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Concurrency is ubiquitous

Many programming problems demand concurrency 
• Flight booking system, online store, search engines, etc.

Computing devices themselves are concurrent 
• Run various apps concurrently
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programming languages must support concurrency

concurrent programming is notoriously difficult and error-prone

The world surrounding us is inherently concurrent
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Legend: concurrently executing component

shared data
read/write

Shared memory

message

Message-passing

• computation by reading from 
and writing to shared data

• computation by exchange 
of messages

message-passing offers higher-level of abstraction

message-passing adopted by practical languages such as 
Erlang, Go, and Rust.
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Goal: make concurrent programming safe and practical

message-passing model

Contributions:
shared session types

accommodate real-world programming scenarios

guarantee protocol adherence, data-race-freedom, and 
deadlock-freedom

session types to express protocols of message exchange and 
reason sequentially about communicating parties



Session types, what are they?  Why do we 
need them in practice?
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ResourceThread ImageCache Client

CmdReceiver

Decoder1 Decodern

Legend: channelcomponent, runs in separate thread

To restrict the kinds of messages that can be sent over a 
channel, Rust channels are typed with enumeration types.

Image loader:

Example: enumeration for ImageCache
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one variant for each 
message

Image loader:
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pub enum ImageCacheCommand { 
  RequestImage (Url, ImageCacheChan, Option<ImageResponder>), 
  GetImageIfAvailable (Url, UsePlaceholder, IpcSender<Result<Arc<Image>, ImageState>>), 
  StoreDecodeImage (Url, Vec<u8>), 
  … 
  // Clients must wait for a response before shutting down ResourceThread 
  Exit () 
}

implicit protocol

enumeration types ensure that only defined messages can be 
communicated along a channel

enumeration types fail to ensure that messages are sent 
according to the intended protocol

let’s use session types!

protocol breaches 
result in proliferation of panic! and 

infinite waiting
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ImageCache:

ResourceThread ImageCache Client

CmdReceiver

Decoder1 Decodern

ImgCacheCmd

components change their session type along with message 
exchange
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Session types are the types of message-passing concurrency.
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But, they rule out sharing
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Let’s introduce sharing while maintaining above guarantees.

Linear logic session types cannot accommodate certain practical 
programming scenarios.



Challenges of sharing

�38



Challenges of sharing

�38

ImgCacheCmd = N {RequestImage : string ! Requester ( ImgCacheCmd,
. . .
Exit : � {Running : ImgCacheCmd,

Done : ResourceThread⌦ 1}
}

ResourceThread ImageCache Client

CmdReceiver

Decoder1 Decodern



Challenges of sharing

�38

ImgCacheCmd = N {RequestImage : string ! Requester ( ImgCacheCmd,
. . .
Exit : � {Running : ImgCacheCmd,

Done : ResourceThread⌦ 1}
}

ImageCache:

ResourceThread ImageCache Client

CmdReceiver

Decoder1 Decodern

ImgCacheCmd



Challenges of sharing

�38

ImgCacheCmd = N {RequestImage : string ! Requester ( ImgCacheCmd,
. . .
Exit : � {Running : ImgCacheCmd,

Done : ResourceThread⌦ 1}
}

ImageCache:

ResourceThread ImageCache Client

CmdReceiver

Decoder1 Decodern

RequestImage

ImgCacheCmd



Challenges of sharing

�39

ImgCacheCmd = N {RequestImage : string ! Requester ( ImgCacheCmd,
. . .
Exit : � {Running : ImgCacheCmd,

Done : ResourceThread⌦ 1}
}

ImageCache:

ResourceThread ImageCache Client

CmdReceiver

Decoder1 Decodern

string ! Requester ( ImgCacheCmd



Challenges of sharing

�39

ImgCacheCmd = N {RequestImage : string ! Requester ( ImgCacheCmd,
. . .
Exit : � {Running : ImgCacheCmd,

Done : ResourceThread⌦ 1}
}

ImageCache:

ResourceThread ImageCache Client

CmdReceiver

Decoder1 Decodern

Exit

string ! Requester ( ImgCacheCmd

protocol violated!



Challenges of sharing

�40

ImgCacheCmd = N {RequestImage : string ! Requester ( ImgCacheCmd,
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Acquire-release + equi-synchronizing:

restore protocol adherence;

guarantee freedom of (high-level) data races because 
execution between acquire-release is atomic.

We could state the policy of acquire-release and equi-
synchronizing as a programming methodology.

But, why not lift this policy to the type level and have it enforced 
statically?
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We have a session type system that allows shared and linear 
channels to coexist and guarantees:

data-race-freedom (low-level and high-level)

protocol adherence

What about deadlock-freedom?
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What are the threats to progress?
• Two scenarios:

• provider ready to synchronize, client not
• client ready to synchronize, provider not

• Let’s visualize this waiting dependency 
with a green arrow
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Legend: linear channel a b “a waits for b”

No green cycles: green arrows can only go along linear channels, 
and client and provider cannot both be waiting for each other.

Linearity (“exactly one client”) turns process graph into a tree. 
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We get a graph of linear and shared processes, with a linear tree inside.

Legend: linear channel linear process

shared channel

shared process

Acquire-release amounts to “locking”
• Possibility of cyclic dependencies
• Let’s visualize this waiting dependency 

with a red arrow
• Note: red arrows can connect arbitrary 

nodes

a b “a waits for b to release resource”
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Two Forms of waiting dependencies: 
• waiting to synchronize: 
• waiting to release:

a b “a waits for b to synchronize”
a b “a waits for b to release resource”

a

b c d

e f g

a

b d d

e f g

Cycles can consist of red arrows only or a combination of red 
and green arrows.
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a

Notice: a resource acquired becomes a child of the acquirer

b c

1 2

Competitors: overlap in set of resources acquired

Collaborators: do not overlap in set of resources acquired

collaborators tend to be in the same branch

competitors tend to be siblings

{a, b, 1}  {a, b, 2}  {a, c}

{b, c}
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Define type system enforcing the following invariants:

collaborators

a

b c

1 2

competitors

collaborators acquire mutually disjoint 
sets of resourcesB

competitors employ locking-up for 
resources they compete forA

competitors have released all acquired 
resources when synchronizing with 
other competitors (“tallking-up”)

C

A rules out red-arrow cycles, B and C rule out red-green-arrow 
cycles.



Manifest deadlock-freedom

�71



Manifest deadlock-freedom

�71

Introduce a world, an abstract value equipped with a partial 
order.



Manifest deadlock-freedom

�71

Every process invariantly resides at a world.

Introduce a world, an abstract value equipped with a partial 
order.



Manifest deadlock-freedom

�71

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.



Manifest deadlock-freedom

�71

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)



Manifest deadlock-freedom

�71

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)



Manifest deadlock-freedom

�71

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

worlds associated 
with process



Manifest deadlock-freedom

�72

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)



Manifest deadlock-freedom

�72

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)



Manifest deadlock-freedom

�72

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

self-world: 
world at which process 

resides



Manifest deadlock-freedom

�73

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)



Manifest deadlock-freedom

�73

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)



Manifest deadlock-freedom

�73

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

min-world: 
world of minimal resource 

to be acquired



Manifest deadlock-freedom

�74

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)



Manifest deadlock-freedom

�74

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)



Manifest deadlock-freedom

�74

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

max-world: world 
of maximal resource to be 

acquired



Manifest deadlock-freedom

�75

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)



Manifest deadlock-freedom

�75

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)



Manifest deadlock-freedom

�75

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

world order



Manifest deadlock-freedom

�76

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)



Manifest deadlock-freedom

�76

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)



Manifest deadlock-freedom

�76

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce a world, an abstract value equipped with a partial 
order.

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

possibly “aliased” 
linear channels



Manifest deadlock-freedom

�77

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)



Manifest deadlock-freedom

�77

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

Express invariants A, B, and C in terms of:



Manifest deadlock-freedom

�77

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)



Manifest deadlock-freedom

�77

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)



Manifest deadlock-freedom

�77

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

collaborators

a

b c

1 2

competitors

no vertical red arrows



Manifest deadlock-freedom

�78

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)



Manifest deadlock-freedom

�78

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up



Manifest deadlock-freedom

�78

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

collaborators

a

b c

1 2

competitors

no red cycles



Manifest deadlock-freedom

�79

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up



Manifest deadlock-freedom

�79

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

for right-rule: Φ must be empty



Manifest deadlock-freedom

�79

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

for right-rule: Φ must be empty

collaborators

a

b c

1 2

competitors

no ingoing red and up-going green arrow



Manifest deadlock-freedom

�80

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

for right-rule: Φ must be empty



Manifest deadlock-freedom

�80

 ; � `⌃ P :: (xS : AS[!kl!n
!l

]) (where  + irreflexive)

 ; �; �; � `⌃ P :: (xL : AL[!kl!n
!l

]) (where  + irreflexive)

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

for right-rule: Φ must be empty

These low-level invariants are enforced by typing.
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We have a session type system that allows shared and linear 
channels to coexist and guarantees:

data-race-freedom (low-level and high-level)

protocol adherence

deadlock-freedom

We have increased practicality of linear session types while 
maintaining their guarantees.
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Unique application field for shared session types:

auction = "S

L � {running : N{bid : id ! money ( #S

Lauction,
cancel : #S

Lauction},
ended : id ! �{won : lot⌦ #S

Lauction,
lost : money ⌦ #S

Lauction}}

Resource analysis for static prediction of execution cost.

Under development: Nomos, a digital contract language based 
on resource-aware shared session types.
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Shared session types recover expressiveness of untyped 
asynchronous pi-calculus [Balzer et al. CONCUR 2018]

introduce nondeterminism

linear logic session types are deterministic

Opportunity for unifying framework that combines both 
deterministic (parallel) and nondeterministic (concurrent) 
computation.



Thank you for your attention!

Papers for this talk: 
• Stephanie Balzer and Frank Pfenning: Manifest Sharing with Session 

Types.  ICFP 2017. 
• Stephanie Balzer, Bernardo Toninho, and Frank Pfenning: Manifest 

Deadlock-Freedom for Shared Session Types.  ESOP 2019. 
• Stephanie Balzer, Frank Pfenning, and Bernardo Toninho: A Universal 

Session Type for Untyped Asynchronous Communication.  CONCUR 
2019.
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