the simulation modules
are lncidentgl to the simulation of the activities of the actual system. In a
distributed computation, the increase in the system load caused by the overhead
operations aj»pears in two forms: as added computations for the components of

the system, and as special control information sent between the components,

These overhead operations .a_re acceptable if they are kept to a minimum
and are Adeslgned in such a‘ way that they both preserve the design goals of the
system and remain invisible to the user of the system. For example, the
amount of overhead in the simulation is erea.sonably smell, the principles of
packet com_muniéatlon architecture are preserved, and the overhead operations

are invisible to people performing simulations.
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The design of overhead computations for. parallel systems is still in a
rather primltlﬁ state; Other parallel computer systems, such as Illlec IV [3],
are structuréd in such a way that the amount of overhead operartions is
minimized. These systems contain central controllers which tightly control the
operations of the components, ther_eby avoiding the need for the processors to
communicate their status with one another. Because of the rigid control
structure, however, it is difficult for the user to program such a system tc run
efficiently. These systems are suitable only for applications in which the

structure of the algorithm closely matches the structure of the system.

Packet communication architecture systems, with their decentralized control
and time-independen_t operation are potentially much more flexible and general
purpose than other parallel | systems. 'Howevar, along with this increased
capaﬁility comes a need for the componehts of the systemm to keep their
actlvitlgs coordinated properly. The design of overhead operations for these
systems requires an apéroach which is totally different from those used in
designing traditional systems. The overhead computations incorporated im each
component of the system can utiliz'e. only a limited amount of information about
the rest of the system. For examp}e, the only information about the status of
the rest of the system available to the coordination and termination operations
of each simulation module is in the form of time and test packets received at
the input ports, Overhead operations which can be "modularized” in this
fashion seem rather foreign, partly because they have no locus of control.

Instead, the operations take place in many locations simultaneously.
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state of the rest of the systém can vé changifig: The overliead operations miist

bé designed to opérate correctly, despits a comtinucusly changing systém state.

on one componént at & time. Thé system miist bé viewed as a whole to see

How the operations work. Foi example, the {efmination operations perforined

by esch simulatfon module make Httle Shsé wheh viewed individually, but

they fit together into a computation which will detect when the simulation can

be terminated.

To date, no general techuiques for designing the overhead operations in
packet communication architecture systems have been developed. Instead, they

ed on a case-by-case basils, taking advantages of special
properties of the system. For example, the design here takes advantage of the
fact that the sole purpose of a simulation is to model the behavior of some
other system. If the actual system contains deadlocks or other ﬂi;ﬁlfunctl_ons, the
simulation should model these deadlocks and malfunctions. The burden of
designing a system free of errors is left up to the system designer. In the
tuiurb. however, general techniques should evolve which make the overhead

operations both easler to design and understand,

Buggestions for Further Research
There are two directions in which further research can build upon the
work which has been presented here. First, more work is required before

packet communication architecture systems can be simulated. In particular, a



means of programming the simulation modules is needed. Ideally, the user of a
| slmixlation facility sﬁould be able to specify the operations of the components of
the actual system in a ldgh-leval language, such as the Architecture Description
Language of Leung, et al | [14). These specifications would then be translated
into programs for the simulation modules by an ADL compiler. The user should
not be concerned with the coordination and termination operations, nor with the
detalls of fhe module activity siniulatlon. Fortunately, the coordination and
termination opetatipns are simple and uniform enough that they will not
increase the éomplexity of this trenslation greatly. The major difficulty is the
design of a language which vallows the specification of a wide variety of
systems in a concise and understandable form, but can be translated into
piogtms for: the simul_atloi modules. With the mcm interest in parallel,
asynchronous. computing systems, a obnvenient and efficient means of simulating

them will be required to determine the best designs.

Thq other potential direction for further research is to apply some of the
techniques aﬁd insights which have been developed here to other areas. One .
direct application would be to the simulation of systems which are not strictly
packet communication architecture systems. Some systems which are commonly
simulated, such as air traffic control models, have the essential properties of
packet communléatlon architecture design. | That is, the system. can be
subdivided into a number of components which operate independently and
communicate with each other only in a Hmited and well-defined manner. For

example, an air traffic control model can be subdivided into geographic regions.
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lon occur simultaneously and independently. The

‘only communication is between neighboring regions, and the only way they
communicate is by changing the boundary conditions. The atmulation
techniques which have been developed here can be applied directly to such
systems. This will lead to a highly parallel simulation which can be executed
by a ;e_l,gtﬁrgly simple ngti&q:!; of computers. For the air traffic control model,
one can envision a "grid" of processors, in which each processor simulates the
activities within one geographic region. The simulation of an air traffic control
model on a. network of processors has been studied in some detail by Thomas
and Henderson [22]. In their system, different geographical regions of a
hypothetical airspace are simulated on different Arpanet processors. The
simulator for one region sends q' message to the simulator for an adjacent region
when a plane crosses from the first region into the second. To maintain proper
time synchronization, one of the simulators maintains a global time clock and
broadcasts the simulation time to the other simulators at regular intervals. In
their description of the system, the authors note that a distributed approach to
time synchronization would be preferable, since this centralized approach tightly
binds the simulators to the global clock. It seems that coordination operations
along the unes of_ those presented in Chapter 3 could provide the necessary
synchronization. Each simulator would send a time packet to the simulator for
each adjacent régxon .mdtca'm the earliest possible simulation time at which a
plane could possibly cross from the first region into the next. In this way, the
simulation can proceed without any centralized control or real-time conairaints

on the slmul#tors.



Moving beyond the field of simulation, there are other areas to which
thesp techn_hiues' and insights can be applied. The problems of deadlock and
_ nqntermlnaﬁon -wméh were dealt with here occur frequently in parallel,
a#ynchfon.ous systems. Tﬁe »ooncept of adding overhead operations to a system to
prevent these problems can be applied to other systems. For example, the
author [4] has identified a deadlock which can occur when the data flow
‘language of Weng [23] is extended to include both cycles and nondeterminacy.
This deadlock occurs after all &mpuhtion i:y the program is completed, but the
Program fails to recognize that it is able to terminate. This deadlock can be
avoided by adding more data flow actors to the program to perform the
hecessary overhead operations and terminate the program. In fact, these
overhead computations aré veiy gsimilar to the termination operations of the

simulation modules,

To design the ofre'rheéd oﬁerations for a wider class of parallel,
asynchronous systems, however, more general techniques will be requ;red.
Ideally, a programmer should be able to specify a program in a high-level
language thgh will then be compiled intc a number of séparate module
programs which include all of the needed overhead operations. These programs
~could then be loaded into the modules of a lpacket communication architecture
system, and the system would then execute the program in a highly parallel
| fashion. Translating high-level languages which include sucill features as data
structures and recursive procedure calls into individual module programs will

pose many difficulties,
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Thus, while the. focus of this work. was on: simulating a. particula

type. of

niques and concepts

computer system in a particular manner, some of the

which were developed here have much broader areas of muc-uon
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Appendix 1

‘Correctness of the System Simulation

The following proof shows that the simulation operations of Chai:ter. 2,
combined witfx ihe coordination operations of Chapter 3 will give a simulation

which accurately models the actual system.

Before proceeding with the proof, some additlonal notation is needed. For
an input port i, 'of a simulation module, the value of tlast, is the last time
ﬂue received on that input port Thus, for an input port simulation history,
we can define a function Tlast wh,ere Tlast(hsi,) equals the minimum value
of ¢, Oﬁtsw, ‘such that Iisih(t) - hsik. Similarly, for an output port o, of a
module, tlast-o;u,. equals the. last time value sent frém the .port. Thus, a
function Tlast-out can be defined for output port simulation histories, where
flaat-out(hso,.) equals the minimum value of f, 8stsw, such that hso,(t) =

hso,..

Finally, for a module input simulation history HSI the function Tfinal is
defined as:
. T#inal (HSI) = %" (T1ast(hsi,)),
where

HSI - <h811,h512, . 'o 'h81n>.

This function can be applied to system input simulation histories as well.
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Requirements of the S8imulation
The correétness‘ proof will apply to simulations which fulfill the tollowmg
six conditions. First, there are three conditions on the modules to be simulated:
1.) Functionality of Output: The output history and final state of ‘a
module depend only on the initial state of the module and the input
history. .

2.) Monotonicity of Output: The output of a module at time ¢ cannot be
affected by input received after time ¢.

3.) Finite Delay: The output of a module at time ¢ cannot be affected by
input received at time ¢, In other words, there must be a finite delay
between the receipt of an input packet and the production of an output
packet which depends on this input packet.
If a module satisfies all three of these requirements, then its output history up
to: and including time ¢ must be a function of its initial state and its input
history up to but not including time ¢. This can be specified more formally in
terms of histories. VSuppose for two operations of a module, the module
produces an output history HO when it starts in initial state S, and receives the
input history HI, and it produces an output history HO’' when started in the
same initial state Sy and given the input history HI’. Then for any value of ¢
such that
HI(¢-8) = HI’ (¢-5), for all 558,
the two output histories must be identical through time ¢, that is

HO(s) = HO' (1),

The following conditions will be required for each simulation module in
the System:

1.) Correct Module Simulation: The simulation of a module must produce
the same values as the actual module would under the same
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¢ircumstances, That is, suppose the simulation of a module produces a
. simulation history HSO when it starts in initial state S, and receives
input simulation history HSI, where all of the data and time packets
arriving at each input port have strictly increasing time values. Let
_ tfinal = Tfinal (HSI),
" That is, {final is the smallest of all the final time values received by the
input ports of the simulation module. Then

data(HSO(tfinal)) = HO(tfinal),

where HO is the output history of the actual module when it starts in
the same initial state S, and receives the input history HI - data(HSI).
Furthermore, if tfinal « o (all input ports to the module receive time
packets with value o), then the final state of the simulation of the
module Sf will be the same as the final state of the actual module.

2.) Correct Ordering of Output Packets: If the packets arriving at each
input port of a module in the simulation have strictly increasing time

. values, then the output packets sent from each output port of the module
in the simulation will have strictly increasing time values.

.3.) Correct Coordination: Each output port of a module in the simulation
will eventually produce a time or data packet with time value greater
than the minimum time value of the final packets received at the input
ports, or else the output port will produce a time packet (w). In other
words, suppose a module in the simulation receives am input simulation

history HSI and produces an output simulation history HSO. Then for
any output port o, of the module either

Tlast-out(hso,) > Ttinal (HSI),
or
Tlast-out(hso,) = o,

Tlie simulation and coordination operations (without the ;grminatlon
ppe:étiong) pfesented -in Chapters 2 and 3, .sattsfy all six of these requirements,
as fong as the modules to be simulated satisty the first three requirements.
First, the. simﬁlation operations developed in Chapter 2 will guarantee that the
correct module simuiation reéulrement is satisfied. To see‘ this, suppose at some
' folnt in the simulation, a simulation module has received a simulation history
HSI' where HSI' & HSI (the ultimate simulation history which will be

received by the simulation module,) Assuming packets arrive at each input port
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with strictly increasing time values, then if
| tmin = Tfinal (HSI') = 1;;;" Atlasty),
no new packets with time- less than or equal to fmin will be received on any
input port. By the firing rules for the simulation, the firing of the module at
time tfire canx;‘ot be sini,ul;ated. unless tfire s tmin. Thus, when the firing of the
module at titne ffire is simulated the simulatfon history HSI(tfire) has been
received. Assuming the simulation correctly simulates the ﬂring of the module,
the proper ‘output' pack.ets ‘will be produced. Furthermore, once the simulation
module has received the entire input simulation history HSi with
: tﬂnal « Tfinal (HSI), . |
the firing of the module for all values of tfire tﬁrial will be simulated.
Hence, all output packets with time values less than or equal to {fina! will be
produced ln response to this input _simulauon history, tﬁamby guaranteeing that
data(HSO(tfinal)) = HO(tfinal).

Thus the simulation will satisfy the correct module simulation reqguirement.

The secon_d"' requirement, correct ordering of output pack_ets_, is met as long
as the input packets to the simulation module are correctly -ordered. That is, if
an output port o; of tite simulation module first produces a -paéket p; and then
e packet P then f4, the time value in P4, must be less thamn ¢, the time value
in p,. To show this, four -cases‘must be considered:

1. Py axid py are bbth time packets.
Then p, would be sent out only if ¢, > tlast-out ; = 1.

2_. Py is a data packet and p, is a time packet.
As in case 1, p would be sent only if ¢, > tlast-omj -4
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3. py and p, are both data packets.
Assuming the simulation module satisfies the correct module snmulatlon
requirement, data packets will always be produced in the proper order.

- 4. Py is a time packet and p, is a data packet.
Py was produced with a time value t; = tmin + delay only if the module
could not possibly fire before or at time tmin. The actual module always
has a delay time greater than or equal to deley between firing and
producing output packets, hence the simulation module coultl not send out
a data packet Po with time f; < ¢, from the output ‘port after p g has

~ been sent. '

For each of these four cases, the simulation will satisfy the correct ordering of

output packets requirements.

" The cuordlnatlon " operations also satisfy the correct coordination
iedulrement. If the simulation module receives an input simulation history HSI
with | |

gﬂnal = Tfinal (HSI),
then after all output data packets have been produced, it will send out time
packets with value
. tout = tfinal + delay,
from all output ports for which rout > tlast-out ;.  Since delay is greater than
zero, either toﬁ > tflnal, or tout = tfinal = 0. Hence, after the last time and data
imcksts have been sent from each output port.o 1% either
tlast-out ; 2 tout > tfinal,
or
tlast-out ; = tout = tfinal - o,

Thus, the correct coordination requirement will be satisfied.

A proof can now be given which shows that if the modules to be
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simulated satisfy their three requirements, and the simulations of these modules

~ satisfy their three requirements, then when these simulation modules are

interconnected, the gimulatlon will accurately model the entire system.

Theorem 1. Correctness of Simulation.
Suppose a simulation has the following properties:

1.) The modules to be simulated satisfy the monoticity of output, finite
delay, and functionality of output requirements.

2.) The simulation of each module satisfies the correct module simulation,
correct ordering of output packets, and correct coordination requirements.

3.) All communication links between simulation modules operate properly.
In other words, if input port i, is connected to output port o, then hsi,
= hso

rl

4.) The simulation receives a system input simulation history SI and the
sequence of time values received at each system input port is strictly

increasing.

Let tfinal = Tfinal(SI), that is tfinal equals the smallest final time value
received by any of the system input ports during the simulation. Then the
simulation module for any module M i will produce a module output simulation

history HS0, such that .
data (HSOI ({ﬂnal) ) = Hoj (lﬂnal) »

where HO j would be the output history of the corresponding module in the
actual system under following conditions:

1.) All modules in the actual system are started in the same initial state
as the corresponding simulation modules.

2.) The actual system receives the system input history I, where
' : I data(SI).

Furthermore, if tfinal = o, the final state of each simulation module which
terminates will equal the final state of the corresponding module in the actual

system.




" Before the major part of the theorem can be proved, two lemmas are

needed,

Lemma 1_,_1_ - Correct Ordérlng of All Packets

If the simulation of each module satisfies the correct ordering of output packets
requirement, the communication links between the simulation modules operate
correctly, and the packets arrive at each system input port with strictly
increasing time values, then every output port of every simulation module wiil
produce packets with strictly increasing time values,

Proof of gm_ag 1.1

The proof will follow by induction on the sequence of packets which an
observer would | see if he were to simultaneously observe the output ports of
every simulation modulq. This sequence would bdbe of the form
p,.pz.....p‘j.... _where P; is the‘jt‘h packet ohservild, In any physical system,
no two packets could appear at the exact same time, so the packets will be
totally ordgred in time. The sequence of packets sent from each output port is
eoui;table. aﬁd ih’era are a finlte. humber of output ports in the system, hence
the _sequeﬁca Pplig.v- .. must be countable. This allows us to perform induction

on the sequence.

;Bﬂz ' _ Initiaily, no outi&ut ports have produced any packets, thus no ordering

constraints have been violated.

Induction: Assume the observer has seen the sequence PsP2i.e..Pp and up to
this point, all output ports have produced packets with strictly increasing time

values. Then, by the first-in, first-out property of the communication links, all
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input ports connected to these. output ports have. received packets with strictly
increasing time values. Furthermore, all system input ports have received
packets with strictly increasing time values. Hence, whichever module produces
packet P, must have received input packets at each input port with strictly
increasing time values up to this point. Since this simulation module satigfieg
the correct ordering of output packets ’r_eq,t_uxemant, the time value of p,;,; must
be greater than the time values of all packets which have been sent from thia

output port previously.

Thus, by induction, no packet in the sequence Py, Py,... can violate the

ordering requirements for each output port.

Lemma 1.2. Monotonicity of Simulation Output.

If a module satisfies the monoticity of output, finite delay, and functionality of
output requirements, and the corresponding simulation module satisfies the
correct module simulation requirement, then the output data packets produced by
a module in the simulation with time values less than or equal to ¢ wiil depend
only on the initial state and the input data packets received with time less than
t. More precisely, suppose '

data(HSI(t-8)) = HI(t-5), for all 558,
and
t s Ttinal (HSI).
Then, if the actual module and the simulation module both start in the same
fnitial state 30
data(HSO(1)) = HO(s), '
where HSO is the output simulation history of the simulation module after
receiving HSI, and HO is the output simulation history of the actual module
after receiving HI

- The idea behind this lemma is that the simulation can and will produce

the output simulation history HS0(t), once the 1npﬁ_t simulation history HSI (¢-)
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has Vbee'n received. That it can produce the output simulation history up to
time ¢ is guaranteed by the three requirements on the module. That it will 1s
guuan;teed by the corrgctl module simulation requirement. In order for the
simulation mo(iule to realize it has received the entire input simulation history
tip'l to time ¢ it may require packets with time values greater than or equal to ¢,
as is stated in the condition t < T¢inal (HSI). The simulation, however, will

only use the packets with time values less than ¢ in calculating the output

values with time values less than or equal to ¢.

Proof of Lemma 1.2:

Lat' HI' = data(HSI], aﬁd let HD’ equal the output history of the actual
module when it starts in state Sy ahd receives the input history HI°. Then by
thé statemént of the lemma,

HIt-6) = data(HSI(t-6)) = HI' (t-6), for all 850,
Hence, by th_e three requirements for the actual module
HO' (1) = HO(n).
Furthermore, by the correct module simulation requirement, if ¢final =
Tfinal (HSO), then |
| data(liSO(tfinal)) = HO’' (tfinal).
Bj the statemeht bf Vthe lemma,‘t S tfinal, therefore

data(HSO0(2)) = HO' ().

data(HSO()) = HO' (1) = HO(s),

This lemima will allow us to look only at the input data packets with
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uxhe'values less than ¢, when trying to prove the correctness of the simulation

\lp to and including time ¢.

Proof of Theorem 1.

The main theorem will be proved by induction on the sequence of time
vﬂﬁes

ta.ti.té...;.tl.... .
where ¢, = 8, and
tg <ty <... <y € ees S o,

and each time value ¢ ,i. ! > 0, 1s contained in some actual or simulation history
for the sys.tem.‘ That s, ¢; is contained in one of the following histories: I,
the system' input history to the actual system; HO J* the output history of somé
module in the system LI SI, the system input simulation history; or HSO j+ the
output simulation history for some module M;. As mentioned in Chapter 2, the
history and simulation history for» any poit must be a countadble sequence.
Since there are only finitely many input and output ports in the system, only
countably mahy time values can appear in all of the hlstques. Thus, the
sequénce Lgslgsessstyssss  must be countable, which allows us to perform

induction on it.

Induction Hypothesis -
FOI’ m ‘l( ‘0.‘1.....‘!...0, SuCh that tl S t.ﬂndl:
a.) daga(HSOJ(tl)) - Ho,u,). for all modules Ij, and

b) Either ¢ { = @, or for any output port o,
hso,(¢;) c hso,.
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That is, the simulation will be correct through time ¢;, and all output ports in
the simulation will produce some packet with time value greater tham f,, unless

tl-oo.

Basis: ! = 0.
a.) Initially, HSO‘,(B) = HO ](B) = the empty history, for any module M 5
b.) Initially, ‘HSIJ(B)' ‘- HI,(B) = the empty history. Hence, Tfinal (HSII(G)) -
8 for any ﬁodﬁle | 5 By the correct coordination requirement, for any output
port o, of module M, |

tlast-out,, > Téinal (HSI (@)} = @,

Thus, hso,.(8) c hso,, for any output port in the system.

Induction: Assume true for [ .where t; < tfinal, prove true for /41, v
a.) The Monoticiti of Simulailon' Output Lemma which has just been proved
will be applied to show that data(HSO,(tl“)) - Hoj(t'i;,). By the induction
, assmnpuon | | |

| data(HS0,(¢,)) - HO;(ep).
fog all modules M j in the system. Furthermore, by the statement of the
theorem, |

data(SD) = I,
Therefore, since all communication channels in the simulation operate properly,
| data(HSI ;(r;)) = HI(e)),

for all simulation modules M;. Since no packets are produced with time ¢ such
tixat t <t < Liags

data.(HSIj(tl“-s)) = HIJ“I’1-8), for all §>0.
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Next, by part b). of the induction assumption hso,(r,) c hso,, for any
output port o, in the simulation. Then, if input port i, is connected to output
port o,
hsi,(t)) = hso.z;) c hso, = hsi,.
Furthermore, since any system input port will receive a packet with time
greater than or equal to tfinal, and tfinal > t;, |
hsi,(t)) c hsi,,
for any system input port {y. Combining these two facts,
© hsiyly) c hsi,,
for any input port, i), in the system, whether it is.connected to another
module, or it 15 a system input port. No packets are produced in the simulation
with time ¢ such that ¢; < ¢ < 1,9, hencs
| | hsiplt;, ) € hsi,,
for any input port {, in the system. Therefore
Trinal (HSI)) 2 17,4
for any module M;. Lemma 1.2 can therefore be applied to show that
data(HS0,lr), ) = HO;lty, ),

for any module M i

'b.) As has just been shown, if ¢ = Tfinal (HSI)) for the module My, then ¢* 2
141 By the correct coordination requirement, for any output port o, of module
M, alther-

o tlostout, > ' 2 8,4,

or
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tlast-out, = ® 2 £ 2 t],4.
That is, some packet with time vélu‘e greater than f;,; will be produced on
each output pt;:rt, unless ¢;,; = ®. Thus, for any output port o, in the
sin-mrlation,'aim‘er’
hso,.(g,,,) c hso,,

f141 = .

" Therefore, by induction
data(HS0(tfinal)) = HO,(tfinal),

for any module M j in the system.

Finally, to show that the module M i would have the same final state S 7 in
bbth the simulation and the actual system, if tfinal = o, we have just shown
that data(HS0) (tfinal)) = HO(tfinal), for any module M,. Furthermore, for the
system- input ports, .the statement of the theorem requires that data(SI) - I.
Thus, if t_he' ,coﬁxmunlcation links between simulation modules operate correctly,
and {final = |

data(HSI;) = HI,
for any module ;. B& the statement of the theorem, M; is started in the same
initial state S, in both the simulation and the actual system, therefore by the
correct module simulation requirement, if ffinal = © and the simulation module
terminates, then both the simulation module and the actual module must have

the same final state.
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This completes the proof of the correctness of the simulation operations of

‘Chapter 2 combined with the coordination operations of Chapter 3.
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Appendix 2

Correctness of the Termination Oporations

The following proof shows that the addition of the termination operations
of Chapter 4 to the simulation modules will maintain the correctness of the
simulation, with the added feature that the simulation will terminate once the

termination conditions are satisfied.

Theorem 2. Correctness of Termination

a.) Suppose a simulation is performed in which the modules to be simulated
obey the three requirements: {unctionality of output, monotonicity of output, and
finite delay, and the simulation and coordination operations of each simulation
module obey the three requirements: correct module simulation, correct ordering
of . output packets, and correct coordination, and furthermore the coordination
operations of a simulation module cannot cause time packets (o) to be sent out
by the sunulation module unless
e, (tlasty) = oo,

Then the addition of termination operations to the simulation modules as
described in Chapter 3 will not cause any of these requirements to be violated.

b.) If the actual system ever reaches a state in which no modules in the
system will ever enter the firing mode unless more packets are received on the
system input ports, then every simulation module in the simulation of this
system will eventually produce time packets with value o on all output ports,
if all system input ports in the simulation receive time packets with value oo,

Proof of First Part

The termingtion operations will not affect the actual modules, hence the
first three requirements for the Correctness of Simulation Theorem will hold.
As for the correct module simulation requirement, the termination operations are
designed not to interrupt the simulation of the modules. The only way they

could potentially cause this requirement to be violated would be by terminating
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the simulation before the ‘te’rfmination conditions are satisfied. Furthermore,
stnce test packets contain no time values, their presence will not affect the
cérrect' ordering of output packets, or the correct coordination requirements. As
long as the tenpinatio_n operations do not cause the simulation modules to send
out time packets (o) béfore the termination conditions are satisfied, neither of

these last two requirements will be violated either.

Since modules can communicate with each other only in the form of
packets sent along the data channels, the conditions for termination for the
-modules in a connectivity class C j can be stated as:

1.)., _'I-'or each simulation module lli e C 1 all input ports {, such
that i, ¢ {rom_class; have received time packets (o).

2.) No simulation module M; ¢ Cj can simulate the firing of a
module without receiving more data packets.

3.) No simulation module in C i will ever receive further data
packets.

For a connectivity class which contains only onme module and has no
-self-loop, there are no termination operations. 'rlms; -a8 long as the terminatk;n
operations for connectivity classes containing cycles do not cause the simulation
modules in the class to terminate too soon, the correctness of the stmulation

wm be maintained.

Termination operations might cause the simulation modules. in a class to
terminate prematurely in one of two ways. First, a test of the class might
succeed, even th_ough the termination conditions are not sausfied. Second, .some

simulation module M; might receive a time packet (w) on -an imput port {, «
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- from_class;, before any test has succeeded, and then proceed to send out time
packets (o) from dl output ports, even though the ierminatlon conditions for
the class are not satlsﬁed. : 'l'his second case can be ruled out rather easily. By
. the further restriction which has been Placed on the coordination operations in
the statement of the theorem, ghe coordination operations cannot cause a
shnulationA module M; ¢ C j to send out time packets () from its output ports,
- unless 'ume packets (w) have been received on all input ports, including those
in from_class;. However, no simulation module M, ¢ C j Will receive a time:
packet (o) on'l an input port in from,classi t_mless some simulation module
M; ¢ C j sends h time packet () from an output port in to_class;. Without
any termination operﬁtions, this would happen only if M, had already received a
time packet () on all input ports including those in from_class;. Thus, no
simulation module can be the first simulation module in the class to send time
packets (o). Therefore the coordination operations alone cannot cause any
simul#tlon modules in a cla;ss to terminate 1f the class contains ‘cycles.
Furthermore, the termination operationsv cannot cause any simulation module in

a class to send out time packets (o) until after a test has succeeded.

Thus, the proof of the first part of the theorem reduces to:

Lemma 2.1, No Premature Termination

Suppose the termination control module T for a connectivity class C j has
received time packets (w) on all input ports i ¢ from_classy, and no firing of
the module can be simulated unless more data packets are received. If T sends
out test packets (test.+) from all output ports 0p € to_classr; receives K packets
" with value, test.+, in return, where v
Kels+ > (jtoclass;| - 1)

utf C ]
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and it receives no further data packets while waiting for the returning test
packets, this means that

i,) All simulation modules M, ¢ C i have received time packets (o)
on all input ports {, ¢ {rom_class;.

2.) No simulation module ¥; ¢ C j can simulate the firing of a
module without receiving more data packets..

3.) No simulation module in C j will ever receive further data
packets.

The following sequence of assertions proves Lemma 2.1:

1) If every simulation module M; ¢ C j is terminatable, meaning that it
receives aitlme packet (o) omn every input port which is not in from_class,, and
it eventually stops simulating the firing of the module, then during a test (or
reset) of the class C, |
3.) Each simulation module M; in C j Will recelve at least one test
(or reset) packet.

z b.) Exactly K test (or reset) packets will be created, where
b : K=13+ Z (Ito_elas:tl - 1)

c.) At least one test (or reset) packet will be received on each
input port in (rom_class; for every H; ¢ C;. '

Assertion 1a) can be shown by induction on the lemgth of the shortest
path from T to M; (there must be a path from T to any other module in a
connectivity class) As a basis, if / = 1, then T — M;. H; will receive a test
(or reset) packet shortly after T sends out test (or reset) packets from each

output port op ¢ to_classy. Now assume the assertion is true for all simulation
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modules in the class with a path from T of length less than'. or equal to 1.
Then if therg is a path of length l+1 t‘rom‘ T fo a simulation module M,, there
must be some module Ip € Cj, such that H“, —> M;, and thére is a path of
length ! from T to M), Hence the induction essumption applies to M), meaning
that it will receive at least one test packet. As long as II,,' is terminatable, it
will send test (or‘,eset) packets on every output port o) ¢ to_class,. Therefore,

M; will eventually receive a test (or reset) packet.

_ Asseru;)n 1db) follows Mtly from 1a). Initially, T creates and sends out
|to_clasr| test (or. resgt) packets, The first time .some other simulation module
N, ¢ C 5 recelve§ a test (or reset) packet, it will send out |to_class;| test (or
reset) packets, thereby creating ito_classil - 1 new omes. On receiving any
further test (or reset) packet, a simulation module will sénd one test (or reset)
packet, hence no new test "pac-kets will be created; nor will any. be destfoynd.
By assertion 1a), eventually all simulation mbdul_es w‘ul,»recelve at least one test
(or reset) packet, thereforé exactly K test (or reset) packets will be created,

where

K=14 z (Itc..classil - 1),

Assertion 1c) also follow; from 1a). Every input port i, in from_class; of
a simulation module M; ¢ C i is connected to an output port o, of some module
N, « Cj, and o, is in to_class;. By assertion 1a),‘ M; will receive at least one
test,'(.or reset) packet. If M, is terminatable, it will eventually send a test (or
reset) packet on every output port in the set from_class;. Therefore, M; will

eventually receive a test (or reset) packet on i{y. This is true for any input
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port {) in from_class; of any simulation module M; ¢ C I

2.) If some simulation module “t is not terminatable, then less than K test

packets will be created during a test, and therefore the test cannot succeed.

If lj is not terminatable, then it will not send out any test packets even
if it receives any. Thus it will not create |to_class;| - 1 test packets, which
' means that fewer than K test packets will be created during a test of the class.
- The test cannof succeed unless T receives K test packets, hence the test cannot
succeed if some simulation module M ;j does not receive time packets () on all
input ports which are not in from._class;, or it does not stop simulating the

firing of the module.

3.) For a test to succeed, no simulation module can receive any data packets
between Athé time it receives its first test packet and the time it sends its last

test packet,

If a simulation module dld' receive a data packet during this time, it would
send out at least one packst (test.-). _Once a (test.-) packet has been sent,
"the test must fail, because any: terminatable simulation module vrhich receives a
(test:-) must send out a (test.-) packet, If all modules are terminatable, T
will recelve.at least one i‘(test.-) packet, and the test wiil fail., If some

simulation module is not terminatable, the test will fail in any case.

4.) If a test succeeds, no simulation module "i € Cj will receive any data

packets after it has received its last test packet.
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This will be shown by contradiction. Suppose a test of a class succeeds,
but one or more sin_mlation modules receivé data packets after receiving their
final test packets. Let M; be ome of the first simulation modules for which this
happens. That is, during the 'fest, M; received all of its test packets and later
receives a dgtg packet p on Some input port i;, but this had not happened to
any simulatioa module in the class before this point. If {, is not im
from_class;, then M; could not have sent any test packets before receiving this
data packet, because it cannot send any test packets before receiving a time
packet (o) on iy, Thus if a data packet is received on an input port {, which
is ‘not in from_class; after any test packet has been received by M;, either the
simulation module would not be terminatable, or M; would send out a packet
(test.-). In either case, the test would fail. Thus, {, must be in from_class,,
which, by asserflo;n ic), implies that § test packet was received on input port {,
before data packet P was received. By the first-in, first-out property of the
communication links between simulation modules, some module M; must have
sent data packet p to M; after it had sent a test packet to M;. This possibility

can be eliminated by looking at two cases:

Case 1. B, = T

The termination control module T did not send out any test packets umnless it
could not simulate any more firings without receiving more data packets. Thus,
in order for T to send data paél;et p after sending test packets, it must receive
at least one data packet P’ after the test has been initiated. Suppose data

pecket D' was received before the test has been completed. Then the test must
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fail by the rules for T. On the other hand, suppose packet p° was received
after the test has been completed. Then T must have received all of its test
packets and later recelved.data packet p’, before “i received data pagket p from
T. This violates the assumption that the receipt of p by M; was the first case
ﬁl which a simulation module in the class received a data packet after receiving

#ll of its test packets.

Case 2. M, 4T
In order for Ill to send a test packet followed by data packet p to - | Iz it must
first receive .a test packet, wait until no more firings can be simulated, and

send the test packet to M;. Then it must receive a new data packet p’,

simulate the firing of the module, and send data packet p to M;. Thus, M,

must have received data packet p°’ after it received its first test packet. Either
this data packet was received before all test packets had been received by M,, or
1t was received after this time. In the first case, N, would later receive a test
packet and therefore send out a packet }(ta‘st.-). By assertion 3) the test

would fail in this case. In the second case, M; must have received P’ on some

“input port after it had received all test packets, and this must have happened

before M; received data pﬁékgi P »fro‘m W;. This would violate the assumption
that the receipt 'of p by Ilt' was the first case in which a simulation module in

the class received a data packet after receiving all of its test packets,

Thus, during a successful test, there is no simulation module Hi which

can be the first to receive a data packet after it has received al! test packets.
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S8.) If a test succeeds, then no simulation module in the class can ever simulate
a firing without receiving more data packets, nor will it ever receive more data

packets.

If a test succeeds, then at the time a simulation module sent its first test
packet, it could not simulate any more firings without receiving more data
packets. By assertion 3), the simulation module did not receive any data
packets between this time and the time at which it received its last test packet.
By assertion 4), the simulation module did not, nor will it receive any data
packets after the last test packet was received. Therefore, the test will succeed

only if all simulation modules in the class are ready to be terminated.

This completes the proof that the addition of termination operations to the
simulation modules cannot cause them to terminate too soon. Hence, none of
the six requirements for the Correctness of Simulation Theorem of Appendix 1

can be violated. The correctness of the simulation will be maintained.

Pﬁof of the Second Part

Proving the sscond part of the theorem requires showing that the
termination operations for each connectivity class will cause the simulation
modules in the class to terminate, once the termination conditions for the class
are satisfled. 1If a class C; consists of a single module M; which has no
self-loop, then the corrgct coordination requirement will guarantee that time
packets (o) will be sent out once time packets with value ® have been

received on all imput ports, and no more firings of the module can be simulated.
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Thus, this class will ferminate once the termination conditions are satisfied.
Fér connectivity classes contalning cycles, it must be .shown that once the
connectivity class reaches the conditions for termination, any previous test or
feset will be completed, a new test of the class will be initiated, and this test

will succeed. These requirements are stated in the following lemma:

Lemma 2.2. Eventual Termination

A.) Completion of a Test or Reset

Suppose the termination control module 'l' for a class C j sends a test (or
reset) packet from each output port o in to classr If every simulation module
“i in C j 1s term!natable, meaning it eventually receives time packets (o) on
every input port i which is not in from class.l, and it eventually stops
simulating the firing of - the module, then all simulation modules in the clu_;
will receive at least one test (or reset) packet, and T will eventually receive K
test (or reset) packets, where

K=14+ 3 (jto_class;] - 1).

B.) Eventual Success of Test ;

-Suppose every simulation module "i in C ] reaches a state in which time
packets (o) have been received on all input ports which are not in from classi,
no firings can be simulated without receiving more data packets, and no more
data packets will ever be received by “i Then T will send out test packets
(test.+) from all output ports in . to_classr, and it will eventually receive K

(test.+) packets in return without receiving any further data packets.

C.) Termination after Successful Test

If T sends out time packets (o) on all of its output ports, then every
simulation module Ili in the class will eventually receive time packets (o) on
all input ports and hence will terminate.

The following sequence of assertions proves each part of Lemma 2.2:

A.) Completion of .a Test or Reset.
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1.) If every simulation module in the class C jis termina;ablo. then
| a.) Each simulation inodule Iﬂi will receive at least one test (or
reset) packet.
b.) Exactly K test (or reset) packets will be created.

These assertions are identical to assertions 1a) and 1b) in the proof of

Lemma 2.1.

2.) If every simulation module in the class C § is terminatable, T will receive K

test (or reset) packets.

This follows from the way in which the signal output ports were chosen.
ﬁvery simulation module except for T has a single signal output port. T has no
signal output port. These ports are chosen in such a way that if we look only
at the simulation modules in the class and the channels conmected to their
output ports, there is a path from every simulation module to- T. Thus, the
simulation modules and the channels cdnnected to the signal output ports fulfill
the necessary requirements for a directed tree [1], with each arc pointing from
& son to its father. That is

1. There is a unique root node (namely T) with no arcs leaving
from iy

2. Every other node (H; # T) has a single arc leaving from it
(namely the channel connected to the signal output port); and

3. There is a path from every node to the root node.

One important property of trees is that they are acyclic, hence there is no path,

M; - M;, which follows only signal output links. During the test (or reset)
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operations, K test (or reset) packets will be created, and once all simulation

modules have received at least ome test (or reset) packet, all test (or reset)
packets will sent only from signal output ports.. These packets will not be
destroyed, nor can any terminatable simulation module hold onto them
l:_ldefinitely;-hénca ‘the -packets can only be propogated toward the root node T.
Therefore T will eventually receive all K test (or reset) packets, and the test (or

reset) operations will be completed.

B.) Eventual Success of Test.

Suppose every simulation module M; in a class C ; Teaches a state in which
time packets (o) have been received on all input ports which are not im
lrom_class'i', ‘no firings can be simulated without receiving more data packets,

and no more data packets will ever ‘be received by M;.

-~ 1.) A new test of the class will be initiated.

If the simulation modules reach the above-mentioned state, they are all
terminatable. Hence, by part A) of the lemma, any previous test or reset
opefations will be completed. Furthermore, during the reset operations every
simulation module will receive a reset packet. Hence, any new test will take
place as . if no previous tests had occurred. Furthermore, once the reset

operations are completed, a new test will be initiated.
2.) The test will succeed.

As long as no simulation module receives a data packet tiiwesn the time it
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recelves .its first test packet ﬁn‘d the time it receives its last test packet, it will
send out (test.+) packet# ‘as long as it receives (test.+) packets. By our
assumption, no simulation modules will receive data packets once the test has
started. Therefore, since T starts the test by sending (test.+) packets, by part
A) of the lemma, K (test.+) will be created, and T will eventually receive K

(test.+) packets. Thus, the test will succeed once the termination conditions

for the class are. satisfied.

C.) Termination after a Successful Test.

Suppose the test of a class succeeds and T sends time packets (») from all

- output ports.

1.) Every sinmlation module "t inC ] will receive at least one time packet (o)

on some input port {) in from.classt.

This can be shown by induction on the length of the shortest path from T

to M;. In fact, the proof is virtually identical to the proof of assertion 1a) in

the proof of Lemma 2;1.

2.) Every simulation module Ii ¢ C i will receive time packets (o) on every

input port.

In order for the test to succeed, Ili must have received time packets (o)
on every input port which is not in l’rom_classi. Furthermore, by assertion 1)
any module M; '« C; connected to M; must receive at least one time packet ()

on some input port i, ¢« from class;. Hence, it will send out time packets (o)
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on .all ;qutxiut ports, mcludlu ‘one to input port i, -of module M,;. Therefore, all
.simulation modules in C 7 ‘will receive time packets (w) on all input ports once

-the test has succeeded. -

This completes the proof that the addition of the termination operations to
the simulation ,,moduies will cause .the Simulation to terminate, once the








