A Complete and
Efficient Implementation
of Covered Windows

The Sapphire window
manager supports
many important
features, including
flexible window
refreshing, full-
functionality
subwindows, and
optimized raster-op,
that are not
supported in most
comparable system:s.

September 1986

Brad A. Myers
University of Toronto

Package Providing Helpful Icons

and Rectangular Environments, is
a window manager! for the Accent
operating system 2 running on the PERQ
personal workstation. It has been used at
Carnegie-Mellon University and by PERQ
Systems Corp. and its customers. Like the
window managers for many other person-
al workstations and intelligent terminals,
Sapphire supports the covered window
paradigm, in which windows are rectangu-
lar and can overlap arbitarily like pieces of
paper on a desk (sometimes called the
desktop metaphor).

In this paradigm, a window may be on
top of another window, just as one piece
of paper may be on top of another piece of
paper. The window that is behind is cov-
ered by the window on top and the parts
under the top window do not show through
(see Figure 1).

There is a total ordering imposed on all
the windows where windows higher in the
order cover windows that are lower. This
is often called 24 dimensions, since the
rectangles are thought to be layered in
another dimension (z) pointing out of the
screen. Windows that do not interact are
still ordered. The top window is not
covered by any windows. The window that
is most covered is said to be on the bottom.

The advantages of the covered window
paradigm are that (1) there can be several
large windows that would not all fit on the
screen if they were required to be side by
side, (2) the user can make more efficient

S apphire, the Screen Allocation

0018-9162/86/0900-0057S01.00 © 1986 IEEE

use of the screen, and (3) the metaphor is
more familiar to users. The covered win-
dow paradigm is used by a large number of
existing window managers. !:3-11

The disadvantages are that it is more
complex and expensive for the software, it
is more difficult to provide programs that
automatically manage windows, and users
may waste time rearranging windows. 12
Window managers that do not support
covered windows only allow the windows
to be side by side, often stacked in columns
(these are called tiled window managers),
and are growing in popularity. !3.14

One of the major goals of Sapphire is to
provide to users and application programs
a wide range of functions so it would not
unduly limit how application programs
could use the screen or interact with users.
The window size can be changed easily,
and both characters and full bitmap
graphic operations are supported. Sap-
phire supports full covered windows, and,
unlike some older window managers, lets
windows be updated while they are cov-
ered. Windows in Sapphire can also be
partially or fully off the screen in any
direction.

It can also divide a window into subwin-
dows. An application might provide dif-
ferent areas for various types of displays
while keeping them together in the same
parent window so they can be manipulated
as a unit. Subwindows also help the system
and user organize the screen using
context. !> Subwindows can overlap and
operate with full functionality. In fact,

57

2

e

RRRRRRAI
2

R
Y

A

A

AN,

A o

0%

2%
R
SR
o
R

"

A
A
~
A

RN
A
s
AR
A

A

A
o
2
o
A

"
3
2
o

o
~

N
020

2

2
AN,
AR

S
\
o
AR
R
025
XD
~
2R

'*
NN
R
22
N

%
K2

%2

%

3
o

A
A
NN
R
Qo220

“
Y
AN
Pore
o

R

.

B
QR

o2

T

%
%

B R RAARRRAIR

Ry Ny

o
N

..
2
3

%3

~
5

20X,

202

%
A
R
SR8
SR
AR
AR

2

X

N

o
025

%

%
o

25
AN
AR,
AARRBBAA
IR
SR
N

3

A
NN v%»

"

o
o

AN

R
LA

~
0

X

%

*

Figure 1. A portion of an actual Sapphire screen. Window W3 is covering window W2,
and both windows W3 and W2 are covering W1. W1 is on the bottom and W3 is on the
top. W2 has a gray border to show that it is accepting user input (typing). The window
in the lower part of the screen contains a number of icons showing process and win-

dow state information.

since top-level windows are actually sub-
windows of the full screen window, all
windows are subwindows. Other systems
such as SunWindows’limit the func-
tionality of subwindows. The user inter-
face to Sapphire, which includes a novel
use of icons, windows with title lines, pro-
gress indicators, !¢ and a simple but
powerful user interface using the puck and
keyboard, is described elsewhere. !

Like most other window managers,
Sapphire is implemented entirely in soft-
ware. A hardware implementation of the
covered window paradigm exists,* but is
probably too expensive to be practical in
the near future.

Background

Sapphire runs on a raster (also called
bitmap) display, which means that an area
of memory holds the picture shown on the
screen. Each point on the screen (pixel)
corresponds to one bit in memory (so each

58

pixel can be either white or black). For ex-
ample, to set a spot on the screen to black,
the corresponding bit in memory is set
to 1.

The primary method for doing graphics
on the PERQ’s bitmap screen is the raster-
op (sometimes called bitblt).!” To avoid
confusion this article uses ‘‘hardware
raster-op’’ for the low-level function that
actually moves bits, since it is implemented
with special hardware on the PERQ. (The
functionality of the hardware raster-op
may actually be implemented by some
combination of hardware, microcode,
and software on other computers.) ‘“Win-
dow raster-op’’ refers to the high-level
function that works with covered win-
dows.

Hardware raster-op moves an arbitrary
bit rectangle from one part of memory to
another. It also combines the source pic-
ture with the destination picture using a
number of different Boolean functions,
such as AND, OR, XOR, and NOT. The
source and destination rectangles may

overlap arbitrarily or may even coincide.
Since the screen bitmap is stored in main
memory on the PERQ, the hardware
raster-op can be used with both the screen
memory and off-screen memory, and can
perform transfers between the two. The
hardware raster-op on the PERQ operates
at full memory speed no matter what the
bit orientations of the source and destina-
tion rectangles are, so no special con-
siderations need be made for the memory
alignment used to hold bitmaps (as is done
in Blit%).

Window raster-op can be used to imple-
ment many other graphics operations. For
example, to display text, a window raster-
op is performed for each letter to move it
from a font table (containing a picture for
each character) to the appropriate place on
the screen. In addition, window raster-op
is used to implement changing a window’s
size, position, and covering.

Handling window
refresh

When a window is partially covered and
then becomes uncovered, the parts that
were previously hidden must be displayed.
This can be the responsibility of the win-
dow manager (and thus hide the need to
refresh from the application) or it can be
the responsibility of the application (and
thus free the window manager from hav-
ing to remember the picture). The method
for handling refresh is the main distin-
guishing difference among the implemen-
tations of covered window managers. If it
is the responsibility of the window man-
ager, the window manager can save either
the picture contained in the windows or
the picture that the window covers (that
are under the window). Interlisp-D!!
saves the picture under every window, and
Smalltalk® and others save the picture
underneath for pop-up menus, but vir-
tually all other systems—including Sap-
phire—save the contents of windows in-
stead. Saving contents and areas under-
neath in the same window manager is very
difficult. No matter how the window man-
ager implements the saving internally, the
procedure is hidden from programs using
the windows.

If the window manager saves the picture
under a window, the full bitmap must be
saved. However, if the contents of a win-
dow are saved, there are several implemen-
tation possibilities, including saving

e the entire picture for each window in

a separate off-screen buffer,

COMPUTER

® only the covered portions offscreen,

e ageneral-purpose display list describ-
ing what was displayed, and

e combinations, such as bitmaps for
pictures and characters for text.

The first approach keeps a full shadow
bitmap for every window in a separate
off-screen buffer. Graphics operations
are done to this buffer, and any visible
portions are copied to the screen. This ap-
proach is fairly simple to implement and
very popular. It is used by SunWindows.’
The main problem is that it takes a lot of
extra memory to hold all the bitmaps,
some of which is redundant, and it takes
extra time for displaying because graph-
ics in visible parts must be drawn twice
(once to shadow memory and once to the
screen).

The second approach tries to alleviate
these problems by saving only in off-
screen buffers the covered portions. The
graphics operators must be changed so a
single operation will work partially on the
screen and partially in an off-screen buf-
fer. This clearly makes the graphics opera-
tions more complex. There may be some
operations provided by the hardware,
such as filled polygons or circles, that can-
not work separately on different parts of
the picture. Saving the covered portions
would be inappropriate in this case. Blit
and Sapphire can use this approach since
their graphics are limited mostly to raster-
ops.

The third approach calls for a general
display list mechanism, such as that used
on calligraphic (vector) screens, but this is
inappropriate for a bitmap screen because
saving a description of the picture may
easily take more memory than the picture
itself, especially for complex images.
Refreshing from a display list also takes
more time than refreshing from a stored
picture, and it may be difficult to handle
raster-selective erasures with display lists.

The fourth approach calls for a mixed
style such as a limited form of display list
when appropriate. Because many windows
contain only text, an obvious optimization
is for those windows to save only the
characters displayed in them rather than
the bitmaps for the characters. This will
typically save more than an order of
magnitude of storage even on a one-bit-
deep screen (nine by 13 characters take 117
bits versus seven bits for the ASCII code).
In systems where this has been imple-
mented, however, such as the ICL PNX
window manager,* many restrictions
typically apply (for example, only one font
per window, which must have a fixed

September 1986

Wi1
v
_________________ W3]
v c
v & ¢
w2

Figure 2. The rectangles that would be produced for window W1 in Figure 1 based on
the windows W2 and Wa3. The rectangles marked V are visible, and those marked C

are covered.

width). Also, this might be of limited ap-
plication since many text-only applica-
tions, such as sophisticated text editors,
use graphics as part of their user interfaces
(such as MacWrite for the Macintosh). !©

If an application handles window re-
fresh, it must remember the contents of its
window and regenerate the picture on de-
mand. This is the approach in the Apple
Macintosh !0 and IRIS Mex® window
managers. Many programs, such as text
and graphics editors, must save the con-
tents of the window anyway, so it is easy
for them to regenerate the screen picture
when necessary. On the other hand, some
applications may find it difficult to
manage window refresh. The application
program must be prepared to handle asyn-
chronous refresh requests that may occur
at any time, including while the program is
modifying the picture. This may adversely
affect the program’s structure and the ease
of porting programs written for nonwin-
dow systems.

To provide maximum flexibility—and
still conserve memory whenever possi-
ble—Sapphire implements two methods,
allowing the programmer the choice of
automatic refresh by saving only covered
portions off screen or of application-
handled refresh. Providing application-
handled refresh was partially based on the
observation that although Blit uses the
memory-saving techniques of the covered-
portions approach, some of its pro-
grams—such as the editor and debug-
ger—use a different technique for covered
subwindows to conserve memory.

Providing automatic refresh lets normal
windows be used as the temporary buffers
often needed in interactive graphics (for

example, to hold a series of pictures being
transferred to the screen one by one for an
animation). The program simply creates a
window that has automatic refresh (so it
has backup memory), positions the win-
dow so it is entirely off screen, and then
stores the picture in the window. Since the
window is off screen, it will not be visible
to users—but all the graphics operations
will work normally, and the application
can copy the contents of the window to the
screen whenever desired. The window
manager will also allocate and manage the
temporary buffers automatically.

Raster-op for covered
windows

Most computers provide little hardware
support for the covered window para-
digm. Therefore, to display only the por-
tions of a window visible on the screen
(and hide covered parts), window manag-
ers implementing the covered window par-
adigm in software must calculate which
portions of windows are covered. This is
especially true if the window manager
allows graphics to appear in a window
while the window is covered. (The Inter-
lisp-D!! and Smalltalk® window manag-
ers only allow graphics to be output to un-
covered windows. Interlisp-D automati-
cally brings a window to the top before do-
ing output graphics, which causes a great
deal of flashing when multiple windows
are being used. Most modern window
managers support updates to any window
at any time.)

The window intersection information is
usually precalculated and stored as a list of

59

first line second line
second line third line

third line =7~ | penultimate line
penultimate line last line

last line

Figure 3. When scrolling the left window up one line to get the configuration on the
right, the first line must be moved first, overwriting the second line. If the third line is
moved before the second, then the information in the second will be lost.

k+1 2k

nk

Figure 4. Typical bitmap
organization. The first pixel is
in the upper left and there are k
pixels across and n down. The
dotted rectangle in the center
is to be shifted either starting
with pixel i or pixel i+ k+ 2.
When moving the rectangle
towards the upper left, for ex-
ample, the pixel order will be
ii+1,i+2,i+ k, i+ k+ 1,

i+ k+2.

ULP

ULP ULP

ULP BRP

BRP BRP

BiiP

(@)

(b)

Figure 5. (a) To move the rectangle in Figure 4 in any direction requires only two
orders for the pixels, starting from the upper left pixel (ULP) or from the bottom
right pixel (BRP). (b) Starting from the upper left pixel (i) is correct when shifting a
rectangle to the upper right, while starting from the bottom right pixel (i+ k+ 2)
would be incorrect since pixels i+ 1 and i+ 2 would be overwritten before they are

moved.

Figure 6. (a) If the rectangles need to be moved to a
new position overlapping the old position, the moving
order is important. (b) The correct order for the eight
directions. The orders for up, down, left, and right can
be either of the orders on the neighboring diagonals.
Rectangle B has no other rectangles in its upper right
quadrant, so it can be moved to the upper right
without interfering with other rectangles.

60

rectangles for each window, marked as
visible (which means they appear on the
screen) or covered (which means they are
covered by other windows and not visible
on the screen). Figure 2 shows the set of
rectangles that would be generated for
window W1 in Figure 1.

When using window raster-op to trans-
fer a picture to a new position that over-
laps the old one, the order in which the bits
are moved is important. It is important to
note that the ordering problems discussed
in this section are less relevant for window
managers that use full window shadow bit-
maps. For example, when scrolling up a
window, the top must be moved before the
bottom or else the bottom part will cover
portions not yet transferred (see Figure 3).
Window raster-ops of this form are used
when scrolling text up or down in an editor
or when panning a picture around in a
graphics program.

This problem is analogous to shifting
the elements in a conventional array,
where the shift must be done from the cor-
rect end to avoid losing information. The
hardware raster-op, like the conventional
array shift, needs only two directions to
work correctly: top to bottom and bottom
to top (see Figure 4). When moving a rect-
angle up or to the left, the hardware raster-
op will first move the upper-leftmost bit,
then the bit to its right, and so on as shown
in Figure 5. When moving down or to the
right, raster-op must start with the last bit.

The covered-window raster-op applies
the hardware raster-op to each rectangle
(as in Figure 6) as a unit. It therefore must
deal with the processing order of the rect-
angles. In this case, four different orders
are needed.

Imagine a picture covering the three
rectangles in Figure 6. When moving the
picture to the upper right, the order for the
rectangles must be B, C, A—or else some
necessary portion will be overwritten.
When going to the lower left, the order is
A, C, B, which is the reverse of the order
when going to the upper right. When go-
ing to the upper left, however, the order is
A, B, C—which does not have any natural

(a) (b)

ABC or BCA
up-left up-right
ABC BCA
ABC BCA
or = or
ACB CBA
ACB CBA
down-left down-right
ACB or CBA

COMPUTER

correspondence to the upper right/lower
left order. The lower right order is the
reverse of the upper left order: C, B, A.
The order is always important, no matter
whether the rectangles are stored in con-
tiguous memory (all on the screen) or if
they are each stored in separate buffers.

The reason that two orders do not suf-
fice for covered windows is that the ob-
jects to be moved (rectangles in this case)
are larger than the distance they can be
moved, so the new positions partially
overlap parts of the old positions. Simply
making all the rectangles be squares of the
same size would not solve the problem, as
Figure 7 shows.

In a more formal analysis, when going
to the upper right, the rectangle whose up-
per right quadrant does not overlap with
any other rectangles must first be found
(see Figure 6). This rectangle can be moved
in any direction in the quadrant without
affecting any other rectangles. Since there
are a finite number of nonoverlapping
rectangles, there will always be such a rect-
angle. After this first rectangle is moved, it
is eliminated from consideration and the
next maximal rectangle is found. A similar
operation is performed to move in the
other four directions.

Some window managers (such as Blit)
sort the rectangles when the window
raster-op is performed. To avoid this
overhead, Sapphire uses a technique that
generates the rectangles in the correct
order. Because graphic operations are
done much more frequently than recon-
figuring the rectangles (which is done only
when windows are created, deleted, or
modified), it is more efficient to generate
the rectangles in sorted order, as Sapphire
does.

The rectangles in Sapphire are stored in
a quadruply linked list, one thread
through the rectangles for each of the four
orders. The window raster-op then follows
the correct thread based on the direction
of the window raster-op transfer. Each
rectangle of the source is compared with
each rectangle of the destination in the
correct order, and any overlapping parts
are transferred. It does not matter whether
the source and destination windows are
the same or different. Figure 8 gives an
outline of the code for covered window
raster-op.

The window raster-op clearly takes
O(n?) time, where n is the number of rect-
angles. The maximum number of rectan-
gles in a window is a constant multiple of
the number of windows, so n can be con-
sidered to be the number of windows or

September 1986

Figure 7. Even if all the rectangles are

squares of the same size, four orders are
needed if the new positions can overlap
the old positions. B must be moved
before A can move into the dotted posi-
c D tion, and A must be moved before B can

move there.

Coords)

IF dr is not covered OR

ELSE

Procedure WindowRasterOp(RasterFunction, SourceCoords, Destination-

Calculate RasterOp direction from source and destination coordinates.
FOR dr: =EACH destination rectangle is in order DO

IF (dr is covered AND has backup memory) THEN
dtmp: = Clip destination coords to dr
IF anything left inside dtmp THEN
FOR sr: = EACH source rectangle in order DO
stmpl: = compute corresponding place in source for dtmp
stmp2: = clip stmp1 to bounds of sr
IF anything is left inside stmp2 THEN
IF sr is covered THEN {no picture in source for this area}
save stmp2 on a list for update by the application

do hardware RasterOp on stmp2
get next source rectangle in the current order.
get next destination rectangle in the current order.
END Procedure WindowRasterOp

Figure 8. Outline of the code for covered window raster-op in pseudo-Pascal.

- -

Figure 9. The dashed lines show the rectangles created for window W when covered
by windows W2, W3, and W4. When transferring area A to area B, there are Ofn 2) rect-
angles to move, where n is the number of rectangles. Area C is covered by Ofn) rect-

angles, one for each window.

the number of rectangles in any one
window.

The O(n2) complexity for window
raster-op cannot be improved in the worst
case, since the number of overlapping rec-
tangles can be O(n2) because every rec-
tangle in the source area may intersect with
every rectangle in the destination area.
This will happen, for example, when the

source rectangles are all horizontal and the
destination’s are all vertical, as shown by
areas A and B in Figure 9. It is therefore
not possible to write an algorithm that has
less than quadratic complexity in the worst
case.

The general case can be made faster,
however, by trying to limit the number of
rectangles compared on average. For ex-

61

W1

Figure 10. When window W1 is scrolled
up, the picture appearing from behind
window W2 needs to be displayed. If
there is no backup memory for W1, the
application must regenerate the picture

for the dotted rectangle.
ext. top
ext. left window ext. right
............... oo

Figure 11. Special exterior rectangles
surrounding a window. They extend to
+ o (+ max__integer).

ample, the entire destination and source
areas for the window raster-op can be
compared to their respective rectangle lists
to see which rectangles could be affected
by the particular window raster-op (this is
akin to the bounding box test often used to
optimize other graphics operations). The
comparison takes O(n) time and general-
ly will probably save a lot of time, since
many window raster-ops affect only one
source and one destination rectangle.

Many other optimizations are possible.
For example, window raster-ops in un-
covered windows (which have only one
rectangle) can be performed directly with
only a clip to the windows’ borders.

The general hardware raster-op is often
used to erase or invert a single rectangle. In
this case, the source and destination rect-
angles are identical. For example, a rect-
angle can be set to white (0) by XORing it
with itself. When the rectangles are the
same, a much more efficient algorithm is
used in Sapphire that goes through the list
of rectangles only once and therefore has
O(n) complexity.

When performing a covered window
raster-op, there are two cases where there
may not be a picture available in the
source. First, the source of the window
raster-op might be a window that is
covered and does not have backup mem-
ory (and so uses application-handled
refresh). An example of this is scrolling a
text window where some text comes out
from behind another window (see Figure
10). The other case occurs when the
specified source is outside a window.
Some systems may flag this latter window
raster-op as an error, but Sapphire allows
it for consistency because the destination
for graphics can extend outside the win-
dow. Sapphire surrounds every window
with four special rectangles (see Figure 11)
for the exterior of the window that extends
to +oo (implemented as + max_integer)
away from the window. This makes it pos-
sible to avoid a special case test and extra
boundary clipping in the window raster-
op code.

Whenever parts of the source are not
available, the rectangles in the destination

X covering
left middle right all
T 2 T2 73 1 Z 1
J.bi_a_| |ceib ia b _ialiil. a
top
3 4 3 2
c d c b
| | | |
........ a__1 L._.&a..__ At
, il 2: 3 2:3 i4 2 3 2 X notor Y not
middle ;| o: dic ib c ib b —_—
i -1 b= PR PEEPENRS L N PR &
d e d c
Y covering 9
a
1 1 1 1
bottom a a 1] o+ 0 L) o
R T s s T g
c b d: c :b c b b
12 1:2 :3 1 2 1
al :| b: a c: b :a b a a

Figure 12. The 17 two rectangles can interact. The numbers show the up left ordering, and the letters show the up right ordering.
The down right ordering is the reverse of the up left, and the down left is the reverse of the up right. The solid rectangle is to be
divided based on the dotted window. If the dotted window covers the solid one, the rectangle inside both the dotted and solid
rectangles is covered. If the dotted window is the parent of the solid one, the area of the solid rectangle outside of the dotted area

is covered.

62

COMPUTER

for those parts are saved on a list and later
passed to the appropriate application pro-
gram for regeneration using an operating
system exception mechanism. The appli-
cation is told exactly what portions need to
be regenerated so it does not waste time
drawing intact parts (although it can if it
wants to).

Rectangle intersection
algorithm

The coordinate system for each window
in Sapphire has 0,0 at the upper left cor-
ner; x grows to the right and y grows
down. The bounds of the window are
therefore given by the lower right corner
of the window and are inclusive. For
graphics, however, coordinates can be
used that are outside of the window
(negative to the upper left or greater than
the bounds for the lower right) and the
picture is simply clipped to the inside of the
window. '

Sapphire’s rectangle intersection algo-
rithm is fairly simple. It is based on the
straightforward enumeration of all the
ways two rectangles can intersect. In each
x and y direction, the rectangles can be
covered in one of five ways. For x, they
are left covered, middle covered, right
covered, all covered, and not covered. The
y values are similar. It turns out that if
the rectangles do not intersect in either
the x or the y direction, the rectangles do
not overlap. There are thus 17 different
possibilities (4 X 4 + 1). These are shown in
Figure 12.)

The rectangles are optimized for max-
imal horizontal extent. This direction was
chosen to minimize the number of rectan-
gles crossed in typical text operations
(which are usually horizontal). The only
difficulty in implementing the subdivision
is to avoid fence-post errors. (Fence-post
errors are 1 errors. The name comes
from the problem of determining how
many posts are needed to fence a yard that
is 10 feet long if one is placed every foot.)
Each case splits the rectangle into one to
five new rectangles, some covered and
some visible. These rectangles are added to
the four different rectangle lists in the cor-
rect order.

To demonstrate that this preserves the
ordering, it must be proved that dividing
one rectangle into a set of rectangles that
replace the old rectangle in the list pre-
serves the overall order. Imagine that rect-
angle B in Figure 6 is to be divided. Since
all the new rectangles will be entirely

September 1986

enclosed in the area of B, they all still must
follow A and precede C when going to the
upper left. Therefore, if the new rectangles
that replace B are in the correct order with
respect to each other, they will be in the
correct place with respect to 4 and C, and
therefore with respect to the entire list.

The procedure that implements the sub-
dividing algorithm traverses each list from
back to front and adds each new rectangle
after the current rectangle, so newly added
rectangles will not be investigated during
the pass of the algorithm that creates
them. Figure 13 gives an outline of the pro-

RL}
covered rectangles}
ELSE

(as in Figure 12)

{doesn’t intersect}
ELSE
CASE x interaction OF

downRight lists}

ymiddleCov:

ybottomCov:...

yallCov:...
END CASE on y

END CASE on x

END Procedure WindowIntersect

Procedure WindowIntersect(W,RL, b: (wantOutside, wantInside))
{intersect window W with the current rectangle list RL. b is wantOutside
when W covers RL, b is wantInside when W is parent of RL}
{Rectangles in RL are screen coordinates}
{RL is changed to have the new rectangle list}
convert W’s coordinates to screen coordinates {so it can be compared to

FOR current : = EACH rectangle in RL starting with firstDownRight DO
IF current is covered THEN {ignore since don’t need to subdivide

Calculate intersection between current and W in X and Y directions

IF either X OR Y not intersected THEN
Change Current rectangle coveredness to be NOT wantOutside

xleftCov: CASE vy interaction OF
ytopCov: {first create rectangles and add to the upLeft,

t2 : = AddUpLeft(current, 2a, b = wantInside)
{12 becomes upLeft of current. Last argument to
AddUpLeft is coveredness of the new rectangle}
t3 : = AddUpLeft(t2, 3c, b =wantInside)
{next, change size and position of t1 to be 1b; last
arg is coveredness}
t1 : = Change(current, 1b, b =wantOutside)
{now add new rectangles to the upRight,
downLeft lists}
AddDownLeft(t1, t2) {2 becomes downLeft of t1}
AddUpRight(t1, t3) {¢3 becomes upRight of t1}

t2 : = AddUpLeft(current, 2c, b = wantOutside)

t3 : = AddUpLeft(t2, 3b, b = wantInside)

t4 = AddUpLeft(t3, 4d, b = wantInside)

tl : = Change(current, la, b= wantInside)
AddDownLeft(t1, t3) {3 becomes downLeft of t1}
AddDownlLeft(t3, t2)

AddDownLeft(t2,t4)

xrightCov; CASE y interaction OF

current : = next downRight from current

Figure 13. Qutline of the code to do rectangle subdivision. There are four cases for x
in the outer case statement. Each branch of the case has four cases for y, making 16
cases. The 17th case is the special test for not intersecting performed before the
cases. In each branch, the numbers (like 2a, 3c) correspond to the rectangle label in
Figure 11. All 16 case branches are similar to the ones shown.

Figure 14. W2is a subwindow of W1, so w1
it is clipped to the boundary of W1. The
part of W2 that is outside of W1 is marked
covered (and are not visible). The part of
W1 that is underneath W2 is covered.

Procedure OuterLoopIntersect Windows(W)
{Calculates the rectangle list for window W.
The list is stared in the local variable RL.}
RL : = rectangle for W converted to screen coordinates {start rectangle list
with one rectangle for the entire inside of W)}
IF W is offscreen THEN
Set RL to be covered {optimization)
ELSE
{* first, clip to the inside of parent and its parent, etc. *}
t : = W’s parent window
WHILE t <> NIL DO
Call WindowIntersect(t, RL, wantInside) {get the inside of t}
t := t’s parent window {go up the window hierarchy}
{* next, remove areas covered by my immediate children *}
FOR t : = EACH immediate child window of W DO
Call WindowIntersect(t, RL, wantOutside) {get the outside of t}
:= next child of W
{* finally, check all other windows that might cover W *}
t:=W
WHILE t’s parent < > NIL DO
FOR t2 : = EACH sibling window of t that is higher priority (more
towards the top) than t DO
Call WindowIntersect(t2, RL, wantOutside) {outside}
t2 : = next sibling
t : = t’s parent window {go up the window hierarchy)
{clean up)
convert RL to be in W’s coordinate system
add the exterior rectangles
set W’s rectangle list to be RL
END Procedure Outer LoopIntersectWindows

Figure 15. Outline of the code for the main loop for calculating window’s covered-
ness. The procedure Windowlntersect is outlined in Figure 13.

W's new
place .
between
these windows
Affected
indows
Figure 16. Bringing window W more for- W
h only affect
ward (towards the top) can only in its old place

certain windows.

cedure. The algorithm has quadratic com-
plexity, but this is inherent in the problem
since, in the worst case, the number of
rectangles that can be created in one win-

64

dow intersecting with n other windows is
n?, as shown in Figure 9. Since this
algorithm will be run on all n windows, the
total complexity is O(n3).

This is also inherent in the problem.
Since each covered portion of the screen
will be represented by a rectangle for each
window on it (the area marked Cin Figure
8 is represented by n rectangles, one for
each window covering that area), the total
number of rectangles for all windows is
O(n3). There are some heuristics avail-
able, however, to improve the general
case. These include trying to limit the
number of windows processed (for exam-
ple, by ignoring windows that are totally
off screen) and trying to run the algorithm
as few times as possible.

Sapphire implements subwindows. Sub-
windows can overlap within their parent
and may extend outside the parent win-
dow, but any parts outside are clipped and
not visible, as Figure 14 shows. Because
the screen is represented as the parent of all
other windows, it is trivial to let windows
extend partially or totally off screen. This
also makes it easy to change the screen size
(the PERQ can be configured with various
screen sizes), and some of the memory
normally used for the screen can be
allocated to other applications by reducing
the screen window size. The extension to
the subdivision algorithm to handle sub-
windows is very simple (see Figure 13).
When clipping a subwindow to its parent,
the identical algorithm is used—except
areas inside the parent are visible and areas
outside are covered, which is the reverse of
the case for overlapping windows pre-
sented above. Subwindows can recursively
contain their own subwindows to an ar-
bitrary depth.

Because subwindows cover the parent
window, the immediate subwindows of a
window affect that window’s rectangles
(see Figure 14). Subwindows of sibling
windows do not have to be investigated,
however, because they are entirely en-
closed within the sibling window. An out-
line for the outer loop for window sub-
division is shown in Figure 15. All the
calculations are done in screen coordinates
to make it easier to compare different
windows.

As the final step of the algorithm, the
rectangles are converted into the window’s
coordinate system. As part of this step, the
rectangles are associated with the memory
that will hold their picture: some rect-
angles correspond to windows on the
screen and others correspond to off-screen
memory holding covered portions of the
picture. If the window does not have off-
screen memory (so the application must
handle refresh), the rectangles for covered
parts are marked as having no memory to

COMPUTER

hold the associated picture. Output to
these portions will simply disappear (as
shown in Figure 8). Also in this step, the
four special rectangles for the exterior of
the window (Figure 11) are added to the
four rectangle lists in the correct order.

Manipulation
operations

Top, bottom, create, and delete. Mak-
ing a window less covered (towards the
top) requires two steps. First, any portions
of the other windows that become covered
must be stored in their backup memory.
Then portions of the window brought for-
ward that become uncovered must be
regenerated. Most systems only allow win-
dows to be brought to the top (so they are
not covered by any windows) or sent to the
bottom. With window raster-op, Sapphire
lets windows be moved to any position in
the covering order. In the following
description, the window being changed is
called W.

First, Sapphire checks those windows
closer to the front (less covered) than W’s
old place and less covered than W’s new
place (see Figure 16). Only these windows
can be affected by the change. For each of
these windows, Sapphire checks to see if
its entire area intersects with the entire
area for W. If so, all its subwindows are
checked, since some may also be affected.
For each affected window, the old rectan-
gle list is saved and the new list is generated
for the window with the new covering.

To do the actual update, Sapphire sim-
ply calls window raster-op to transfer from
the old rectangle list to the new one. The
standard window raster-op call (which
takes two windows as parameters) is used
by having a dummy window to which the
old rectangle list is assigned. If the affected
window had backup memory, the window
raster-op will automatically move any
newly covered portions to the backup
memory.

After each affected window is updated,
a similar operation is performed for W
itself. Here, however, the window raster-
op will copy from backup memory any
portions of W that become uncovered. If
W did not have backup memory, the win-
dow raster-op will inform the appropriate
application program to regenerate the cor-
rect portions of W. Creating a new win-
dow is similar to moving it from the bot-
tom (the old rectangle list is empty).

Making a window more covered uses
the same technique—Dbut in reverse. In this

September 1986

case, the windows more covered than W’s
old position and less covered than W’s new
position are checked to see if any portions
must be regenerated. The actual regenera-
tion is done in the same manner as for top,
except that W itself is handled before the
other affected windows, since any por-
tions that become covered in W must be
saved to backup memory before the screen
is overwritten by the newly uncovered
windows.

Deleting a window works the same as
sending it to the bottom.

Move and grow. Move and grow are
much more complicated than top and bot-
tom since as much of the original picture
as possible should be retained without
using extra temporary buffers, and sub-
windows shoiild move with the parent
window (so the subwindows remain in the
same relative places within the parent win-
dow). Another requirement is that win-
dows be movable even while being covered
by other windows in the source or destina-
tion. Sapphire therefore transfers as much
of the old picture as possible to the new

location and only requires the application .

to refresh what is absolutely necessary.
Because the screen contains the only copy
of the picture for the visible parts of the
window, no screen picture should be
destroyed before it is moved.

Having subwindows also complicates
the modify operation. Clearly, if the win-
dow is made bigger, the application will
need to adjust the picture (and possibly the
subwindows) to fill in the new areas, so it
must notified. In other cases, however, the
application can remain uninvolved. Move
and grow are implemented by one pro-
cedure, called modify.

Again we call the window being
modified ‘““W.’’ The modify procedureis a
three-step process (see Figure 17). First, all
areas covered by W”s new position must be
copied into their backup memory (if any).
The algorithm for implementing this is
similar to that used when W is brought to
the top. Second, the picture for W must be
moved to its new position. Third, any win-
dows that become exposed must be regen-
erated. The algorithm for the last step is
similar to that used to send W to the bot-
tom. The calculations for the first step
must take into account W’s old position as
well as its new position, so portions of W’s
screen picture are not overwritten. There-
fore, some windows may be updated twice
if they are affected by both W’s new and
old positions.

Step 2, where W itself is modified, turns

(2
1

............

...................

Figure 17. Modifying a window is a three
step process. First, windows affected by
W’s new place (W1, W3, and W4) have
their newly covered portions stored to
backup memory. Second, W's picture is
moved to the new place. Third, windows
that need to be refreshed because por-
tions are no longer covered by W (W1,
w2, and W3) are regenerated. Note that
w1 and W3 are affected twice.

out to be surprisingly difficult. W may be
covered in different ways at its source and
destination, and its new position may
overlap its own old position (see Figure
17). A further problem is that the screen
picture for the entire window must be
moved as a unit—including the pictures in
any subwindows. Neither the window nor
its subwindows can be moved indepen-
dently since they may overlap at the source
and destination (see Figure 18). Therefore,
to move the window itself, the following
three steps are performed:

First, any portions of the window and
all of its subwindows that will be covered
in the destination position are saved into
backup memory with a special version of
the covered window raster-op that only
transfers the covered parts of the destina-
tion and ignores the uncovered parts.

Second, the screen picture from the old
location is transferred to the new location.
To do this, Sapphire must calculate the
covered rectangle sets for the old and new
locations, ignoring all of W’s subwin-
dows. The new rectangle lists are needed
because W may be covered by other win-
dows (not subwindows of W) at both the
source and destination, as shown in Figure
18. Any backup memory that W might
have is ignored here.

Third, any parts of the picture for Wor
its subwindows that become exposed are
transferred to the screen from backup
memory or redrawn by the application
program (if there is no backup memory).

When changing a window’s size, it is
often inappropriate merely to adjust the
subwindows’ size proportionally to the
parent’s, since some subwindows may

65

somé other
window

%

/ b subg:iwlfw

w1 movingr
this way

=0

/////////////////

slightly

W

Figure 18. When W1 is moved, its subwindow W2 moves with it so that it remains in
the same relative place inside W1. The screen picture for W1 and W2 cannot be moved
separately to the new position. Imagine that W1 is to be moved slightly to the right. If
the subwindow is moved first inside W1, the part of W1 marked a will be erased. If the
uncovered part of W1 (gray area) is moved first, the portion of W2 marked b will be
erased. Therefore, the entire picture (W1 including W2) must be moved as a unit, but

window W3 must still not be affected.

have special size constraints. For example,
a header subwindow may be exactly one
text line high, irrespective of the window
size. Therefore, Sapphire leaves all sub-
windows the same size and in the same
relative position with respect to the origin
of the parent window, and notifies the ap-
propriate application program of the win-
dow’s size change so it can reconfigure the
subwindows (if necessary).

Although window modification is fairly
complex, it does maintain the most infor-
mation possible and provides a great deal
of flexibility. When a window has no sub-
windows, many of the above steps are
omitted. Because windows are moved
rarely and only at a user’s command, the
modify procedure has proved acceptable.

Efficiency comparison

The covered window paradigm has been
around for a fairly long time. It was
developed at the Xerox Palo Alto (Calif.)
Research Center in the Smalltalk 8 and In-
terlisp!! environments. These and. other
early implementations of covered win-
dows typically only allowed applications
to update a window if it was not covered.
The Blit window manager,’ which does
provide output to covered windows, was
probably the first covered window system
to have its implementation openly pub-
lished. Sapphire implements a superset of
Blit’s features.

For example, the Blit implementation
only provides automatic refresh with
saved bitmaps, while Sapphire allows
application-handled or automatic refresh.
Also, Blit does not support subwindows or
changing a window’s size. (The change-
size operation on Blit is implemented by
deleting the window and recreating it, and
therefore losing the contents of the win-
dow.) There are many other window manag-
ers supporting covered windows today, 3!

66

but their algorithms are usually pro-
prietary, so efficiency comparisons are
difficult.

Sapphire was influenced by many of these
systems; but the algorithms described here
are original.

For most operations, Sapphire and Blit
have the same complexity. For example,
window raster-op in both is O (72) (where
n is the number of windows). In the rec-
tangle intersection algorithm, Sapphire’s
complexity is the same as for Blit (O(n3)
for all rectangles for all windows). Sap-
phire may create fewer rectangles because
covered rectangles are not subdivided as
they are in Blit, but this saving may be
overridden in practice by the four exterior
rectangles. The WHIM window manager 3
essentially uses the Blit algorithm, but
does not subdivide covered rectangles, so
it will have fewer rectangles.

When doing a window raster-op, Blit
must sort the rectangles. In Sapphire, the
rectangles are already sorted. The disad-
vantage of Sapphire’s technique, however,
is that the full intersection algorithm must
be run whenever windows are manipu-
lated, while Blit must only transfer some
rectangles from one window to another.
(Of course, this is done only when win-
dows are moved, created, deleted, grown,
or reduced.) Sapphire has been optimized,
however, for the case where a window
simply becomes more covered (sent to the
bottom). Here, the existing rectangle set is
simply intersected with the new window.
This is much faster than recreating the
rectangle list from scratch and is about as
efficient as the Blit technique, while
preserving the rectangle order.

The major time-critical part of Sapphire
is the window raster-op itself. Some mea-
surements show that, in many operations,
the covered window raster-op overhead
over the hardware raster-op is quite

substantial. This is partially due to the
large number of rectangles for typical win-
dows. The average number of rectangles
for covered windows has been measured as
eight (which includes the four exterior
rectangles) while some windows, such as
the full-screen window, often have more
than 60 rectangles.

The Sapphire optimizations have in-
creased the window raster-op efficiency by
a factor of two on average and a factor of
10 in certain special cases. Window raster-
ops in uncovered windows bypass the ex-
pensive algorithm altogether and there-
fore perform almost at the hardware
raster-op’s speed. Of course, the window
raster-op overhead could be vastly re-
duced by coding it in microcode. If the
covered window raster-op is made faster,
it will not only help applications but also
Sapphire itself, since window raster-op
performs all window manipulations.

Another area of efficiency is memory
usage. In the Accent operating system sup-
porting Sapphire, it is very expensive to
allocate memory for pictures. Therefore,
whenever a window is created with backup
memory, enough memory is allocated for
the entire window, even though only parts
of the window may be covered. This will
clearly waste a lot of memory. During up-
dates, the appropriate parts of the mem-
ory buffer are addressed for the covered
portions of the window. (The rest of the
buffer is left unused.)

The window intersection algorithm
allows memory allocation and dealloca-
tion that can be added easily if the
operating system makes this feasible.
When a window’s covering changes, how-
ever, two pieces of memory would be al-
located during the update (as in WHIM3).
The old memory would be released after
the update was completed. On Blit, only as
much memory as needed is allocated, and
an XOR swap transfers pictures from one
buffer to another. Sapphire could use this
technique if the temporary extra memory
usage was a problem, but this takes three
hardware raster-ops instead of the two
now used.

The theoretical efficiency of a window
manager is not nearly as interesting as the
measured performance of actual proce-
dures. Unfortunately, many of the optimi-
zations applied to Sapphire have proved
ineffective because a much larger propor-
tion of the time is actually spent in
operating system interprocess communi-
cation. The Accent 2 operating system uses
message passing with separate address
spaces for separate processes, and Sap-

COMPUTER

phire is implemented as a separate process
from all applications for protection and
structured design.

Unfortunately, the time to send a mes-
sage to Sapphire, along with the required
process swapping, swamps the time to per-
form the actual graphics. Therefore, the
most worthwhile optimization is allowing
applications to do graphics directly to un-
covered windows and thereby eliminate
the message to Sapphire. To provide the
necessary protection and synchronization,
however, this optimization has required
that more of the window manager be im-
plemented in the operating system kernel.
Unfortunately, the current design does not
allow applications to do raster-ops to
covered windows without a message to
Sapphire, since Sapphire stores the rect-
angle lists in its private address space.

he algorithms performing covered

window operations in Sapphire have

many advantages over other algo-
rithms. These include application-handled
or automatic refresh, moves, and size
changes of windows, support for subwin-
dows, and generally more efficient win-
dow raster-ops because the rectangle lists
are always kept sorted. Some of this flex-
ibility does not appear to be required in
practice. For example, windows virtually
never change coveredness except to the top
or bottom, and it is rare to change a win-
dow’s size or position while it is covered by
other windows. Also, applications rarely
create subwindows that overlap.

More investigation needs to be done on
what techniques and facilities are impor-
tant in practice and on efficient ways of
implementing them. Also, as graphics
hardware supports more sophisticated
operations, such as color and 3D transfor-
mations, as in the IRIS, methods for win-
dowing these must be investigated. It will
also be useful to gather statistics on typical
window manager use and efficiencies to
evaluate the trade-offs between simple
shadow bitmaps, complex clipping algo-
rithms as described here, and application-
handled refresh.

The Sapphire implementation demon-
strates that full-functionality covered win-
dows can be provided while saving only
the covered portions off screen. Whether
these algorithms will be appropriate de-
pends on the particular circumstances, but
the general principles and complexity
results will continue to be important. []

September 1986

Acknowledgments

Help with the algorithms came from
Stoney Ballard, John Strait, and Dave
Golub of PERQ Systems Corp. Amy
Butler and Dave Golub have been largely
responsible for maintaining Sapphire.
Thanks also to Alain Fournier of the Uni-
versity of Toronto for help in evaluating
the algorithms’ complexity and to Rob
Pike of AT&T Bell Laboratory for check-
ing the Blit information. For help and
support with this article, I thank my wife,
Bernita Myers, and William Buxton,
Brian Rosen, Joyce Swaney, Ron Baeck-
er, Eugene Fiume, and many others at the
University of Toronto and PERQ Systems
Corp.

References

1. B. A. Myers, ‘“The User Interface for
Sapphire,”’ Computer Graphics and
Applications, Vol. 4, No. 12, Dec. 1984,
pp. 13-23.

2. R. Rashid and G. Robertson, ‘‘Accent: A
Communication Oriented Network Oper-
ating System Kernel,”” Proc. Eighth
Symp. Operating Syst. Princ., Asilomar,
Calif., Dec. 1981, pp. 64-75.

3. M. J. Goodfellow, ‘“WHIM, The
Window Handler and Input Manager,”’
Proc. First Int’l Conf. Computer Work-
stations, San Jose, Calif., Nov. 1985, pp.
12-21.

4. ICL PERQ Guide to PNX, International
Computers Ltd., Reading, England RG3
INR, UK.

5. R. Pike, “Graphics in Overlapping Bit-
map Layers,”” ACM Trans. Graphics,
Vol. 2, No. 2, April 1983, pp. 135-160.

6. R.Rhodes, P. Haeberli, and K. Hickman,
‘““Mex — A Window Manager for the
IRIS,” Usenix Summer Conf. Proc.,
Portland, Ore., June 1985, pp. 381-392.

7. SunWindows Programmers’ Guide, Sun
Microsystems, Inc., Jan. 1984.

8. L. Tesler, “The Smalltalk Environment,”’
Byte, Aug. 1981, pp. 90-147.

9. A. J. Wilkes et al., ‘“The Rainbow
Workstation,”” The Computer Journal,
Vol. 27, No. 2, 1984.

10. G. Williams, ‘““The Apple Macintosh
Computer,”” Byte, Feb. 1984, pp. 30-54.

11. Interlisp Reference Manual, Xerox
Corp., Pasadena, Calif., Oct. 1983.

12. S. A. Bly and J. K. Rosenberg, ‘‘A
Comparison of Tiled and Overlapping
Windows,”’ Proc. SIGCHI 86: Human
Factors in Comp. Systs., Boston, Apr.
1986, pp. 101-106.

13. User’s Manual for Release 1 of the
Information Technology Center Proto-
type Workstation, Information Technol-
ogy Center, Carnegie-Mellon Univ.,
Pittsburgh, 1984.

14. W. Teitelman, ‘A Tour Through Cedar,”
Software, Vol. 1, No. 2, Apr. 1984.

15. L.Bannonetal., ‘“‘Evaluation and Analy-
sis of Users’ Activity Organization,’’
Proc. SIGCHI 83: Human Factors in
Comp. Syst., Boston, Dec. 1983, pp.
54-57.

16. B. A. Myers, ‘“The Importance of Per-
cent-Done Progress Indications for
Computer-Human Interfaces,’”” Proc.
SIGCHI 85: Human Factors in Comp.
Systs., San Francisco, Apr. 1985.

17. W.M. Newman and R. F. Sproull, Princi-
ples of Interactive Computer Graphics,
Second Edition, McGraw-Hill, New
York, 1979, pp. 261-265.

Brad A. Myers is a PhD candidate in computer
science at the University of Toronto and an oc-
casional consultant. From 1980 until 1983, he
worked at PERQ Systems Corp., where he
designed and implemented the Sapphire win-
dow manager and many PERQ demonstrations
for the SIGGraph equipment exhibition. His
research interests include User Interface
Management Systems, or UIMSs, user inter-
faces, interaction techniques, window manage-
ment, programming environments, debugging,
and graphics.

Myers received the MS and BS degrees from
the Massachusetts Institute of Technology,
during which time he was a research intern at
Xerox PARC.

Myer’s address is Dynamic Graphics Project,
Computer Systems Research Institute, Univer-
sity of Toronto, Toronto, Ont., M5S 1A4,
Canada.

67

