Functional Parallel Algorithms

Guy Blelloch
Carnegie Mellon University

ICFP 2010

Parallelism is here... And Growing!

Future: 100+

Number of Core

re 2 Duo (2)

2006 2007 2008 2009 2010 i 2015

Parallelism for the Masses

Andrew Chien, 2008

I rr 2zuiv -

Some benchmarks

Speedups on 32 cores (Dell Poweredge):

* Comparison sorting: 24x speedup
— Sample sort (1 billion strings in 12 secs.)

* Minimum Spanning Tree: 17x speedup
— Parallel Kruskal (1 billion edges in 8 secs.)

* K-nearest Neighbors: 14x speedup
— Oct-tree (.1 billion points in 30 secs.)

* Delaunay Triangulation: 20x speedup
— Incremental (.1 billion points in 48 secs.)

e Dictionary Insert+Lookup: 27x speedup
— Hashing (1 billion strings in 6 secs.)

The State of Parallel Algorithms

* No accepted model by the algorithms/
complexity community.

* 136 papers Accepted to 2011 ACM/SIAM
Symposium on Discrete Algorithms (SODA).
0 of them are about parallel algorithmes.

Opportunity for the PL Community

Reasons PL community can play a major role in
how people will program and analyze parallel
algorithms.

— Understand how to control effects
— Errors matter now

— Ease of programming matters

— Language based cost models

— “Parallel Thinking” is more natural.

Parallelism vs. Concurrency

Parallelism: using multiple processors/cores running
at the same time. Property of the machine

Concurrency: non-determinacy due to interleaving
threads. Property of the application.

Concurrency THE ART

%

MULTIPROCESSOR

sequential concurrent

Traditional Traditional
programming | OS

Deterministic | General &~
parallelism parallelism

serial

Parallelism

parallel

ICFP 2010 6

Quicksort from Aho-Hopcroft-Ullman

procedure QUICKSORT(S):

if S contains at most one element then return S
else

begin

i

choose an element a randomly from S;
letS,, S, and S; be the sequences of
elements in S less than, equal to,
and greater than a, respectively;
return (QUICKSORT(S,) followed by S,
followed by QUICKSORT(S,))

STRNT PAWAN

end

ICFP 2010

But....

We need a way to compare algorithms.
— How “parallel” is quicksort
— How does it compare to other sorting algorithms

We need a formal cost model so that we can
make concrete claims.

Language Based Cost Models

A cost model based on the operational semantics

4

Provable implementation bounds

Call-by-value A-calculus

M.e | Ax.e (LAM)

e, | Ax.e e, v elv/x]|V

(APP)
€ €, Jv'

The Parallel A-calculus: cost model
el v;w,d

Reads: expression e evaluates to v with work w
and span d.

 Work (W): sequential work
e Span (D): parallel depth

The Parallel A-calculus: cost model

Ax.e | Ax.eflll (LAM)
e, | Ax. e;.a’1 e, | v;.d2 e[v/x]| v';.,d3 (APP)
e e, U v LEMWIE Wl [+ max(d dy) + d.
Work adds

Span adds sequentially,

and max in parallel

ICFP 2010

12

The Parallel A-calculus: cost model

e, | Ax. e;.

dl

Ax.e | }LX.G;II

62UV;.

d,

e[v/x]| v'; .

(LAM)

d3

ere; §v's [IEMEEMS)

1 +max(d,,d,) +d,

(APP)

let, letrec, datatypes, tuples, case-statement can all
be implemented with constant overhead

Integers and integer operations (+, <,

...) can be

implemented with O(log n) cost for integers up to n

ICFP 2010

13

The Parallel A-calculus (constants)

c ol (CONST)

e | c;lal1 e, | v;.,@ o(c,v) | v' (APPC)
e e, | v';_ 1 + max(d,,d,)

c, =0, 044, <<, <, X, X 0,000, X 000 (constants)

n > "' n?

ICFP 2010 14

The Parallel A-calculus cost model

M.e | Ax.e; 11 (LAM)

e, | Ax.e;w,d e, | viw,d, e[v/x]|V';w,d,

(APP)
e e, | v;1+w +w,+w,, 1+max(d,,d,) +d,

clc;ll (CONST)

€, U C, wl’dl €, U V. Wz,dz 6(C,V) ‘U’ V'
e e, | v;1+w +w,, 1+max(d,,d,)

(APPC)

c, =0, 044, <<, <, X, X, 0, X 00 (constants)

n’

The Second Half:
Provable Implementation Bounds

Theorem [FPCA95]:If el v; w,d then v can be

calculated from e on a CREW PRAM with p
processors in O(V;+dlogp) time.

Can’t really do better than: max(%,d)

If w/p >d log p then “work dominates”

We refer to w/p as the parallelism.

Quicksort from Aho-Hopcroft-Ullman

procedure QUICKSORT(S):

if S contains at most one element then return S
else

begin

i

choose an element a randomly from S;
letS,, S, and S; be the sequences of
elements in S less than, equal to,
and greater than a, respectively;
return (QUICKSORT(S,) followed by S,
followed by QUICKSORT(S,))

STRNT PAWAN

end

ICFP 2010 17

Qsort on Lists

fun gsort [] []
| gsort S =

let val a:: =S
val S; = filter (fn x => x < a) S
val S, = filter (fn x => x a) S

filter (fn x => x > a) S

val S,
in
append (gsort S;) (append S, (gsort S;))
end

Qsort Complexity

All bounds expected case
Sequential Partition over all inputs of size n

Parallel calls
Work = O(n log n)

(less than, ...)

Span = O(n) Parallelism = O(log n)

Not a very good parallel algorithm

ICFP 2010 19

Tree Quicksort

datatype ‘a seq = Empty
| Leaf of ‘a

| Node of ‘a seq * ‘a seq

fun append Empty b = b
| append a Empty = a
| append a b = Node(a,b)

fun filter £ Empty = Empty
| filter £ (Leaf x) =
if (f x) the Leaf x else Empty
| £filter £ Node(l,r) =
append (filter £ 1) (filter f r)

Tree Quicksort

fun gsort Empty = Empty
| gsort S =
let val a = first S
val S; = filter (fn x => x < a) S
val S, = filter (fn x => x a) S
filter (fn x => x > a) S

val S,
in
append (gsort S;) (append S, (gsort S;))
end

Qsort Complexity

Parallel partition Span = O(lg n)
Parallel calls 4

q

Work = O(n log n)

Span = O(lg2n)

A good parallel algorithm Parallelism = O(n/log n)

ICFP 2010 22

Example: Merging

Merge ([],12) = 12
| (11,[]) = 11
| (hl::tl1l, h2::t2) =
if (hl < h2) hl::Merge(tl,h2::t2)
else h2::Merge(hl::tl,t2)

The Split Operation

datatype ‘a seq = Empty
| Node of ‘a * ‘a seq * ‘a seq

fun split (p, Empty) = (Empty, Empty)
| split (p, node(v, L, R)) =

if p < v then
let val (L1 ,R1l) = split(p ,L)
in (Ll,node(v, Rl, R)) end

else
let val (L1,R1l) = split(p ,R)
in (node (v, L, L1), Rl) end;

ICFP 2010

Merging

Span = O(log?2 n)
Merge (A,B) = Work = O(n)
let
Node(A;, m, A;) = A
(B, ,B;) = split(B, m)

in 7 Merge in parallel

Node (Merge (A,,B.) , m, Merge (A;,B;))

Ad A

ICEP 2010 Merge(A, ,B))

Merge(ARngR)

Adding Functional Arrays: NESL

{e,:x1ne, | e}

e'v,/x1|v'sw,d i€{l..n}

{e"xinv,..v, 1} I [v,"..v,'T; 1+ 30w, 1+ maxd,

Primitives:

<- : ‘a seq * (int,’a) seq -> ‘a seq

° [grcrarp] <- [(O,d),(Z,f),(O,l)]
[1,c,£f,p]

elt, index, length [ICFP35]

function quicksort(S)
if (#S <= 1) then S

Quicksort in NESL

else let

a =
S1 =
S2 =
S3 =

R = {quicksort (v)

S[elt(#S)]:

{e 1in S | e
{e in S | e
{e 1in S | e

vV Il A

: v in [S1,

in R[0] ++ S2 ++ RI[1];

Span = O(log n)
Work = O(n)
Space = O(n)
Expected

S311};

Provable Implementation Bounds

Theorem: Ife | v; w,d,s then v can be calculated
from e on a CREW PRAM with p processors in
O(V;+dlogp) time and O(s+ pdlog p) Space.

Interesting Side Note

Can implement hash tables so insertion of n
elements takes:

W(n) = O(n) and D(n) = O(log n) expected case
Search takes D(n) = W(n) = O(1) expected case

Example : Graph Connectivity

0 2 0 2 2
5 6 5 6

Form stars

relabel
2 2
. L -
1 6 1 6
contract

Example : Graph Connectivity

Edge List Representation:

Edges = [(0,1), (0,2), (2,3), (3,4), (3,3),
(3,6), (1,3), (1,5), (5,6), (4,6)]

Hooks = [(0,1), (1,3), (1,3), (3,6), (4,6)]

Example : Graph Connectivity

L = Vertex Labels, E = Edge List

function connectivity (L, E) =
if #E = 0 then L
else let
FLL = {coinToss(.5) : x in [0:#L]};

H= {(u,v) in E | Fl[u] and not(Fl[v])};

L =L <- H;

E = {(L[u],L[v]): (u,v) in E | L[u]\=L[v]};
in connectivity(L,E) ; D = O(log n)

W = O(m log n)

Some Unfinished Problems

How to take account of locality in a high-level
way.

Dealing properly with randomness
Dealing properly with exceptions

Efficient purely functional algorithms for many
problems.

Summary

* Purely functional algorithms have several
more advantages in parallel than sequentially.

* Programming-based cost models and
implementation bounds could change the way
people think about costs and open the door to
all sorts of other “abstract” costs.

* Functional parallel algorithms are fun!!!!

