Logical Relations for Session-Typed Concurrency,
Technical Report

Stephanie Balzer Farzaneh Derakhshan Robert Harper Yue Yao

I. FURTHER EXAMPLES
A. Examples of leakage (rejected by CONSESSION)

This subsection gives several example programs that leak information by exploiting non-termination and concurrency. None
of the examples use secrecy polymorphism to orchestrate the balance between a process’ maximal secrecy and running secrecy
and to ensure that a process’ running secrecy stands for an arbitrary iteration of the process. The examples thus do not use
secrecy variables nor running secrecy annotations, and hence do not type check in CONSESSION.

1) Different recursive calls after branching on a high secrecy channel: In our first example, the sneaky verification process
(Sneaky_Verifiery) leaks, with the help of an accomplice (Sneaky_Partner;), the information of whether Alice’s PIN provides a
correct token. If verification of Alice’s PIN is successful, the sneaky verifier calls itself recursively, and if not, it calls its partner.
Sneaky_Verifier; and its partner, Sneaky_Partner;, differ on how they interact with the attacker right after being spawned: the
sneaky verifier sends the label s to the attacker, signaling preceding successful authentication, and its partner sends the label f
to the attacker, signaling preceding unsuccessful authentication. We point out that the code would be perfectly secure without
the recursive calls: the sends of label s and f in the Sneaky_Verifier; and Sneaky_Partner;, resp., happen before the security
token is received. Recursion, however, provides a way of “rolling forward” information learned in one iteration to the next.

ver = pin —o @{succ:pin ® ver, fail:pin ® ver}
pin = ®{tok;:pin, ..., tok,:pin}
attacker = &{s:attacker, f:attacker}
y:attacker[guest] - Sneaky_Verifier; :: z:ver[alice]
x < Sneaky_Verifier; + y = (y.8;z < recvz
case z (tok; = x.succ; send z z; (z:ver <— Sneaky_Verifier; <— y:attacker)
| tok;; = w.fail;send z z; (z:ver < Sneaky_Partner; < y:attacker)))

y:attacker[guest] - Sneaky_Partner; :: z:ver|alice]
x < Sneaky_Partner; < y = (y.f;z < recvz
case z (tok; = z.succ;send z x; (z:ver <— Sneaky_Verifier; <« y:attacker)
| tok;z; = x.fail;send z z; (z:ver <— Sneaky_Partner; < y:attacker)))

2) Exploiting non-termination: Recursive protocols significantly improve the expressiveness of the language but at the same
time degrade liveness. In particular, we lose the guarantee that a process will eventually communicate with its provider or
client. The process Diverge is an example of a process that is supposed to provide an infinite stream of terminating channel
references x1 : term, but instead calls itself recursively without ever interacting with its client.

term = 1 ® term

- - Diverge :: z1:term[guest]
x1 < Diverge + - =(z1:term < Diverge + )

Diverge is only a trivial implementation of a non-reactive process, but there are more ingenious ways to implement such
processes, and identifying them was shown to be undecidable [1_1

A sneaky verifier can exploit the non-reactivity of Diverge to leak information to the attacker. In our second example, the
sneaky verifier, Sneaky_Verifier,, spawns the diverging process along channel z; and continues as its partner Sneaky_Partners.
The partner only interacts with the diverging channel z; when Alice’s PIN provides the incorrect token. As a result, if Alice
provides an incorrect token, the process will wait forever for x; to send it a terminating channel x5, and the attacker will
receive no further messages. Otherwise, if Alice’s token is correct, Sneaky_Partner, continues by recursively calling itself, and
right at the beginning of the recursive call, sends the label s to the attacker, signaling the previous successful login.

Farzaneh Derakhshan and Frank Pfenning. Circular proofs as session-typed processes: A local validity condition. CORR abs/1908.01909 (2019),
http://arxiv.org/abs/1908. 01909.



y:attacker[guest| - Sneaky_Verifier, :: x:ver[alice]
x < Sneaky_Verifier, < y =((x1:term[guest] < Diverge < -);
(z:ver < Sneaky_Partner, < y:attacker, x1:term))
y:attacker[guest], z1:term[guest] - Sneaky_Partner; :: z:ver[alice]
x < Sneaky_Partner, < y,x1 =
(y.s; z < recv x // y:attacker, z:pin, zi:term = x: & {succ : pin ® ver, fail:pin ® ver}
case z (tok; = x.succ;send z z; (z:ver < Sneaky_Partner, < y:attacker, z1:term)
| tokix; = x.fail; send z x; 2 <+ recv x1; wait x2;
(z:ver <— Sneaky_Partner, <« y:attacker, z1:term)))

3) Exploiting concurrency: The following example shows how two attackers can exploit concurrency to infer Alice’s
success or failure in verifying her PIN by observing the verifier’s pattern in producing their low-secrecy messages. Process
Sneaky_Verifiers leaks secret information with the help of process Alternate_bits that produces an alternating sequence of bits
b0;b1;b0;b1;... and its two mutually recursive partners, Sneaky_Partner,y and Sneaky_Partnery;.

bits = &{b0 : bits, b1 : bits}
cobits = &{b0 : bits, b1 : bits}
leak = &{succ : leak, fail : leak}
x1:bits[guest], x2:cobits[guest| - Sneaky_Verifiers :: z:ver[alice]
x < Sneaky_Verifiers < x1,z2 =
casez (b0 = x2.b0; z < recvz; casez (tok; = x.succ;send z x;
case x1(b0 = = < Sneaky_Verifiers < x1, x2,
| b1 = x + Sneaky_Verifiers «— z1, x2)
| tokix; = x < Sneaky_Verifiers <— x1,z2)
| b1 = x2.b1;z < recvz; casez (tok; = x.succ; send z x;
case x1(b0 = z < Sneaky_Verifiers < x1, x2,
| b1 = x < Sneaky_Verifiers «— z1, z2)
| tok;+; = x < Sneaky_Verifiers < z1,22)))

- = Alternate_bits :: z1:bits[guest)]
21 < Alternate_bits < - =(x1.b0;x2.b1; (x1:bits < Alternate_bits < -))

z3:leak[guest] - Sneaky_Partnery :: x2:cobits[guest)]
Z2 < Sneaky_Partneryy < x3 = case x2(b0 = x3.s5ucc; x2 < Sneaky_Partneryy + x3;
| b1 = x3.fail; z2 < Sneaky_Partnery; < x3))

x3:leak[guest] - Sneaky_Partnery; :: z2:cobits[guest]
Z2 < Sneaky_Partnery,; < x3 = case x2(b0 = x3.fail; x2 < Sneaky_Partneryy < x3;
| b1 = w3.s5uCC; T2 < Sneaky_Partnery; < x3))

At the beginning, the Sneaky_Verifier; is connected to Alternate_bits along channel x1, and to Sneaky_Partnery,, along channel
x2. The sneaky verifier starts by relaying the first bit (b0) that it receives from x; to its accomplice along zo. Next, if the
verification of Alice’s PIN is successful it receives one extra bit (b1) from the sequence provided by Alternate_bits without
relaying it to its partner and then calls itself recursively. In this case, again, the next bit that it sends to Sneaky_Partneryg is b0.
In fact, as long as the verification is successful, the verifier only sends b0 messages to its partner. As soon as a failure occurs,
the verifier skips receiving the extra bit from Alternate_bits and instead relays a b1 label to Sneaky_Partnery after its recursive
call. With the same argument, we can observe that Sneaky_Verifiers continues to send b1 labels until the next verification failure,
after which it again flips to sending b0. The mutually recursive partners observe these flips in the sequence they receive along
x9 and restore the sequence of Alice’s successful and failed logins by building a sequence of type leak.

In all the above examples, the leak is caused by sending to an attacker after receiving along a high-secrecy channel, which
is prevented by a flow-sensitive IFC type system. However, in contrast to the non-recursive case, causality between actions
can no longer determined locally, by just considering one iteration of either a sneaky verifier or its partners. The leaks come
about because of mutually recursive calls, non-termination of spawned processes, and concurrent communications.

Our solution is to type processes not only by considering one iteration in isolation but considering both the maximal and
running secrecy. The running secrecy must thereby be a sound approximation of an arbitrary iteration. To ensure composition-
ality, we moreover allow process definitions to be polymorphic in their maximal and running secrecy, given restrictions on the
relationships between those variables.

To illustrate the use of polymorphic process definitions, we revisit the unsafe example from and explain why our
type system rejects it. We focus on this example, but the same argument holds for the remaining ones.

Consider the below definition of Sneaky_Verifier; and assume that the security theory ¥ contains the constraints ¢; = guest
and ¢ = alice.



U; y:attacker[t)1] F Sneaky_Verifier; Qi)' :: z:ver|1)]
x  Sneaky_Verifier; + y = (y.s;z + recvz
case z (tok; = x.succ;send z x; x:ver <— Sneaky_Verifier; @d, < y:attacker
| tok;x; = x.fail; send z x; z:ver < Sneaky_Partner; @d; + y:attacker))@q)’

Following the signature typing rule, the security theory W, must satisfy ¥ I guest = v¢; C alice = ¢, ¢’ C ¢ = alice.
Moreover, by &L, we must have ¥ |- ¢/’ T 1)y, to execute y.s. By —o R, we know that the running secrecy of the process
after executing z ¢+ recv z¥ increases to ). And by the spawn rule, we need to know that the running secrecy ds specified
for the callee is at least as high as the caller’s, i.e. ¥ I ¢ C ds. It is straightforward to observe that there is no possible
substitution 7 to unify dy with ¢’ as required by the spawn rule, i.e. () I dy C ¢y = guest C alice = ¢ C ds.

B. Sneaky verifier - revisited.

We briefly illustrate polymorphic processes on the SneakyVerifier discussed in § II in the main text and show that it is not
a well-typed process in CONSESSION.

attacker = &{s:attacker, f:attacker}

U; y:attacker[1)1] F SneakyVerifier@i)' :: x:ver[1)]
x < SneakyVerifier «+ y = (z + recv z;
case z (tok;= z.succ;y.s;send z x;
VD) < SneakyVerifier[y]@4 (1) +y
| tokiz;=> x.fail;y.f; send z x;
WL SneakyVerifier[y1]@71 (1) + y)) @y’

Assume that the security theory ¥ contains the constraints 1 = guest and ¢ = alice. By X3, ¥ must satisfy VU I guest =
1 C alice = 7 and ¥ I+ ¢’ C ¢ = alice. Moreover, by &L, we must have ¥ I- ¢’ C 41, to execute y.s. By — R, we
know that the running secrecy of the process after executing z < recvz? increases to . And by SPAWN, we need to know
that the running secrecy (') specified for the callee is at least as high as the caller’s, i.e. ¥ I ¢ C 4(¢'). Moreover, the
caller must satisfy the instantiation of the callee’s constraints, i.e., ¥ I v : . and thus ¥ - 4(¢’) C (1) = guest must
hold. It is straightforward to observe that there is no possible substitution ¥ I+ : ¥ that satisfies all these requirements, i.e.,
U I 4(4) C A(¢1) = guest C alice = C 5(4).

C. Secrecy-polymorphic processes to the rescue

As a bonus to our polymorphic treatment of processes, we get to define generic process definitions. This section completes
our banking example by providing generic implementations for a customer and its authorization process that can be spawned
for any specific customer of the bank. We add the following session types to our example:

customer = pin —o authg, — 1

pin= @{tok;:pin, ..., tok,:pin}

authoue= pin — G{succ:account ® authin, fail:pin @ authou }
authj,= account — pin ® autheut

ver= pin — ®{succ:pin ® ver, fail:pin ® ver}

account = @®{high:account, med:account, low:account}

The bank sets up a new customer by sending the customer an authentication PIN and an authorization process that guards
their account.

W: y1: customer[1)1 ], ui: pin[th1], z1:authow[1)1], W:=1=alice, 2=bob, y=bank, ¢’ =guest, ¥
Ya2: customer|ts], uz:pin[is], zz:autheut[102] F Bank :: w:1[¢)]
w < Bank@y)' < y = ( send uqfl y1; send zibl Y1; sendu;b2 y2; send 23’2 y2; wait y1; waitys; closew)

Uy;- F New_Customer@q)’ :: y: customer|1)] Uy =)' T, Wy
y < New_Customer < - = ((u¥ < recvy; z¥ < recvy; // u:pin[¢)], z:authou 0] F y:1[¢]
y7¥):1 « Customer[y1]@5 (1)) = u:pin, z:authey ) Q1)

where 71 := {¢ — bank, ¢ — alice, )y — bob, ¢’ — guest}.

The types authey and auth;, describe the communication of the authorization process with the customer. The authorization
process receives a PIN from the customer and sends it to the verifier to validate the login. If the verifier process signals a
successful verification, the authorization goes ahead and logs in the customer by sending a succ label, followed by the account
to the customer. If the PIN verification is unsuccessful, the authorization process returns the incorrect PIN to the customer
and remains logged out. In the case of a successful verification, the customer remains logged in until it requests a log out by
sending back its account to the authorization process; upon such a request, the account sends back the PIN to the customer
and logs them out.



Uy; z:ver[v)], viaccount|t)] - Authey @10 i 2t authoue[1)] Uy =" T, ¥y
z:authoy <— Authoy < x:ver,v:account = ( // x:ver, viaccount = z:authou
wY « recv z; sendwy x;
casezr (succ =2z.succ; sendez; /I x:pin ® ver - z:authi,
(z’/’:authin < Authin[y2]@Q1) < z:pin ® ver)
| fail = wzf < recvz; sendwff’z; /I z:ver, v:account = z:authoy

(2% :authoyt < Authou[y2]@Q1) < :ver, v:account))) @y’

Uy; z:pin @ ver[t)] - Authin@) 2 2: authia [1)] Uy = T, Py
z:authi, < Authi, < x:pin ® ver = (

v¥ « recv z; w;f — recvw;sendwg’z; /I x:ver,v:account F z:authou }

(2% :authoy — Authoy:[v2]@1) < x:ver, v:account))) @)’

W+ ; u:pin[i], z:authou: [1] - Customer@d)’ :: y: 1[1)] Uy =" C o, ¥y
y < Customer <— - = ( // w:pin, z:authey: b y:customer

sendu z; case z (succ = v¥ « recv z; // v:account, z:auth;, - y:1

casev (high = sendv” z, wl «+ recv z; (y*: 1 < Customer[y2] @

| med = sendv” z, wy + recv z; (y*: 1 < Customer|[ys]

P

h 4— we:pin, z:authoyt)

1 < we:pin, z:authout)
| low = sendv? z, w¢ 4 recv z; (yw: 1 < Customer[yz2] Q1) <+ we:pin, z:authout)
P

| fail = w¢ + recv z; (y¥:1 + Customer[y2] Q1) <= we:pin, z:authey))) @1’
where 5 := {t — ¥, ' — Y}
The account provides a customer’s balance by signaling the corresponding label along wv:account. For example, Alice’s
account sends label high to her after being authorized.

Wy; - = aAccount@i)’ :: v:account[v)] Uy = 1) = alice, ¢’ C 9, ¥y
v < aAccount <+ - = (v.high;
v*:account < aAccount[yz] @y < )@’
where 3 := {¢ — ¥, ¢’ — ¢'}. We repeat the definition of Alice’s verifier and her pin from the main part of the paper here
for convenience.

Uy; - aVerifier@y' :: ziver[y)] Uy := ) = alice, )’ C 1, ¥y
x + aVerifier < - = (2¥ < recv // z:pin[i] F 2: @ {suce : pin[yp] @ ver, fail:pin[ih] @ ver}[1)]
case z (tok; = x.succ;send z¥ x; (x¥:ver < aVerifier[y2] Q¢ < -)
| tokiz; = w.fail;send 2% x; (x¥:ver « aVerifier[yz] Qi) + -)))@)’
Wo; - apin@i)’ :: u:pin[t)] Uy := 1) = alice, ¢’ C 9, ¥g
w 4 apin < - = (u.tok;; (u¥:pin < apin[y3] Q' « -)))@y)’

We provide the security theory of each process variable consisting of its essential constraints next to its definition. We leave
it to the reader to check that in each spawn, the caller can assert the security theory of their callee.

In contrast to Alice’s verifier, her PIN, and her account, the customer and authorization processes do not have any specific
information about Alice, e.g., her correct PIN, hard-coded in their code. Thus, we can define them as generic processes that
can be spawned for any customer. Their caller only needs to instantiate their secrecy variables with the customer’s correct
secrecy level when spawned for a specific customer.



Sort
Metavariable

Type A, B,C, T

Definition X,Y

Process P, Q)

Messages M, N

(1>

(1>

(1>

[I>

Abstract Form
Yy

L,meL
Eel

FEy e &

\\J

P,weY
c,d,e,f €S
peS xS
EFeé&
Lo, By Ty, T
Ty, 2, Uy Uy W
j kel L
A A

N30

S

’YSeC7 rYSAeCa §Sec) 6Sec
’y? ’3/7 6’ 5

A, B,C,D,T
AB,C,D,T
©{l:Ar}oer
&{f:Az}geL

A® B

A—oB

1

Y

;A by X = PQyy = 2: Ay

Y=A

x.k; P

case x({=Py)eecL
sendy x; P
ysrecvx; Py
close x

wait x; Q

T X[y < A Qa

Ty
x.k
sendy x
close =

Remarks

concrete security lattice (£, &, U, M)

set of concrete security levels

concrete security level of observer

set of relations Ey of form ¢ C //
security theory (V, &, L, M)

set of security variables

security terms of ¥

pair of security terms of ¥

set of relations E of form ¢ C d
channel

channel variable

set of labels

linear typing contexts(channels)

linear typing contexts (variables)

linear security typing contexts (channels)
linear security typing contexts(variables)
linear typing context singleton(channel)
linear security typing context singleton(channel)
order-preserving substitution of security elements
channel variable/ (order-preserving) security substitution
process configuration in SESSION
process configuration in CONSESSION
internal choice, at least one label
external choice, at least one label
channel output

channel input

termination

type variable

process definition

type definition

label output

label input

channel output

channel input

terminate process

wait for process to terminate

spawn

forward x to y

label output

channel output

terminate process

Fig. 1: Abstract syntax of SESSION.

II. ABSTRACT SYNTAX
defines the abstract syntax of SESSION. Lines without a left-hand side are separated by | from their preceding line.



III. A TYPING SYSTEM FOR SESSION TYPES

a) External and Internal Choice:
QF P y:Ag kel

QFyk; Py @ {l:A}icr
QA FQr ny:C VkeL
Q20 {0: Agheer F casea(f = Qo)eer = y:C
QF QrQc:: y: Ay, Vk e L
QF casey({ = Qo)eer :: y:&{l: Ar}ecr
QA F P y:C kel
Q,z:&{l: Asteer F (z.k; P) :: y:C

SR

L

&R

&L

b) Channel input/output:
QFP:yB

O, z:AFsendzy; P . y:A® B
O, z:A,x:BF P y:C
Qr:A® BtF z<+recvz; P::y:C
QzAFP:yB
QF z+recvy;P::y:A—B
Qx:BEFP:yC
O, z:A,x:A — BFsendzx; P :: y:C

QR

QL

R

L

c) Spawn and process definition:

VMEFX=P:z"AeX Q, Ay Q) 2" A Qo,z:Abx Q ::y:C

SPAWN
01, Qs by (2 X[y] ¢ M);Qu = y:C
2 CrFy =Fudcy . :y:CEY Y=4€eX 2C oy C kv 2:Cy:C Do
-Fwp
zY by Fyy] = y:C
d) Termination.: ar o
1R 2@xy: 1L
-Fx (closey) iy : 1 Qr:lbgwaitx;Q y: C
e) Silent unfolding::
Y=AecX Abs P:x:A Y=AeX A x:Abs P z:C
TVARR TVARL
AbFs P:xY AxYbs Piz:C
f) Signature checking::
. IFs, Awfmd IFyy ¥'sig Qb Pax:A IFy ¥'sig
Iy, (-) sig s Y = A, Y'sig : by QF X = P 2:A, Y sig
g) Message Typing:
®RR — L
28: A, Yar1:B Fsend 2 yo Yo AR B 28:A, 0 A — Bl send zg xq it Toy1:B
kel SR bel &L 1R
Yot 1:Ar F Yok i yo: @ {C:Ar}eer o &{l: Aptoer b (x0.k; P) i Xog1: Ak - closeyq, :: Yao:l



h) Configuration Typing:

emp,

T Al (20 A) b ﬁ
AglEC:: A Ay, A, (T A) 6 QL Q, (2:A) 00, QF P (z:A)
Ao, Al IF C,proc(zq, 6(P)) :: (x4:A)
AglFC:: A Ay, A M :: (x4:A)
Ao, Af IF C,msg(M) :: (z4:A

proc

msg

AoglFEC : A ALIFECy izt A
Ao, AYIFC,Cy i Ay A

comp

Since ¥ is fixed, we may drop it in a configuration typing judgment and a process typing judgment, respectively, for brevity.
Definition 1. For all Y = A € 3, we extend ¥ by adding the following definition to the signature 3.:
ot AFFy =Fuda g ny 1 A Y=AecX

Here Fy is a specific process variable assigned to the forwarder process for type variable Y, and Fud g ., is defined by
induction on the structure of A as a function from type A to process terms as follows:

Fude (0:A,)eer yea = casex(d = y.l;Fwda, yeo)eel
Fudg (0:A }eer yen = casey(l = x.l;Fuda, yeo)ecl
FudAgB,y«a = w ¢ recvy;sendw y; Fudp y o
FudA B ycz = w ¢ recvy;sendw r;Fudp y o
Fudy g g = walitz;closey

Fudy,y« o = Fylz— 2, y— 1] Y=A4AeX

Lemma 1. Given the extended signature %, for all type A, there is a derivation for x : Aty Fudg ye oy A

Proof. The proof is by induction on the structure of type A. In a base case, where A is a type variable Y, i.e., A =Y for
Y = C € %, the proof is straightforward by the D-FWD rule since z : C' - Fy := Fudg y, 0 y : A € X. The proof of other
cases is straightforward.

O

Definition 2 (Well-typed configuration). Well-typed configuration(s) are defined in terms of the judgments (D1; D2) € Tree(A I
K) and D € Tree(A I+ K), where K is either of the form x:A or _:1 and _ stands for an arbitrary channel name along
which no observations are made.
o We define D € Tree(A I+ K) as

AlFD: K

o We define (D1;Dz) € Tree(A I- K) as Dy € Tree(A |- K) and Dy € Tree(A IF K)
o We define B € Forest(A I+ A’) as
AlFB A

o We define the notation T € B meaning T is a particular tree in a forest of trees B: For B € Forest(A I+ A’), we write
T eBiff B=DB'T, and B’ € Forest(Ay IF A}) and T’ € Tree(Az IF K) with A = Ay, Ay and N = A} K.
o



cCdeé& cCde&(v) Ulkc; C ey U co C ey UlFe d UIFdC d
UlkelCd Ulkeld UlkcCe Uik CEeg UlFcudCd

UiFeCclUd UIFdCclUd

Fig. 2: Inductive definition of W I~ F.

IV. CONCRETE SECURITY LATTICE AND SECURITY THEORIES

Process configurations and terms are typed relative to a concrete security lattice and a security theory. A concrete lattice ¥
is defined globally for an application and consists of concrete security levels ¢. Our running example lattice

guest C alice C bank guest C bob C bank

is an example of a concrete security lattice. Polymorphic process definitions make use of a security theory V¥, ranging over
security variables 1) and concrete security levels ¢ from the given concrete security lattice W. At run-time, all security variables
occurring in polymorphic processes will be replaced with concrete security levels.

Definition 3 (Concrete security lattice and security theory). Let Wy = (L, &y, L) be a concrete join semi-lattice with a partial
order & over concrete security levels 1,1 € L such that Ey € & is of the form v C /. We define a security theory ¥ 2 (V) E)
that augments Vo with security variables 1) and relations £ over them such that

e Y €V is a set of security variables

e ¢,d € S is a set of security terms of the security theory U, defined by the grammar

e,d:=cUd ||

o E €& is a set of relations over the elements c,d of the security theory where E = ¢ C d.
For convenience, we define the projection (V) to extract the relations £ of V. We write

viFE
if £ is consequence of the lattice theory based on the relations. The judgment is defined in
Process definitions and process spawning rely on an order-preserving substitution, defined as follows:

Definition 4 (Order-preserving substitution). Let v € ¥V — S be a total function that maps security variables to security terms.
Its lifting 4 to other syntactic objects, such as security terms ¢, process terms P, typing contexts A, and security lattices VU,
is defined by structural induction over the syntactic object, replacing simultaneously all variable occurrences 1); in the object
with y(1;). The function ~ and its lifting 4 must be order-preserving, ensuring that if V' |- E, then 4(V') I+ 4(E). To link a
spawner and a spawnee, we define an order-preserving substitution U |-~ : U’

Ulky: U 2 iV - E, then U I+ 4(E)

Composition v oy of two substitutions v and ~' is defined as usual. We observe that if both v and ~' are order-preserving
so is their composition.

The type system requires every spawner to provide an order-preserving substitution W I~ : U/ for the security variables of
the spawnee (rule SPAWN). As a result, the security theory U’ of the spawnee must be satisfied by the security theory ¥ of
the spawner, i.e., if U’ |- E, then ¥ | 4(E). Moreover, if the spawner provides a substitution ¢ for g, i.e., ¥y I-§: U, so
does the spawnee, i.e., ¥gl-vyod: .



V. A SECURE TYPING SYSTEM
a) External and Internal Choice:

U; 2+ PQdy i y:Ak[c] kel
U EF (y°.k; P)Qdy i y: @ {:Ac}eer|c]
Ulkdy =cld; U, = z:Aglc] F Qr@Qdz :: y:C[c'] Yk €L

SR

c oL
U2 2: @ {€: Agyeer|c] F (casez°(£ = Qe)eer)Qd = y:C[c]
U=+ QrQc :: y: Ak Vk e L R
U; 2+ (casey (£ = Qu)ecr)Qdy = y:&{l : Ag}ocr]c]
Ulikd Ce U; E, x:Ag[c] - PQd; :: y:C[c] kel &L
U = w8l Acteerlc] F (2°.k; P)Qd; :: y:C[c]
b) Channel input/output:
U, E+ PQd; :: y:B[c]
= G ®R
U; =, z: Alc] F (send z y°; P)Qd; :: y:A ® Blc]
Ul-dy =clUd; U; =, z:Alc], z:B[c] F PQds :: 3:C[c] ol
U; E, 2:A® Blc] F (2 « recv 2°; P)Qd; :: y:C[c]
U =, z: Alc] F PQc :: y:B|(] R
U; B+ (2 + recvy; P)Qd; :: y:A — B[]
Ulikd Ce U; E, :Bc] - PQd; :: y:C[c]

U; =, z:Alc], z:A — Blc] - (send z z%; P)Qd; :: y:C[c]
c) Definition and spawn:

U= by X = PQyyg :: 2":A[] € & U - Yeee 1 O/ Uk veec(®) C d
\IJ H_ dO E ’YsAec(d)O) Elvx:A[’y;ec(wO)} ”_ (’Ysecv’yvar) o E'/la SC/AW)] \Ij; EQam:A[’)/SAec(z/})] '_E Q@do o ZC[d}
\I/; El, Ez '_Z ((I‘[’Y;ec(w)] < X[(’Ysec,’}/var)] — El)@’YSAEC(w()); Qa:)@do o ZC[d]

SPAWN

Rule SPAWN relies on two substitutions, ., that provides a substitution for channel variables to match them up with the
definitions in the signature, and s Which is an order-preserving substitution ¥ I s : W/, guaranteeing that the security
terms provided by the spawner comply with the order expected among those terms by the spawnee. Rule SPAWN moreover
establishes the above invariants for the newly spawned process, by the premise ¥ I- 4(¢) C d, and allows the newly spawned
process to start at least at the spawner’s running secrecy dy, by the premise do C W I (¢)).

V=12 : Clp) by Fy = FWdC,zfezf’@d} saxpCly) € X
Y=AeX Ul Yoo 1 0 = 2 2:C[e], y:Clc] b (Ysecs War) = 21:C[W], 1:C[Y]

D-FwbD
U: 2:Cc] Fs Fy [(7Vsec; War)]@Qc :: 4:Cc]
Here is the forward rule we use in the implementation:
v |- C1 = Co
. T FwbD
Ui y:Aler] by (2 <= y©)Qcg i x:Ales]
d) Termination Rules:
R U E by QQdy vy T[d] oL
U; - by (closey©)Qd; :: y : 1[(] U= 2 1] by (wait 2 Q)Qd; :: y : T[d)
e) Silent unfolding::
Y=AeX U;Ety P:uaxA] Y=A€eX U; =, 2:Alc] b P i 2:C[¢]
— TVARR = 7 TVARL
U2 ks P oY U= 2:Y[c] by P 2:C[c]



f) Signature checking:

> ”_Z;\I’o A med H_E;\IJO E/ Sig 5
Feiw, () sig ' IFsw, Y = A, Y sig

2

Vie (L)W CY Vv Cd  syiBili o oiBaltnl by PO s sy s, ¥ sig
IFsiwy U591:B1[Y1], -y Yn:Br[tn] B X = PQig i 2:A[y)], X sig

3

g) Message Typing:

R — L
Uo; z5:A[c], Yar1:Blc] F send 25 Yo = yo:A @ Blc] @ Uy; 25:A[c], q:A —o Blc| b send 25 24, it Tot1:B[c]
kelL kel
SR &L
Vo3 Yat1:Ak[e] Yok v yar & {L:Ac}eer]c] Vo; Ta:&{l: Actoer[d b (za-k; P) i waq1:Ak[d]
1R

Uo; - close y, :: ya:l[c]
h) Configuration Typing:

mp, emp,

Uo;z:Ald] IF - i (z:Ald)) © Wo;-IF - ()
Uolkdi Cd  Vy:B[d] € T),T (¥ - d C d)
Vp; TplFC T o, Tz Ald] 6 B, 2, 2:Ald)] Uo; Zp, = F PQd; :: (2:Ald))
Uy; Ty, Iy IF C, proc(z[d], PQd,) :: (z:A[d])
Vy:B[d] €T, T (Wb d Cd)  Wo;Tol-C:T  Wo;Th Tk M :: (:A[d])
Uo; Lo, T IF C,msg(M) :: (x:Ald])

proc

msg

Uo;TgIFC:: T Uo; TG IFCy i x:Ald)
Uo;To, T IFC,Cq : T, 2:Ald)

comp
Since ¥( and X are fixed, we may drop ¥y and ¥ in a configuration typing judgment and a process typing judgment,
respectively, for brevity.
Definition 5. For all Y = A € 3, we extend 3 by adding the followinglFC-typed forwarder definition to the signature 3.:
=1 A[Y]F Fa = Fudy yu 0 Qi iy Ay Y=AeX

Here Fy is a specific process variable assigned to the forwarder process for type variable Y, and Fwd 4 . is defined similar

to |Def. 1] as

Fwdg(r:A,}pep yea = casex({ = y.l;Fuda, yerpe)icr

Fudg (1A} oep yeae = casey(l = r.l;Fuda, yee oc)ier
FudagB,ycze = w < recvr;send wy; Fwdp ye ge
FudA—oB,yecae = w < recvy;send w x; Fwdp yege

Fudy yege = waitz;closey

Fudy e ge = Fyll@ = x,y —y), W) Y=A€eX

Lemma 2. Given the extended signature Y, for all type A, there are derivations for
(i) W : Al by Fud g yv v @ iy 0 Al and
(it) Uz : Al s Fud g g pu @Y iy 2 A[ap], when W IE o) T and A #Y for a type variable Y .

Proof.(i) The proof is by induction on the structure of type A. In a base case, where A is a type variable Y, i.e., A=Y for
Y = C € X, the proof is straightforward by the D-FWD rule since ¢ = ¢; 2 : C[¢)] = Fy = Fudg yu 50 QY 1y : AlY] € X,
and the substitutions vsec and 7o, enforce the premises of the rule. The proof of other cases is straightforward.

(ii) The proof is by case analysis on the structure of type A. In all cases, by the way we defined the process terms, after the
very first applicationof a rule (the first communication which is always a receive), the running secrecy increses to ¢ and we

10



can apply the previous item. Note that by the tree invariant every judgment in our typing derivation satisfies the condition
U -y E .
O

Definition 6. Define security-erasure |X| of the signature 3 as
H = .
|Y:A32/| Y:A7|E/‘
U2+ X = PQuyyg = z:AW], Y| = [E|F X =P:x:A, Y|
Definition 7. Define security-erasures |=|, |z:Alc]|, |T'|, and |K*| of the security linear variable context Z, security channel
variable, security linear channel context ', and security channel singleton K°®, respectively, as

12, z:A] £ |5],2z:A
|z:Alc]] x:A
IT,zq:A[c| £ |T],24:A4

I =

5

=%
@

|xa:Alc]] = x4
|—1[T]|

Definition 8. Define a security-erasure |C| of the configuration C as

H = .
|C, proc(z[d], PQd,)] = |C|,proc(z,P)
|C, msg(M)] = |C|, msg(M)
Theorem 1. Every IFC well-typed configuration ¥o;T' |- C :: K* is session-typed |C| € Tree(|T'| IF |K?®]).

Proof. By induction on the derivation of Vy; " IF C :: K°. O

11



SPAWN proc(ya, (z < X[7] + A1);Q) — (AfFX=Pu2':Bey)
proc(zo, 4(P)) proc(ya, [ro/]Q (AL, x' IF v : A1, 0, xo fresh)
D-FWD proc(ya, Fy[y]) + (@ :CFFy=Fudg ey =y :CEX)
Proc(yYa, Fdc,y, «as) (', y' v : 25, ya)

Lsnd proc(ya, (closey.)) — msg(closey,)

Trev msg(closey.) proc(zs, (wait y;Q)) — proc(zg, Q)

@snd  Proc(ya, Ya.k; P) — proc(ya+1, ([Ya+1/yalP)) msg(ya.k)

@rcv mSg(yak)) pI‘OC(U»y, case ya((é = PZ)ZGL)) — pI‘OC(U»W ([ya+1/y(x]Pk))

&sna  pProc(ya, (vs.k; P)) — msg(zs.k) proc(ya, ([zs+1/25]P))

&iew  Proc(ya, (caseya(l = Pr)ecr)) msg(ya.k) — proc(ya+1, ([Ya+1/YalPr))

®snd  Proc(ya, (send s ya; P)) + proc(Ya+1, ([Yat1/ya|P)) msg(send x5 ya)

Rrev msg(send 23 yo) proc(uy, (w < recvya; P)) — proc(uy, ([zs/w][ya+1/ya]P))
—ond  Proc(ya, (send zs uy; P)) — msg(send x5 uy) proc(ya, ([uy+1/u,]P))

—rev  Proc(ya, (w <= recvya; P)) msg(send zs ya) — proc(ya+1, ([£s/wl[ya+1/ya]P))
Fig. 3: Asynchronous dynamics of SESSION

VI. PROGRESS AND PRESERVATION
A. Session-typed processes

This section proves type safety of session-typed processes in SESSION. We first start with defining the notion of a poised
configuration and proofs of necessary lemmas.

1) Poised configuration and configuration permutation: Progress relies on the notion of a poised configuration. A config-
uration is poised if it is empty or cannot take any internal steps but wants to engage in a message exchange along any of its
free channels.

Definition 9 (Poised Configuration). A configuration Ay, Ay I+ C1,Co :: A w:A’ is poised iff either C1,Co is empty or

A1 IFCy 2 A is poised and As |- Cy :: w:A’ is poised. The configuration Ao 1= Co :: w:A’ is poised iff it cannot take any

steps and at least one of the following conditions hold:

1) Cy is an empty configuration.

2) Cy = Chmsg(M) CY such that msg(M) is a negative message along yo, € Ao, i.e. Yo:&{l:Ap}tocr IF msg(M) :: yor1:Ax
or Yo:A —o B, zg:AlF msg(M) :: yo41:B, and both subconfigurations C} and Cl are poised.

3) Co = C)proc(x, P)CY such that proc(z, P) attempts to receive along a channel y,€As, and both subconfigurations C)
and CY are poised.

4) Co = C,msg(P) such that msg(M) is a positive message sent along wg:A’, i.e. wg1: Ay IF msg(M) :: we: & {l:As}eer,
or wgy1:B, 2y A lF msg(M) :: wg:A ® B,or - IF msg(M) :: w:1, and subconfiguration Cy is poised.

5) Co = Cyproc(w, P) such that proc(w, P) attempts to receive along w:A’, and subconfiguration C} is poised.

o

The dynamics is expressed in terms of multiset rewriting rules, which update a configuration locally, without regard for the
remaining configuration. As a result, the updated configuration may not necessarily be well-typed, according to the rules in
the configuration typing. For example, stepping the configuration

C1T proc(ya, (send zg yo; P)) Co —
using rule ®qng (see [Fig. 3)), yields the configuration
CiT proc(Ya+1, ([Va+1/yalP)) msg(send x5 ya) Co

For well-typedness, the subtree 7 rooted at the message msg(send x3 y,) would have to be moved left to the message. Our
proofs account for this possibility and only require that the dynamics yield a valid permutation of a well-typed configuration,
assuming that the pre-state is a valid permutation of well-typed configuration as well. We define the notion of a valid permutation
next. A valid permutation may rearrange the order of processes and messages in a configuration as long as parent-child
relationships are preserved.

Definition 10 (Valid configuration permutation). For a well-typed configuration Vo; A I C :: A/, a valid permutation P(C) can

be derived by simultaneously changing the position of a process or message in C, yielding the permutation C', i.e., P(C) = C,

as long as the following conditions are met:

1) For a process proc(za, P) in C' such that C' = Ciproc(z,, P)Cs and for all yg ¢ dom(A) that P is using, there must
exist either a process proc(yg,_) or a message msg(_(yg)) in Cj.

2) For a positive message msg(M(z,)) in C' such that C' = Crmsg(M(z4))Ca, if zo ¢ dom(A), there must exist either
a process proc(zy,_) or a message msg(_(z,)) in C1. Moreover, for all y ¢ dom(A) that P is using, there must exist
either a process proc(y,_) or a message msg(y._) in Cy.

12



3) For a negative message msg(P(vg)) in C' such that C' = Cymsg(P(vg))Co, if vg ¢ dom(A), there must exist either a
process proc(vg, _) or a message msg(_(w)) in C1. Moreover, for all y, ¢ dom(A) that P is using, there must exist
either a process proc(ya,_) or a message msg(ya._) in Cy.

o
2) Lemmas:
Lemma 3 (Term variable substitution). The following substitutions are type-preserving and thus admissible:
1) If Abs P::x: A then, for any fresh y : A, we have A by [y/z]P =y : A.
2) If A,y : Bbyx P::x: A then, for any fresh z : B, we have A,z : Bty [z/y]|P :: x : A.
Proof. The proof is by induction on the process term typing rules. O

The next lemma allows us to break up an open forest into two sub-forests, as illustrated in [Fig. 4]

Lemma 4 (Making two forests out of one). If A - CC’ :: A, then for some Ay we have Ay I C :: A}, Ay and Ao, Aq IF
C' o AL, where A = Ay, Ag and A" = A, AL.

Proof. The proof is by a straightforward induction on the configuration typing rules. O
3) Progress:

Theorem 2 (Progress). For any configuration C, if C is a valid permutation of a configuration C" such that A - C" :: A/,
then either C — C' or C is poised.

Proof. The proof is standard and can be find in the literature of intuitionistic linear session types. O
4) Preservation:

Theorem 3 (Preservation). For any configuration C that is a valid permutation of a configuration C" such that A I+ C" :: A/,
if C — (', then C' is a valid permutation of a configuration C""" such that A - C" - A,

Proof. The proof is standard and can be find in the literature for intuitionistic linear session types. O

B. IFC-typed processes
This section proves type safety of CONSESSION.

Lemma 5 (Term variable substitution). The following substitutions are type-preserving and thus admissible:

1) If U;E by, PQc :: x : A[c] with the tree invariant satisfied, then, for any freshy : A, we have V; Z b, [y/x]PQc :: y : Alc]
with the tree invariant still satisfied.

2) If U;E,y : B[] Fx PQc :: x : A[c/] with the tree invariant satisfied, then, for any fresh z : B, we have V; Z, z : B[¢"]| b5
[2/y]|PQc :: x : A[c'] with the tree invariant still satisfied.

Lemma 6 (Making two forests out of one). If Uo;T' IF CC’ :: T, then for some T’y we have Vy; T/ I C :: T Ty and
Uo; T4, T IFC e T, where T =T7, T and TV =T, TY.
Proof. The proof is a straightforward induction on the configuration typing rules. O

Lemma 7 (Security variable substitution). If U;Z bx PQc :: z : B[d] with the tree invariant satisfied, then for every
substitution V' I+~ : U, we have

(¥);4(E) Fx A(P)@5(c) == z:B[§(d)],
with the tree invariant satisfied as well.

Proof. The proof is by induction on process term typing derivations ¥; = by, PQc :: 2 : B[d]. We consider cases for the last
step in the derivation.
Case 1. _

U:Zby QrQc:iy: Agle] VkeL

\I/; = l_E (caseyc(ﬁ = QZ)ZGL)@dl DY &{é : AZ}KGL[C]

&R

By the induction hypothesis, for all k¥ € L, we have
() 4(E) b 4(Q)@F(c) == y: A [3()],

which preserves the invariant.

13



By the &R rule, we get
H(0);4(E) Fx casey (€ = 4(Qr))eer)@F(dr) = y - &{L: Ag}eer[3(c)].

By the first part of the tree invariant for the original sequent, we get ¥ I- dy C ¢, and thus 4(¥) I+ 4(d;) C 4(c). The
second part of the tree invariant is guaranteed by the induction hypothesis on the premise.
By a simple rewrite according to how the lifting of v is defined we get

F(V);4(E) Fx A(casey (£ = Qu)eer)QF(dr) =2 y:&{L: Ag}ecri(c)].

Case 2
ase Ulkd Coe

U:E,x: Aglc] bx PQdy =y :T[d] kel
U B,z &{l: Articrlc] bs (2°.k; P)Qdy :: y : T[d]

&L

By the induction hypothesis on the first premise and definition of the lifting of v we have

Y(©);A(E), 2:Ak[§(c)] Fx A(P)@%(d1) :: y:T[5(d)],

which preserves the tree invariant. By applying substitution on the second premise (¥ IF dy C ¢) we get 4(0) I- §(d1) C 5(c).
By the &L rule, we get

A(0);4(2), :&{Ackecr[3(e)] Fs 279k 5(P)@Y(dr) =y : T[H(d)),

which satisfies the tree invariant since the premise satisfies it. Again by a simple rewrite according to how the lifting of ~
is defined we get
V() 4(E 2:&{ Acteer(d]) Fs 4(2°.k; P)@Y(dy) : y : T[H(d)).

Case 3.
U: = by PQc:: y: B[d]

U; 2,2 : Ald] Fx (send 2% y; P)Qc :: y : (Ald] ® B) [d]

®R

By the induction hypothesis on the premise we have
V(W) A(E) 2 4(P)@(c) = y:BY(d)],
)

which preserves the tree invariant and thus 4(0) I- 5(d) C 4(d).

By the ®R rule, we get
A();4(2), 2 A[R(d)] bx send 27D y; 4(P)@4(c) : y : (A B)[3(d)),

the resulting sequent satisfies the tree invariant. Again by a simple rewrite according to how the lifting of v is defined we
get
A(9);4(E, 2:A[d]) Fx A(send 27 y; P)@(c) =y : (A® B)[3(d)).

Case 4.
Ul =cUd

U:=,2: Ald],x : B[d] g PQc ::y: T[dy]
U;Z2: (A® B)[d] Fs (2% + recvr; P)Qc :: y : T[d;]

®L

By the induction hypothesis on the second premise and definition of the lifting of v we have

(W) 4(2), zAR(d)], z:B[y(d)] Fz Y(P)QF(c) 2 y:T[§(da)],
which preserves the tree invariant. Moreover, by applying the substitution on the first premise, we get 4(¥) |- 4(c') =

Y(e) UA(d).
By the ®L rule, we get

A(0);4(2), 2:(A® B)[§(d)] s 27 « recv 2;4(P)@4(c) : y:T[4(da)],

It is straightforward to observe that the resulting sequent satisfies the tree invariant and can be rewritten as before according
to the definition of the lifting of ~.

14



ey /\ x
SN N AN N /LN
| /\ \ . [ S
— Ao
Ay
Fig. 4: Schematic illustration of allowing us to break up an open forest into two open sub-forests.

Case 5. Here is the interesting case!

VLB, by X = PQo = 2 A €5 Wi bwe: U Wik dc(th) Cd
U Ik dy E dsec(%0) Z1, 2: Albsec(V0)] IF (Fsec, dvar) 2 27, 22 At)] i o, 1 Aldsec (V)] Fx QQdy :: 2:Cd]

W21, S by (@) X[(aees oar)] < 1) @ec (th0); Q)@ :: 2:C[d]

SPAWN

By the induction hypothesis we have
xA(0); 4(Za), 2: AR (Gsec(¥))] Fx A(@Q)@F(do) = yA(T)[A()),
which preserves the tree invariants. By applying v on the 3rd and 4th premises, we get

’AY(\IJ) I ’AY((SsAec(w)) C ’A}/(d)a ’A}/(do) C 'AY(&sAec(’(/)O))

By applying the substitution « on the 2nd premise, we get 5(¥) I 4(dsec) :: ¥’. And from the 5th premise, we get

A(Xir), AL (Fsec (100)] I+ (¥(0sec), duar) = Ef, 2 A[)]
By the SPAWN rule for the substitution " = (dyar, ¥ © dsec), We get

A(W); 4(E1), 4(Zs) Fs (a0 X[y] = 4(21)@(eec(80))); H(Q)) @ (do) == y : A(T)[A(d)].

To show that this sequent satisfies the tree invariant, we use (a) the fact that the sequent * satisfies the tree invariant and (b) the
condition on process definitions in the signature. The condition we imposed on process definitions ensures that ¥’ |- ¢y C )
and Vy:Ae);] € 2.9 IF p; T 9.

By 4(¥) IF 5(8sec) :: ¥/, we can rewrite the above judgment as

Vy:A[ipi] € Z1. (W) IF A(0sec () E 4(dec ().

By the tree invariant of * (i.e., Y(¥) Ik 4(dsec(¥)) E 4(d)),

Vy: Ali] € E1. H(P) IF A(dsec (¥i)) E A(dsec(¥)) T A(d).

By (dvar, ¥(0sec) (E1)) = Y(Z1)s

VyA(A) (@] € Y(E1) A(P) IF (i) E F(dsec(v)) E A(d).

Case 6. The case for D-FWD is similar to the previous case.
O

1) Progress: Progress for IFC-typed processes in CONSESSION follows from the progress of SESSION, as IFC typing
can be viewed as a refinement typing using the same dynamics as the session typed processes.

15



FwD proc(yalcl, (Yo <+ 15)Qd1) — [25/ya] (Yo ¢ A")
d

SPAWN proc(ya[c], (z¢ < X[y] + T'1)Qds; QQd;) (\I/' rkEX=ray: B[y] € %)
proc(zold]. 3(P)) proc(yald). lzo/+]Qad)) (O b Tt s oot
D-FWD proc(ya(c], Fy[7]) — (W =2’ [P]: Ok Fy =Fudc, v pw @y’ OY] € X)
proc(ya[c], Fudc yg +zg @c) (@[], 5[] Ik : w[c], yalc])

Lsnd proc(ya[c], (close yo)Qdi) — msg(closeya)
Lrev msg(close y,) proc(zs|c], (wait yo; Q)Qd1) — proc(zs[c], QQ(dy U c))
Gsnd  Proc(yalcl, ya-k; PQd1) — proc(ya+1(c); ([ya+1/ya]P)Qd1) msg(ya.k)
©rew  msg(yalcl k) proc(us[¢], caseya (£ = Pr)rer)@dr) > proc(us ('], ([yas1/yal Pr)@(d: U c))
&aa  proc(yalc, (zs.k; P)Qd1) +— msg(zs.k) proc(yalc], ([z5+1/25]P)Qd:)
& proc(yalc, (caseya(l = Pr)ier)Qdr) msg(ya.k) — proc(vs[c], ([ya+1/yalPr)Q@c)
®snd  Proc(yalc, (send zs yo; P)Qd1) — proc(ya+ilc), ([Ya+1/yalP)@di) msg(send x5 ya)
®rev  msg(send x5 ya) proc(uy[], (w < reev ya; P)Qdy) — proc(uy[c], ([2s/w][ya+1/yal P)@(d1 U c))
—osd  Proc(ya[c], (send zg u; P)Qdi) +— msg(send xg u~y) proc(ya[c], ([uy+1/u~y]|P)Qd1)
—orev  Proc(yalcl, (w < recvya; P)Qdi) msg(send zs ya) — proc(vs[c], ([zs/w][yat1/ya]P)Qc)
Fig. 5: Annotated asynchronous dynamics—proof of preservation.
2) Preservation:

Theorem 4 (Preservation). For any configuration C that is a valid permutation of a configuration C" such that Vy;T' |- C" :: TV,
if |C| — C', then there exists a security annotated program C' such that |C'| = C' and is a valid permutation of a configuration
C"" such that Uo; T I C" :: T'. Moreover, the stepping preserves the tree invariant.

Proof. The proof is by considering different cases of |C| — C’. For each step we provide a security annotated configuration
C’ and then by inversion on the typing derivations show that it is IFC-typed. For the purpose of presentation, we put security
annotations of the post-steps for all possible steps in We provide the detailed proof by inversion for a couple of cases.
The rest of the cases are similar.
Case 1. (®)
Subcase 1. (send)

Ciproc(ya[d], (send 2§ yo; P)Qd;)Cy — Ciproc(yayilcl, ([Yat1/ya]P)Qdi)msg(send 25 yo)Co

By assumption of the theorem: Wo;I' I C;proc(y.[c], (send x5 yo; P)Qd;)Cq :: T'
By [Lem. 6 Wo;T1 - C; :: T, T, Ty and Uo; T3, T, 25:Alc] |- proc(ya[d, (send 2§ yo; P)Qd,) :: yo:(A ® B)[c]
and xI:O,rg,,r2 - Cy:: TS
Where I' = T'1,T3,T} and I' = T{,T}". If 25:4[c] € T we have T} = T'y and '}, z5:A[c] = T3, and otherwise
T, 25:Alc] =T, and T} =T},
By inversion on proc rule Uo; '} T, 25:A[c] - (send 25 ys; P)Qdy :t yo:(A @ B)c]. Moreover, (x) Vu,:T[ds] €
T8 T, 25:Alc]. Ug IF da C .
By inversion on ® R rule U; T}’ T - PQd, :: y,:B|c].
By substitution of vy, for y,:

o TY T4+ [yt g PQdy =t yoyr:Bld].

By proc rule and (x): T Uo; TL" T IF proc(yaii|d, [y* T /y*]PQdy) :: Yai1:Bld.
By ®R and fwd rule: Wo; z5:Alc], yat1:Blc] - (send 2§ y5; v, < y641)Qc : yai(A @ B)]d].
By msg, %, and {:
Uo; Ty T, 25:A[] b proc(yai[d, [y* /y* ] PQd) )msg(send 25 y5; ys < yoia) o Yai(A © B)[d].
By configuration typing rules: ;I I C;proc(ya.1[c], [y*T!/y*]PQd; )msg(send TEYaiYa < Ya41)Ca I
O

Remark: To keep the proofs concise we may use ¥ instead of the term secrecy lattice ¥, whenever we are clearly working
with configurations defined in the run-time. Moreover, from now on, we write Wo; A I C :: A’ also when C is a valid
permutation of a configuration C’ such that Uo; Al C' :: A .

16



VII. RECURSIVE SESSION LOGICAL RELATION

This section introduces the recursive session logical relation and supporting definitions.

A. Open configuration transition

Definition 11. The configuration A |- C :: A’ is ready to send along A C A, A iff for all y,:C € A, there is a message
msg(M) in C sending along yo, i.e. M is of the form y,.k, send zg y,, or closey,.
Similarly, the configuration A |- C :: A’ is ready to receive along A C A, A’ iff for all y,:C € A, there is a process
proc(zs, P) in C waiting to receive along y,, i.e. P is of the form casey,({ = Qp)rcr, W + recvyy;Q, or wait y,; Q.

o

Definition 12. The set Out(A I+ K), is defined as all channels with the sending semantics in A, K, i.e., y, € Out(A |- K)
iff for some positive type T, we have y,:T € A or for some negative type T, we have y,:T € K.

Similarly, the set In(A I+ K), is defined as all channels with the receiving semantics in A, K, i.e., y, € Out(A I+ K) iff for
some negative type T, we have y,:T € A or for some positive type T, we have y,:T € K. o

Definition 13. dom(A) is a set defined inductively as:

dom(A,yq : A)
dom(-) =

dom(A) U{y}
0

Definition 14 (Open configuration transitions). We provide some notations used in the logical relation and proofs.
o The notation —* refers to taking none or many steps with . The notation —J refers to taking j steps with .
o We write D —** D’ stating that D —* D' and D’ is ready to send along Y.

o We write D —*v:© D' stating that D —* D' and D' is ready to send along T and ready to receive along ©.

B. Recursive Session Logical Relation

[Fig. 6] defines the logical relation for intuitionistic linear logic session types with general recursive types.

17



(1) (D1; Do) iff  (D1;D2) € Tree(- IF yo) and

e V[ IF ya:l myJ;l D1 = msg(close yo) and D2 = msg(close yq)
(2) (D1; Do) iff  (D1;D2) € Tree(A Ik yo : ®{L:Ar}ecr) and Jky, k2 € 1.
EVI(A I ya: & {€:Ar}teer)]TH! D1 = Dimsg(ya.k1) and D2 = Dymsg(ya.k2) and k1 = k2
and (D1;D3) € E[A IF yat1: Ak, ™
(3) (D1;D2) iff (Dl; DQ) c Tree(A I yai&{f:Ag}gGI) and th ko € 1.
eV[A - ya:&{E:Ag}gel]]Z“:f,l if k1 = ko then(D1msg(ya.k1); Domsg(ya.k2)) €
E[AIF Yar1:Ap, ]™
(4) (D1;D2) iff (D1;D2) € Tree(A', A” IF yo:A ® B) and Jz5 s.t.
€ V[A, A" IF yo:A® B, D1 = DiTimsg(send zs yo) for T1 € Tree(A” I+ z5:A) and

D, = DyTomsg(send zs yo ) for T2 € Tree(A” |- z5:A4) and
(T1;T2) € E[A" - x5:A]™ and
( /1,2)/2) S gIIAI I ya+1iBﬂm
(5) (D1;D2) iff  (D1;D2) € Tree(A IF yo:A — B) andVaggdom (A, yo:A — B).
€ V[A IF yo:A — Bt (Dimsg(send z3 Yo ); Domsg(send x5 ya)) €

Yai-
ElA, z5: Ak yay1:B]™
(6) (Dl;Dg) iff (Dl; DQ) c Tree(A, yail IS K) and
€V[A,ya:l IF K]yit! (msg(close yo)D1; msg(close yo)D2) € E[A IF K™
(7) (D1;D2) iff (D1; D2) c Tree(A,ya: (&) {EIA[}[E[ I K) and Vkl, ko€ 1.
€ V[A, Yo : B{l:A¢}eer IF K]]ZLH if k1 = kothen (msg(ya.k1)D1; msg(ya.k2)D2) €
5[[A7ya+1:Akl I+ K]]m
(8) (D1; Dg) iff (D1; D2) c Tree(A, ya:&{ftAz}[&-[ I K) and Hkl, ko € 1.
€ V[A, yo:&{l:Ag}oer I+ K]]";";l D1 = msg(ya.k1)Di and Ds = msg(ya.k2)Dyand ki = k2
and (Dll,D/g) € SﬂAaya-&-l:Akl I+ K]]m
(9) (D1; Do) iff  (D1;D2) € Tree(A,ya:A® Bl K)andVzgddom (A, yo:A® B, K).
€V[A,ya:A® B IF K]t (msg(sendzs yo)D1; msg(sendxs ya)D2) €
ElA, z5:A, Yat1:B IF K™
(10) (D1;D2) iff  (D1;D2) € Tree(A', A" yo:A — Bl K)and Jzss.t.
€ V[A', A", yos:A — BlF K]t Dy = Timsg(sendzs yo) Df for Ti € Tree(A’ |- z5:A4)

D, = Tomsg(sendzg yo) D5 for Tz € Tree(A' IF z:A) and
(T1;T2) € E[A" I+ zg:A]™ and
(DY DY) € E[A”, yas1:B IF K™

(11) (D1; Ds) € E[A IF K™+ iff (D1 D2) € Tree(A - K)andV T1,01,D}.if Dy Y101 D,
then 3T 5, DS such that Dy —*Y2 DS, and ¥y C Y3 and

VyainOut(A I- K).if yo € Y1.then (D};D5) € V[A IF K] and
Vya € In(A I K).if yo € ©1.then (D};D5) € V[AIF K[!
(12) (D1;D2) € E[A IF K]° iff  (D1;D2) € Tree(A I K)

Fig. 6: Recursive session logical relation

18



VIII. NONINTERFERENCE

This section introduces the fundamental theorem for progress-sensitive noninterference for SESSION. We first start with
defining supporting notions and proofs of necessary lemmas.

A. Up-to equivalence, projections, and splitting up closed configuration

The fundamental theorem is stated in terms of the logical equivalence (A; |- Dy :: ma:Aifer]) ={° (As IF Dy
yg:As|ce]), expressing that two open configurations D; and D, are being related by the term interpretation when plugged into
arbitrary closing contexts and observed for any number of message exchanges m. Next we define this equivalence as well as

typing context projections, on which the former relies.

Definition 15 (Typing context projections). Downward projection on security linear contexts and K* is defined as follows:

def

Loao Tl V€& = D& aaTl] ifel€
Tag: T4 & £ T ¢ ifclZe¢
(3 L
xo:Tle] I & £ 2o T ifcC¢
To:T[c] I & e _:1[T] ifclZ¢&
o
Definition 16 (High provider and High client).
- € H-Provider*(-)
B € H-Provider®(T', z,:A[c]) iff ¢Z andB=B'T and B’ € H-Provider®(T') and T € Tree(- IF z,:A4), or
cE&andB € H-Providerg(I‘)
T € H-Client* (z,:Alc]) iff cZ&andT € Tree(zq:AlF_:1),0r
cCéandB ="
o
Definition 17 (Equivalence of trees by the logical relation upto the observer level). We define the relation
(T1 Ik Dy i wg:Ar]er]) Ego (To Ik Dy :: yg:As[es]) as
Dy € Tree(|T1] IF z4:A1) and Dy € Tree(|T'a] IF yg:As) and
Flllﬁ = FQU{ =TI and .ZEO(IAl [Cl]uf = y[g:AQ[CQ]U{ = K*® and
VB, € H-Provider®(T';).V By € H-Provider®(TI'y).¥7; € H-Client®(z,:4:[c1]). VT3 € H-Client® (y3: Asca)).
Ym. (817)17—1,627)27—2) < E[HF‘ I+ |Ks|ﬂm’ and
Ym. (BgDQB,Blplﬂ) S E[HF‘ I+ |K$|ﬂm.
o

B. Quasi-running secrecy and relevant nodes

The proof of the fundamental theorem [Thm. 5| relies on the notion of a relevant node, introduced in §IV of the main text,
maintaining the invariant that the relevant nodes of the two program runs execute the same code. The latter is guaranteed by
Next we define the notion of a relevant node, expressed locally for an asynchronous semantics (for ease of illustration
§IV of the main text provides a global and synchronous description). The notion of a relevant node relies on the notion of
quasi-running secrecy, also defined below.

Definition 18 (Quasi-running secrecy). In an open configuration Wo; T |- C :: TV, the quasi-running secrecy of a message or

process is determined by its running secrecy, its process term, and the running secrecy of its parent.

o If the node is a process with a process term other than recv or case, then its quasi-running secrecy is equal to its running
secrecy.

e If the process term is of the form case Y5 (£ = Py)ec,Qdy or x < recv yS; P,Qdy, then its quasi-running secrecy is di c.

o If the node is a message of a negative type along channel y¢, its quasi-running secrecy is c.

o If the node is a message of a positive type along channel yS, and it has a parent with quasi-running secrecy di, its quasi-
running secrecy is dy Ll ¢, otherwise its quasi-running secrecy is c.

The quasi-running secrecy can be determined by traversing the tree top to bottom.

19



Definition 19 (Relevant node). Consider a configuration U IF D :: K° and observer level &. A channel is relevant in D if (1)
it has a maximal secrecy level less than or equal to &, and (2) it is either an observable channel or it shares a process or
message with quasi-running secrecy less than or equal to £ with a relevant channel. (A channel shares a process with another
channel if they are siblings or one is the parent of another.) A process or message is relevant if (1) it has quasi-running
secrecy less than or equal to &, and (2) it has at least one relevant channel. We denote the relevant processes and messages
(i.e., nodes) in D by DIE. We write D€ =¢ DoJ€ if the relevant nodes in Dy are identical to those in Dy up to renaming
of channels with higher or incomparable secrecy than the observer.

o

We can build the set of all relevant nodes in a configuration by traversing the tree bottom-up as explained in Section 4.
provides us with a local guide to identify whether a process is relevant or not. We note that if K is observable, then
by the tree invariant, every channel in D is relevant.

Now we can state and prove and maintaining the invariant that the relevant nodes of the two program runs execute the same
code. The proof of the fundamental theorem crucially relies on this lemma.

Lemma 8 (Keeping relevant nodes in sync). Consider Vo; ' IF D, 2 K* for i € {1,2} with the relevant nodes in Dy and
Dy are identical, i.e, D€ = Do, with T | € =T and K* | £ = K®. If |Dq| — |D}|, then there exists a D, such that
|Dy| 01 D), i.e., |Da| steps to |Db| in zero or one step, and D1l}é = DallE.

Proof. The proof is by cases on the possible steps of |D;| +— |Di|. In each case we prove that either the step does not change
relevancy of any process in ID; or we can step |Ds| such that the same change of relevancy occurs in Do too. Note that in all
cases, we get (D};D3) € Tree(|T'| IF |K*|) by the preservation of session-typed processes.
In the following cases, we annotate the post-step of the configuration to reflect the annotations required by the preservation of
IFC-typed configurations.

Case 1. Dy = D proc(y.|[c], y5.k; PQd;)D] and

|Diproc(yad, y5 .k; PQdy )DY| — |Diproc(yati(c], (Yo 1/ys|PQd: )msg(ys,.k)DY |

where Di = D proc(ya+1(c], [y41/y5]PQd; )msg(ys.k)DY. We consider subcases based on relevancy of process offering
along y.[c]:
Subcase 1. proc(y.[c],yS.k; PQd;) is not relevant. By inversion on the typing rules di T c. By definition either
diy £ & or none of the channels connected to P including its offering channel y¢ are relevant. In both cases neither
proc(yat1(cl, [Way1/yS|PQdy ), nor msg(ys.k) are relevant in the post step. Note that from d; T ¢ and d; [Z &, we
get ¢ Z & Channel y is not relevant in the pre-step, and both yg and y5,, are not relevant in pre-step and post-step
configurations. Every not relevant resource of proc(y<, y<.k; PQd;) will remain irrelevant in the post-step too.
In this subcase, it is enough to show

Diproc(yat1lcl, [Wor1/ye] PQdi)msg(ys k)D€ =¢ DD € =¢ D1E =¢ DalE.

To prove this we need two observations:

o Neither proc(ya+1(c], [¥S,1/y5]PQd1) nor msg(ys.k) are relevant and they will be dismissed by the projection. (As
explained above.)

« Replacing proc(y[c], yS.k; PQd;) with these two nodes, does not affect relevancy of the rest of processes in DjDY.
Relevancy of processes in D} remains intact since y, and yg,,; are irrelevant.
The relevancy of processes in I} remains intact too as we replace their irrelevant root with another irrelevant process.
However, we need to be careful about the changes in the quasi-running secrecy of a process and their effect on its
(grand)children. The quasi-running secrecy of the process offering along y¢, | may be higher or incomparable to d; based
on the code of P (if it starts with a recv or case). This is of significance only if d; C &, and in the pre-step the process
has a relevant channel z : _[d] as its resource where d C £. But by the assumption of the subcase, either dy Z £ or x : _|[d]
is not a relevant channel in the pre-step.

This completes the proof.

Subcase 2. proc(y.[c], yS.k; PQd;) is relevant. By assumption (D;}§ =¢ D2 |l€) we have :

Dy = Diproc(ya[c], v .k; PQd, )DY.
and
D2 = Dhproc(yat1le], [yai1/yalPQdi)msg(yg . k)Dy

and Dj = Dyproc(yat1(c, [y5+1/y5] PQdi )msg(ys,.k; )Df.
We need to show:

D' proc(yYa+1(d), [Yot1/ya] PQdi ) msg(ys .k)DY € =¢ Doproc(ya+1(c], [ya+1/va)PQdi)msg(ys,.k)D5UE.

20



o If ¢ [Z &, then msg(yS.k) is not relevant in both runs, and will be dismissed by the projections. Moreover, in this case
yS is not relevant in the pre-step and post-step configurations. Thus the relevancy of processes in D} and D will remain
intact.

o If ¢ C &, then y¢ is relevant in the pre-step in both runs. We need to consider the possibility of change in quasi-running
secrecy in the post-step. The quasi-running secrecy of the processes offering along y¢,, ; may increase based on their code
(if the code of P starts with a recv or case). But in this case, it cannot become irrelevant since by the tree invariant it is
always bounded by the max secrecy of the offering channel, ¢ E &. Thus, in the post-step of both runs, ¥, ,; is relevant.
Relevancy of message msg(yS.k) in the post-steps of the first and second run is determined by the quasi-running secrecies
(d and d’) of their parents (X and X’) in DY and D. If d C &, then the parent (X) is relevant in the first run and by
assumption is identical to a relevant X’ in the second run. Thus messages msg(yS.k) are relevant in both runs and y¢
is relevant in the post-step too. The same holds when d’ C &. Otherwise, in both runs the quasi-running secrecy of the
parent is higher than or incomparable to the observer (the parents are both irrelevant). Thus messages msg(y<.k) are not
relevant in the post step of both runs, and will be dismissed by the projections. The channel y¢ will be irrelevant in the
post-step of both runs too. However, this does not affect the processes in ] and D} as the parents of messages (X and
X') are already irrelevant in the pre-step.

Finally, we need to show that projections of I} and DY, are equal in the post-step too.

Consider the resources of the process that offeres along y,[c]. By our writing convention, they are all in D} and Dj: (i)

Those resources offered by D] and D, with max secrecies higher than or incomparable to the observer ¢ in the pre-step will

remain higher than or incomparable to the observer and thus irrelevant in the post-step too. (ii) Those resources with max

secrecies lower than the observer & in the pre-step, i.e., a sub-tree T; in D offering along a channel w[¢’] where ¢’ C &, are
relevant in the pre-step and will remain relevant in the post-step (again, in this case, by the tree invariant, the quasi-running
secrecy of the processes offering along y¢,, ; cannot increase in the post-step).

Case 2. D; = D) proc(zg[d], y5.k; PQd;)D} and

D proc(zgld], y§,-k; PQdy)DY — Dimsg(ys,.k)proc(zsld], [yS, 1 /ye]|PQdy)DY

We consider subcases based on relevancy of the process offering along :r:g:

Subcase 1. proc(zs[d],yS.k; PQd,) is irrelevant. By inversion on the typing rules, d; C ¢ T d. By definition either
dy Z € or none of the channels connected to P including y¢ and x/‘é are relevant. In both cases, neither msg(yS.k) nor
proc(zsld], [y5.y1/y5]PQd,) are relevant. Channel x is irrelevant in the pre-step and post-step configurations.

Channel yg, is irrelevant in the pre-step, and both y¢, and yg,,; are irrelevant in pre-step and post-step configurations. Every
other irrelevant resource of proc(zg[d], yS.k; PQd;) will remain irrelevant in the post-step too.

In this subcase, our goal is to show
D msg(yg,-k)proc(zs(d], [ye 1 /ye] PQd1)DY € =¢ DIDYIE =¢ Dy € =¢ Dal)g

With a same argument as in Case 1. Subcase 1., we can prove that the relevancy of processes in I} and DY remain intact.
Subcase 2. proc(zg[d], yS.k; PQd;) is relevant. By assumption that D¢ =¢ D2l}£, and definition of =¢:

Dy = D)proc(xgld], ys,.k; PQd, )Dy,

and we have
Dy > Dymsg(y.k)proc(zs(d], [ys1/ys| PQd;)Dy

It remains to show
Dimsg(yq.k)proc(zsld], [yai1/ya] PQdi)DY £ = Domsg(yq.k)proc(zsld], [ya+1/ya] PQd1)D5 Y.

e If d C &, then x5 is relevant in the pre-steps of both runs and remains relevant in the post-steps. Even if the quasi-running
secrecy increases based on the code of P, by the tree invaiant it will be less than or equal to d C &, and thus remains
observable. As a result, the relevancy of processes in D remain intact. Moreover, every resource of the processes in I
is relevant in the pre-steps and post-steps of both runs.

o If d IZ &, then x5 is irrelevant in the pre-step and remains irrelevant in the post-steps of both runs, and thus the relevancy
of processes in D) remain intact. It remains to show that the projections of D} and D} in post-steps are still equal.

We first condider the trees offered along y¢ in both runs. The quasi running secrecy of the negative message msg(y<.k)

is ¢ in the post-steps.

— If ¢ C & then the same message exists in both runs, and the tree offered along y¢ is relevant in the pre-steps and
post-steps.

21



— If ¢ £ £ then the message is irrelevant in both runs. y¢ is irrelevant in the pre-steps of both runs and remain irrelevant
in the post-steps too.
Finally, we need to show that projections of the rest of the trees in I} and DY, are equal in the post-step too. Consider the
resources of the process that offeres along x3[d]. By our writing convention, they are all in D} and ID. (i) Those resources
offered by D and DY, with max secrecies higher than or incomparable to the observer £ in the pre-step will remain higher
than or incomparable to the observer and thus irrelevant in the post-step too. (ii) Those resources with max secrecies lower
than the observer ¢ in the pre-step, i.e., a sub-tree T; in D} offering along a channel w[c] where ¢’ C &, are relevant in
the pre-step and thus T; = Ty. The quasi-running secrecy of the process offering along zg[d] after stepping is the same
in both runs. If it is still observable, the sub-tree T; = T2 remains relevant in the post-step of both runs. Otherwise, if the
quasi-running secrecies become nonobservable, T; = T may become irrelevant. However, since T; = T9 and by the tree
invariant it only consists of low-secrecy channels, T; becomes irrelevant in the post-step of the first run iff Ty becomes
irrelevant in the post-step of the second run. Which completes the proof of this case.
Case 3. D; = D, Tiproc(y,[c], sendz? y¢@Qd;)D} and

DTy proc(yac], sendzf yg; PQdy DY | D) Tiproc(yatle], [y6 11/ya] PQdi)msg(sendaf yg, )DY|

such that T' = T'T'; and Wo; I IF D} :: T and Wo; Ty IF Ty i (w5:A[c]) and I, 5: Alc] IF proc(ya[c], sendz§ y5; PQdy) ::
(Yo:A ® Blc]). (In the case that Ty is empty, we have I';, = zg:A[c].)
We consider subcases based on relevancy of process offering along y5:
Subcase 1. proc(yg‘,senda:g yS; PQdy) is not relevant.
By inversion on the typing rules dq C c. By definition either d; £ £ or none of the channels connected to P including y¢
and z§ are relevant. In both cases, neither proc(ya-+1(cl, [yo+1/y6]P@Qd:) nor msg(sendzj yg,) are relevant.
Channel yg, is irrelevant in the pre-step, and both y¢, and y¢, ; are irrelevant in pre-step and post-step configurations. In this
subcase, our goal is to show

D} T1proc(ya+1(cl; [y 11/velP@di)msg(sendaf yg )DT ¢ =¢ DI TiDYIE =¢ D1 =¢ Dali€.

We first prove that the relevancy status of Ty remain intact. Note that all channels in T, except z have the same connections
in the pre-step and post-step. So it is enough to consider the changes made to the tree rooted at 2. We show that the relevancy
of z remains intact after the step:

o If ¢ [Z &, then z7j is irrelevant in the pre-step, and remains irrelevant in the post-step. Moreover, the message is irrelevant
in the post-step since its quasi-running secrecy of is higher than or incomparable to the observer.

o If ¢ C &, then by dy C ¢, we have d; C &, and thus both o:f and y;, must be irrelevant in the pre-step. In the post-step,
the parent of the message has to be irrelevant, otherwise yS would be relevant in the pre-step. Since the parent of the
message is irrelevant, we know that 5 remains irrelevant in the post-step. As a result, the message with three irrelebant
channels connected to it is irrelevant in the post-step.

In both cases, the relevancy status of Ty remains intact: the tree T; rooted at xg offers to an irrelevant node before and after

the step. With a same argument as in Case 1. Subcase 1. and the one given for T;, we can prove that the relevancy status

of processes in I} and D} remain intact.

Subcase 2. proc(yS, sendzj yg; P@d,) is relevant. By assumption that D; £ = D>|}¢, and definition of =,:

Dy = Dy Typroc(ya[c], sendzf 5 ; PQd; ) Dy

We have
Dy = DTy proc(Yat1le], [Yo41/ya) PQdi )msg(sendaf yg, )Ds |

If ¢ [Z £, then msg(sendxj yg) is not relevant in both runs, and will be dismissed by the projections. Moreover, yg, is
not relevant in the pre-step and post-step configurations. Thus the relevancy of processes in D} and D} will remain intact.
Moreover, in this case 7 is irrelevant in both pre-steps and post-steps. Which means that relevancy status of T/ and T}
remains intact.

If ¢ C &, then y¢, is relevant in the pre-step in both runs. We also know that g is relevant in the pre-step and T = T4
are relevant in the pre-step. In the post-step, y,,; is relevant in both runs. Relevancy of messages msg(sendx% yS) in the
post-steps are determined by the quasi-running secrecy (d’ and d'’) of their parents (X and X’) in DY and D}. If d' C &,
then the parent (X) is relevant in the first run and by assumption is equal to a relevant X’ in the second run. Thus messages
msg(sendz y;,) are relevant in both runs, yg, are relevant in the post-step, and trees T{ = T7 and their offering channels
xf are relevant in the post-steps too. The same holds when d CE&.

Otherwise, in both runs the quasi-running secrecy of the parent is higher than or incomparable to the observer level (the
parents are both irrelevant). Thus messages msg(sendx% yS) are not relevant in the post step of both runs, and will be

22



dismissed by the projections. The channels yS will be irrelevant in the post-step too. However, this does not affect the
processes in DY and DY as the parents of messages (X and X') are already irrelevant in the pre-step. The channels zj both
become irrelevant in the post-steps. However, we still have T7 £ = T4 £ as they have the same type and their parents have
the same quasi-running secrecy.

We show that projections of D)} and D, are equal in the post-step too. The resources with secrecy level higher than or
incomparable to the observer level offered along I} and D in the pre-step will remain higher than or incomparable to and
thus irrelevant in the post-step too. For a relevant resources (w) offered along D; and Dy, we need to consider the change
in quasi-running secrecy as in Case 1. Subcase 2. Moreover, we need to consider the scenario that a relevant resource (we)
in the pre-step loses its relevancy in the post-step because the channel offered along x7 is transferred to the message. This
case only happens if ¢’,c¢ C £ and thus the trees T; and Ts offered along we s present in both runs and T; = Ty. We
know that w® is irrelevant in the post-step of both runs, and the quasi-running secrecy of the processes using the resource
w® in both runs are the same.

The relevant and irrelevant processes in D)} remain intact.
Case 4. D; = D T/ proc(w,|c], sendz§ y;Qd;)D} and

D} T proc(w, [¢'], sendz§ y5,; PQd;)DY| — |D| T msg(sendz$ y;, )proc(w,[c'], [y, /ys|PQd;)DY |

such that I' =Ty’ and Ty IF D =1 TV, y4:(A — B)[c] and T’y IF T :: (z5:A[c]) and
I, yqa:(A —o B)[c], z:Alc] IF proc(wy[c], sendz§ y5; PQdy) :: (w,:C[c]).

In the case where T/ is empty we have I'y = z5:A[c]. We proceed by considering subcases based on relevancy of the process

offering along w,[¢']:

Subcase 1. proc(w;,[c'], sendz§ y5; PQd,) is not relevant. By inversion on the typing rules d; T ¢ C ¢. By definition either

di £ & or none of the channels connected to P including yg, and x§ are relevant. In both cases, neither msg(sendxg ys)

nor proc(wy[c'], [y&1/ys]PQd,) are relevant. Channel wg/ is irrelevant in the pre-step and post-step configurations.
Channel yg, is irrelevant in the pre-step, and both y, and yg , ; are irrelevant in pre-step and post-step configurations. Every

other irrelevant resource of the process in the pre-step will remain irrelevant in the post-step too. See Case 3. Subcase 1. for

the discussion on the relevancy of TY.

D} T{msg(sendzj y; )proc(wy[c], [y541/ya]PQd1)D I =¢ DIDYIE =¢ D1l =¢ D2 g

Subcase 2. proc(wf]/,sendxg yS; PQd,) is relevant. By assumption that D £ =¢ Dy, and definition of =,:

Dy = D, Typroc(wy[c'], sendz§ y; PQd; )Dy

We have
Dy | — |D5Tymsg(sendz ys ) proc(wy[c], Yo, /ys] PQdy DY |

With the same argument as in Case 2. Subcase 2. we can show that relevancy of D/ remains intact.

For T/, we argue that if ¢ C &, then T/ = TY is relevant in the pre-step and remains relevant in the post-step too. If ¢ [Z &,
then the relevancy of T/ remain intact from pre-step to post-step. See Case 3. Subcase 2. for a more detailed discussion on
transferring a tree via message.

The discussion on relevancy of D} is similar to the previous cases.

Case 5. D, = D msg(yS.k)proc(zgld], casey ({ = P;)ecr@Qdy)D) and

D msg(y5.k)proc(zs[d], case yS, (£ = Py)eer@dy)DY| > [Ds proc(ws[d], [y ., /y5] Ph@(d: U c))DY |

We consider sub-cases based on relevancy of process offering along wg. Observe that yg, is relevant if an only if v° is relevant,
since they share a message of secrecy c.
Subcase 1. proc(zg(d], case y5 (¢ = P;)ecr,@Qd,y) is not relevant. By definition either dq Ll ¢ Z £ or none of the channels
connected to P including its offering channel y¢ are relevant. In both cases the messages msg(y<.k) and the continuation
process proc(wg[d], [y 1/y5]Px@(dy U c)) are not relevant either. It is straightforward to see that

D proc(wg|d], [y 1/Ya) Pe@(dy U ¢))DYIE =¢ DIDYIE =¢ Dy € =¢ Dal)€.

Subcase 2. proc(zs[d], caseys (¢ = P;)eecr,@Qdy) is relevant. By definition of relevancy, we get that ¢ L/ d; C £ and thus
y< is relevant. This means that msg(yS.k) is relevant too. By assumption that D} =¢ D9l}€, and definition of =¢:

Dy = Dymsg(ys,.k)proc(zs[d], case yS, (¢ = Pr)icr,Qdy)DY,

23



such that Py is equal to P, modulo renaming of some channels with secrecy level higher than or incomparable to the observer.
We have

|Dz| — [Dhyproc(zsld], (Y&, 1 /ve]Pr@(dy U c))Dy|

This completes the proof of the subcase as we know that the relevancy of channels in I)} and D/ remain intact.
Case 6. Dy = D) proc(y.[c], caseyS (£ = Pp)ecrQdy)msg(yS.k)DY and

D proc(yac], case y, (¢ = Pp)icr@dy)msg(ys.k)DY| — |Diproc(z[c], [y5 1 /ya] PeQc)DY |

We consider sub-cases based on relevancy of process offering along v . Observe that y¢ is relevant if an only if x{ is relevant,
since they share a message of secrecy c.
Subcase 1. proc(y,[c], case yS (¢ = P;)ecr.@Qdy ) is not relevant. By definition either d; Lic = ¢ [Z £ or none of the channels
connected to P including its offering channel y, are relevant. In both cases, means that ¢, | is not relevant and msg(y,.k)
is not relevant either. Moreover the continuation process proc(ya+1|cl, [y51/yS]Pr@c) won’t be relevant. And

D} proc(ya+1lcl, [Ys41/va] Pe@c)DIIE =¢ DD IE =¢ Dy € =¢ Dollg

Subcase 2. proc(y,[c], case y (£ = Pp)ecr,@d;) is relevant. By definition of relevancy, we get that ¢l d; = ¢ C & and
thus y¢ is relevant. This means that msg(y,.k) is relevant too. By assumption that D1} =¢ D>, and definition of =¢:

D, = Dyproc(yalc], case (£ = Pr)rer, @dy)msg(yS, k)Df,

such that P, is equal to P, modulo renaming of some channels with secrecy level higher than or incomparable to the observer.
We have

|Ds| — |Dyproc(yatile], Yo 1/yo]Pr@c)Dy |

This completes the proof of the subcase as we know that the relevancy of channels in D)} and D/ remain intact.
Case 7. D; = Djmsg(sendz;y;,)proc(v,[c'], w’ < recvyg; PQd;)D} and

D msg(sendz;, yg )proc(vy[c'], w® < recvys; PQdy)DY — Dproc(vy[c'], [z, /w][ys1/ya]PQcU di)DY

We consider sub-cases based on relevancy of process offering along vf]'.

Subcase 1. proc(v,[c], w® < recvyS; PQd;) is not relevant. By definition either d; L ¢ Z £ or none of the channels
connected to P including y;, are relevant.

In both cases by the definition of quasi-running secrecy we know that neither msg(sendx¢y) nor the continuation process

7
proc(vy[c], [xy/w] Y540 /yS]PQc L dy) are relevant. It is then straightforward to see that

D proc(vy[¢], [2n/w][yG1/yal PQe U di)DYIE =¢ DIDTIE =¢ D1l =¢ D€,

Subcase 2. proc(v,[c], w < recvy; PQd;) is relevant. By definition of relevancy, we get that ¢ LI d; T &. This implies
that y¢, is relevant in the pre-step. From relevancy of y¢ and the quasi-running secrecy lower than or equal to the observer
of the positive message msg(sendxf7 yS;) we get that the message is relevant too. By assumption:

Dy = Dymsg(sendzy ys, )proc(u, '], w  recvyy; PQd; )DY.

We have
Dy| = [Dyproc(u, (], [z, /w][ys+1/ya]PQdy U ¢)Dy]

We need to consider that the quasi-running secrecy of the process may increases in the post step based on the code of P.
The argument for this case is similar to the previous cases of the proof. See Case 1.Subcase 2.. One interesting situation is
when the relevancy of chain of positive and relevant messages in the pre-step of I} changes in the post-step. By relevancy
in the pre-step we know that these chains exist in both runs, so the same chain of messages will become irrelevant in the
post-step of both runs.

Case 8. Dy = D) proc(ya[c], w < recvyS; PQd;)msg(sendz’

Yo DY and
IDiproc(ya[c], w + recvyy; PQd;)msg(sendzyys, )DY| = Dy proc(yailcl, [z, /w][yqs1/ve]PQd1)DY|

7

We consider sub-cases based on relevancy of process offering along v .
Subcase 1. proc(y,[c], w < recvyS; PQd,) is not relevant. By definition either dy LI ¢ = ¢ [Z £ or none of the channels
connected to P including y¢, are relevant. In both cases the negative message msg(sendx%yg) and the continuation process
proc(yat1(c), [y /w][ys, . /ys]PQdy) are not relevant either. It is then straightforward to see that

D} proc(ya+1(c], [2n/w][ys 1 /Yo PQd1)DY 1€ =¢ DIDYIE =¢ DillE =¢ DoliE.

24



Subcase 2. proc(y,[c], w < recvyS; PQd;) is relevant. By definition of relevancy, we get that clUd; = ¢ C £ and &
is relevant. This means that msg(sendx% yS) and the channel z;, are relevant. By assumption that D& =¢ D2|)€, and
definition of =¢:

Dy = Dyproc(ya[c], w + recvyg; PQd, )msg(sendz; y; ) D5 .

We have
ID2| = [Dyproc(Yat1lc, [v5/wl[yes1/yal PQdi) Dy |Fo

The proof is similar to previous cases.
Case 9. D; = D proc(ya[d, (%] « X[y] + ') @y (v'); Q@d;)DYand
def(V;Z' + X = PQy’ : z: B'[¢)]) and

D proc(yald, (e« X[3] ¢ T1)@ric(’); Q0 )DY)
—
|Dj proc(zo[d], 7(P)Qds)proc(y,[d], [rd /x| QQd, )DY|

where ¥ = (Yeec, War) Y(¥) = d, ¥(¢') = da, and 4(E’) = I';. We consider sub-cases based on relevancy of process offering
along yg,.
Subcase 1. proc(yq[c], (z1%¥)] « X[y] + T'1)@v%c(1'); Q@Qd;) is not relevant. By definition either d; Z & or none of
the channels of this process including y are relevant.
In both cases, it means that proc(zo[d],5(P)Qd,) and proc(y.[c], [zd /2% Q@d,) are not relevant either. Note that d; C do
and thus dy £ € if dy [Z €.

D proc(yale], (2=« X[] ¢ I'1)@yc(y'); QQdy DY I =¢ D) DYIE =¢ Dyl =¢ D€

Subcase 2. proc(yq[c], (x5« < X[4] < T'1)@v%c(¢)); QQd, ) is relevant. By definition of relevancy, we get that d; C &
and all channels of this process with secrecy levels lower than or equal to the observer level are relevant. By assumption
that D }§ =¢ D>|}&, and definition of =¢:

Dy = Dyproc(ya[c], (zD=W) « X[1] ¢ I'1) @y (¢); QQdy ) DYy

We have
D| +— |Djyproc(zo[d], ¥(P)@Qds)proc(ya[d, [z]/zY)Q@Qd, )Df |

Remark: we can assume that the fresh channel being spawned will be zy in both runs. Moreover, the (unique) substitution
4 is the same when stepping both runs.

Note that if ¢ has secrecy level lower than or equal to the observer level, then taking this step won’t change relevancy
of any channels. Otherwise some resource of the process may become irrelevant after this step, e.g. x¢ may block their
relevancy path if d [Z £ or in the case where do [Z £. But this happens to the processes in the both runs and can only change
relevant processes/messages in the pre-step to irrelevant processes/messages in the post-step. (similar to the cases 3 and 4
for ® and —o)

Case 10. D; = D proc(ya|c], Fy[y]@Qc)D} and

def(V';uw:CY] F Fy = Fudg v v @ i w: C[y]) and

|Diproc(yalc], Fy[v]Qc)DY| — |Djproc(ya[c], Fwdc, ye ¢ ¢ Qdy )DY|

where v = (Vsemp)’var) ’AY(@ZJ) =G ’?(w) = Yo, and ’?(u) = ZB-
The proof of this case is similar to the proof of Case 9(Spawn) by considering sub-cases based on relevancy of process
offering along ¢ . O

C. Fundamental theorem

Theorem 5 (Fundamental Theorem). For all security levels &, and configurations
U Ty IF Dy ugiTh[er], and U;T5 IF Dy i vg:Thcs],
with D€ =¢ DollE, Ty J £ =T9 4 & and ua:Ti[c1] | € = vg:Ta[co) | € we have
(T1 IF Dy i up:Ti[er]) EZI' (Ta IF Dy :: vg:To[ea]).

Proof. Our goal is to show:

25



For all D; and Dy that are IFC-typed, i.e.,¥; 'y IF Dy :: uq:Ti[c1] and 5Ty - Dy = vg:Th[co], with Dy € =¢ Dal)§,
and Ty 4 £ =T § £ =T, and uy:Ti[c1] I € = vgiTafco] | € = K® we have VB € H-Providerf(Fl).VBg S
H-Provider® (I';). V7; € H-Client®(z,:4;[c1]). VT2 € H-Client® (yz:Asca]).

Vm. (B1|D1|T1, B2|D|2T2) € E[IT] IF | K®|]™, and Vm. (B2|D|2 T2, B1|D|171) € E[T| I | K*|]™..

Without loss of generality, we only prove one part of this symmetric relation, i.e.:
For all D; and Dy that are IFC-typed, i.e.,¥; 'y IF Dy :: uq:Ti[c1] and 5Ty - Dy =2 vg:Th[eo], with Dy € =¢ Dol)E,
and Ty 4 £ =T § £ =T, and uy:Ti[c1] I € = vgiTa[co] | £ = K® we have VB € H-Providerf(Fl).VBg €
H-Provider® (I';). V7; € H-Client®(z,:4,[c1]). VT2 € H-Client® (yz:Asca]).

Vm. (Bi|D[1 T, B2|D[2T2) € E[IT] IF [K*(]™

The goal is equivalent to:
(x1) For all m, for all D; and Dy that are IFC-typed, i.e.,U; T’y IF Dy :: uy:Th[c1] and ¥; Ty IF Dy :: vg:Ta[ca], with
DY =¢ Do, and Ty |} &€ = Ty | &€ = T, and up:Thfc1] § € = vgTofer] § &€ = K® we have VB; €
H-Provider® (I';).V By € H-Provider® (I'y). ¥7; € H-Client® (z,:4;[c1]). V7> € H-Client® (ys:Az[ca]).

(Bi|D[1 71, B2| D2 T2) € E[IT] IF [K*[]™

First, we show that it is enough to prove the following goal.

*2) For all m, for all D/ and DY} that are IFC-typed, i.e.,¥; T |- D] :: K and ;T IF D} :: K3, with D} € = DL€,
1 2 1 2 1 § 2
and ' ¢ =T, and K?° |} £ = K° we have

(D4, Dy) € EQT1F [£°[]™

We need to show that from %, we get *o:

Apply a for all introduction on x5 to get an arbitrary number m, configurations ) and D5, and high providers B;
and Bs and high clients 77 and 75 satisfying the given assumptions. We build well-typed configurations stel D} and
DY, with the following steps:

1) Let’s assume 71 # - and Tz # -, i.e., Ty € Tree(uq:Ty I- _:1) and ¢; £ € and Tz € Tree(vg:T> IF _:1) and
c1 [Z £&. We annotate all channels in 77 with security level ¢; and all processes with running secrecy c;. We add
the same security variable 1) correspondingly to all process variables defined in the signature. We also provide a
mapping for the spawns appearing in the process terms such that they map all security variables %) in the process
definition to the security variable ¢;. It is straightforward to see that this annotation of 77 which we call T, is
IFC-typed. With a similar approach we can build the IFC-typed annotation of 7; which we call Ts.

2) If 71 = - and 73 = -, then define T; = Ty = -, and observe that they are trivially IFC-typed.

3) Consider every tree A; € By, we know that A; € Tree(z,:A) for some x.,:A[d] € 'y such that d IZ £, we build
a security-annotated version of A; as A, similar to (1), by annotating all channels/running secrecy/substitutions
with the level d. From all such annotated trees we build the annotated forest B;. Similarly, we can build annotated
forest By. Again it is straightforward to show that both B; and By are IFC-typed.

We define D] = B1DT; and D) = BsD,T,. Note that these two configurations are both IFC-typed, and also we

have ¥;T |F D} :: K* and ;T I D} :: K. We also know that D} || £ = DY, || £. Observe that all relevant nodes

occur in Dy and Do, for which by assumption we know D1 || £ = D9 || £&. Now we can apply %5 to get what we
want.

It remains to prove (%2):

(%2) For all m, for all Dy and I, that are IFC-typed, i.e.,¥;T" IF Dy :: K° and ¥;T" I- Dy 2 K%, with Dy} =¢ Do,
and I' J £ =T, and K* || £ = K° we have

(IDs [; D) € E[IT] I [E=[]™

The proof is by induction on the index m.
Base case. m = 0. We consider arbitrary configurations (VI on the goal). By the configuration typing, we know that

(IDy[; Daf) € Tree(|T'| I [K]),

which is enough to complete the proof.

Inductive case. m = m’ + 1.

(B1|D1|T1; Ba|D2|T2) € Tree(|T| IF |K?)).

26



Consider an arbitrary D] such that |D;| —**:® |D]|. By Preservation we know that D] is IFC-typed for the same interface
;T I- D} :: K* By [Lem. 8] for some D, we get [Da| —** [Dj|, such that ¥; T I- D :: K with Dy |} £ =D | €.
We need to show that
(t1) Yuy € Out(|T'| IF [K|).if uf € Y. then (|D|; D)) € V[|T'| IF |KS|]]?”?ug and
(F2) Yus € T(|T| I- |K]).if uf € ©. then (DY D4]) € VIIT| I |K*[17,
We prove both {1, and 2. We consider an arbitrary u/; and provide a case analysis based on its type. If there is no such u
in the specified set, then the statements trivially holds. There might be a channel in both of these sets, if and only if Dy = -.
Proof of ;. Consider an arbitrary channel uj:T" € Out(|T'| I |K|*) and assume uj:T" € Y. We consider different cases
based on the session type 7T
Case 1. us:T[c] = K° = uyTh[c1] = ua:1]c1], and D) = DYmsg(closeus}).
By the typing rules and D} = D{msg(close u') we know that D} = -, and T’y = -.
Note that by the definition of relevancy, all processes in I} and D has to be relevant. As a result,

DY = msg(closeu’!).
Thus, we satisfy the conditions required by Line 1 of the logical relation to establish
(D1 s D)) € V- IF Jua: e 17,

as needed.

Case 2. us:T[c] = K° = uoTh[c1] = wa: & {l:Ar}ier[c1], and D) = DYmsg(ul .k).

By the assumption of the theorem, I} and D, are both relevant, and we have D}, = D) msg(uS!.k). Removing msg(uS! .k)
from D] and D, does not change relevancy of the remaining configuration when ¢; C &:

DYJ€ = D5 {¢.
We can apply the induction hypothesis on the index m’ < m to get
(IDY[,ID5]) € ENTTIF [uati:Akle]]™"
By line (2) in the definition of V:

1 (|DY msg(ull k)|, |Dsmsg(usl .k)|) € V|T| IF [ua: & {£: Ae}ga[cl”]ﬁ;—l.

Case 3. us: T[] = K° = uyTh[c1] = ua:(A ® B)[c1], and
D} = DfAmsg(sendz" ug!)

where I' =T, T, and ¥;T" IF A; = (zg:Alci1]), and U5 TV IF DY =2 (ugy1:4[cq]).
Since D} and D, are both IFC-typed, they enjoy the tree invariant. Thus both of them are relevant and since D] || £ =
D} | £, we have

D, = DyAsmsg(sendz' ug!),

such that Wi T |- Ay :: (z5:A[c1]), and ;T IF D3t (uat1:A4[c1]). Moreover, by relevancy of I (and relevancy of z7'
we get DY = DS € and A1 € = As €.
Note that in the particular case with zg:Afci| € T', we have A; = - and I = z5:A[c4].
We apply the induction hypothesis on the index m’ < m for ¥; I I+ A; :: (z5:B[c1]) to get
(JA1], |A2]) € E[IT"| IF |z g:Aled]|]™ .
and apply the induction hypothesis on the index m’ < m for ¥; T IF DY :: (uq41:4A[c1])
(IDY, DY]) € E[| A IF wy:Blea]|]™ -
By line (4) in the definition of V:
t1(JA1 DY msg(sendzy ug! )|, |A2Df msg(sendzy' udl)|) € V[|A| Ik [ua:A® B[cl]\]]mu/,:l

Case 4. I' = I, w2 &{l - Ay}oer[c], and ug:T[c'] = x4:&{L : Ar}eer(c], and D] = msg(xS.k)DY.
By the assumption of the theorem, D3 = msg(xS.k)D3. Moreover, D¢ = Dy €. The reason is ¢ = & and thus x¢ . ; is
relevant in D/ and no relevancy changes in the configurations after removing the negative message.

27



We can apply the induction hypothesis on the smaller index m’ < m to get
(IDY]; D5 1) € ENT, asr:Arle]] I K™
By line (8) in the definition of V:
1 (Jmsg (as.k) DY|; [msg(aS.k) D5]) € V[T, @ :&{ A eer el IF K7,
Case 5. T =T",T",z:(A — B)|[c|, and u§:T"[¢'] = z4:(A — B)[c], and
D} = A;msg(sendyj z5) ‘.

such that Wo; T I+ Ay :: ys:Alc] and Wo; IV, zy11:Bc] IF DY =2 K°.

The message msg(sendys x¢) is relevant in )j. By assumption of the theorem, D3 = Aymsg(sendys z5)D7, such that
Wo; T I Ag it ys:Alc] and Wo; T4, T 2., 11:B[c] I DY :: K* with T'% being the context of all the channels in T'y with
security higher than or incomparable to the observable level £. Again because of the tree invariant every resource of A,
has a secrecy less than or equal to the observer. Also, by assumption we know that D¢ = DL{¢. By definition of
relevancy, we know that msg(sendys x;) and the tree A; connected to it are relevant in [D; and thus A; is equal to A,
ie, Ay JE€=Ar ) &

Removing the tress A; and Ay and the messages from both configurations does not change relevancy of the rest of the
configuration since x5 ; will remain relevant, i.e., D{JI¢ = Dy |J€.

We can apply the induction hypothesis on the smaller index m’ < m and A; | E = Ay J £ and DY |} £ =D |} £ to get

(|, [Aa]) € EOT"| IF [ys:A[e][]™, and
(IDY],1D5]) € ENT, @y41:B[d]| I [K*[]™ .
By line (10) in the definition of V:
T1(|Aymsg(sendys 25 )DY[; [Aemsg(sendys z<)Dy|) € V[|I'}, z,:A —o Blc]| I |K3|ﬂ"i;'1

Proof of {5. Consider an arbitrary channel u5:T € In(|T'| IF |K|) We consider different cases based on the session type T
Case 1. us:T[c'] = K° = uy:Th[c1] = ua:&{l:Ar}eer[ca].
We need to apply the induction hypothesis on the index m’ < m, but first we need to show that the invariant of the
induction holds. Consider an arbitrary label k € L.From D} {}£ = D4y and ¢; C &, we get

(msg(ul k) UE = Dymsg(us k) €.
By induction hypothesis
(D1, D) € ENT] I Juatr:Akfed][]™
By line (3) in the definition of V:
t2(|IDymsg(ug k)|, [Dymsg(ug! k)[) € V[T I [uq:&{L: AK}261[61]|]]umg/;‘rl'

Case 2. us:T[c'] = K° = uy:Th[c1] = ua:A — Bleq]. By assumption and ¢; T &, we know that D} and D are relevant.
Consider an arbitrary channel xg, which is not a free name in I' I K°. We know ¢; C &, and thus adding a negative
message sending x5[c1] along u,[c1] does not change the relevancy of the rest of processes:

1msg(sendz ugl) € = Dymsg(sendzy ug! )€
We can apply the induction hypothesis on m’ < m to get
(|Dimsg(sendz! ug!)|, |Dymsg(sendzy' ugl)|) € E[|T, z5:Alca]] IF [uas1:Blel][]™ .
By line (5) in the definition of V:
t2(Di, %)) € VIT| - fuazA — Blea] 17

Case 3. I' = 1", z,:1[c], and u5:T'['] = m+:1][c]
We first briefly explain why the invariant of induction holds after we bring the closing message inside ID; and remove the channel x5
from A, i.e.

msg(close z5)D’ |} = msg(close z5)D5|/£.

o If the parent of msg(closezs) in D] is relevant in D} before bringing the message inside then by the assumption of the theorem,
it is the same as the parent of msg(close z5) in D5. If after adding the message Dj the parent still remains relevant, it means that
it has at least one other relevant channel other than «< in D} which also exists in D% and will be relevant after adding the message
to D. If after adding the message, the message’s parent in D} becomes irrelevant, it means that it does not have a relevant path to

28



any other channel in A’ and K. By the assumption of theorem the parent of the message in D5 does not have such path either. The
same argument holds for any other node that becomes irrelevant because of adding the closing message to Dj. As a result the same
processes becomes irrelevant in both D} and D after adding the message to them and the proof of this case is complete. The same
argument holds for the case in which the parent of msg(close ) in D before adding the message is relevant.

« Otherwise the parent of msg(close z5) is irrelevant in D} and D% before adding the message and remains irrelevant after that too.
The proof in this case is straightforward.

Now that the invariant holds, we can apply the induction hypothesis on the smaller index m' < m:

(jmsg(close x5 )D |; |msg(close z5)D5|) € E[|T] IF |K5|]]m,.
By line (6) in the definition of V), ,
fa (D13 [D3]) € VIIT', y:1[e]| - |50
Case . T =T 2z ® {0 : Av}oer|c], and us:T'[c'] = x: ® {€ : Ao}eer[c]-
Consider an arbitrary label k € L. We have msg(z5.k)D1 £ = msg(zS.k)DolE, since 25, is relevant and the positive messages
msg(z5.k) in both configurations are relevant if and only if their parents are. Thus adding the message does not change relevancy of

any other process.
We can apply the induction hypothesis on the smaller index m’ < m to get

(|msg (. k)D4 |; [msg (x5 k)Ds) € ET, a1 : Arle]| I [K|]™.
By line (7) in the definition of V:
F2 (D4 s D%) € VIIT,@y: & {€: Arheer[e]] IF K|

Case 5. =T, 2,:(A® B)|[c], and v":T"[c'] = z+:(A @ B)[c].
Consider an arbitraray channel y, which is not a free name in I" I K*. We have

msg(sendy;, z5)D} £ = msg(sendy;, z5)D5 ¢ :

The quasi-running secrecy of msg(sendy;, x5) is lower than or equal to the observer level if the quasi-running secrecy of its parent
is lower than or equal to the observer level. So the relevancy of the parent of the message and thus the rest of configurations do not
change by adding the message to the configuration.

We can apply the induction hypothesis on the smaller index m’ < m to get

(|msg(sendy;, z5)D} |; |msg(sendy;, z5)|) € E[|I7, yn:Alc], zy41:Blc]| IF |[K*(]™ .
By line (9) in the definition of V:

(IDS:[D5)) € VIIT, 2y:A ® Bel| Ik |K°[]75 .

29



IX. DIAMOND PROPERTY, CONFLUENCE, AND BACKWARD/FORWARD CLOSURES

This section introduces various supporting lemmas, asserting the diamond property and confluence, as well as forward and
backward closure. These lemmas are used in the proofs of [Lem. 16| and [Corollary 2| introduced in [§ IX] which are in turn
instrumental in proving transitivity (see and adequacy (see [§ XTI).

A. Diamond property, confluence, and minimal sending configuration

Subsequent lemmas rely on the notions of active and produced processes and messages, which we define next.

Definition 20 (Produced processes and messages). For each dynamic step in [Fig. 3| we say that a process or message is
produced in the step if it occurs in the post-step (right side of — notation). For example, the transition step for Spawn,
produces two processes

proc(zo, ([zo, A/z, A'}§ P)) and proc(ya ([z0/2]Q)),

and the transition step for —ogsnq produces a message and a process

msg(send zg u.) and proc(ya, ([uy+1/uy]P)).
o

Definition 21 (Active processes and messages). For each dynamic step in we define the active configuration A as the
set of processes and messages occurring in the pre-step (the left side of — notation). For example, in the transition step for
Spawn, the active configuration is the single process

proc(Ya, (z <+ X + A);Q),
and in the transition step for —o.,, the active configuration is
proc(Ya, (w < recv yq; P)) msg(send x5 Yo ).

We define the set of active configurations, i.e. active, for D1 — A\ ;- D} as the union of every step’s active configuration.
A process is called active in D1 —*Y D%, if it is in the set active.
o

Lemma 9 (Uniqueness of process productions). Consider A |- D :: K, and D —* D' — D;proc(x, P)Ds, such that
proc(z, P) is produced in the last step. Then process proc(x, P) does not occur in any of the previous steps D —* D'.
The same result hold for the production of a message.

Proof. Observe the following invariant in the dynamics

1) In each configuration, there exists at most one process or message offering along a particular generation of x.

2) The offering channel of processes that are not active or produced in the step does not change.

3) The offering channel of a negative message is a fresh generation of a channel (and no process offers along it before the
message is received).

4) In the production of proc(z,,P), either (a) z® is freshly generated (in the case of Spawn for the callee), or (b)
proc(z,, P) replaces another process proc(z,, P’) that offers along z* and has a larger process term, i.e. |P| < |P’|
(in iy, Brevs Prevs &sndy —0snd, and spawn for the continuation of the caller), or (c) x, is a fresh generation of x (in
Dsnd> Psnd, &revs —Orev)

Consider production of a process proc(z,, P) and the cases described in 4. If 4.(a) or 4.(c) hold, then by freshness of z,,

such process has not been produced before. It is enough to consider case 4.(b). Assume that there is another occurrence of

process proc(z,, P) before this production; By the observations 1, 2 and 4 we get to a contradiction: there must be a chain
of productions satisfying 4.(b) with decreasing sizes from the earlier proc(z,, P) to the later one proc(z,, P), which is
contradictory.
With a similar reasoning we can prove that if A I- D :: K, and D —* D’ — Dymsg(M)Ds, such that msg(M) is produced
in the last step and @ is the name of the message resources, then msg(M) does not occur in any of D —* D’ steps.
O

Lemma 10 (Diamond Property). If A I+ Dy : K and t Dy — X D) and ' Dy =X, x DY, and D} # D then there is
a configuration D such that x Dy =X ;- D, and ¥ D} =X ;c D, where T UY' = Y". The messages produced along the
channels T N'Y’ are identical in D} and D} and D.

7oAt
Moreover, every process in D! that is not an active process of Dy —Q: % D! is in D. And every process in D! that is not
ryp 1 p AlFK 1 ryp 1
an active process of D1 HgiEK D} is in D.

Proof. The proof is straightforward by cases. The key is to build x (locally) identical to 1/, and +" (locally) identical to . [

30



! !
Lemma 11 (Confluence). If A IF Dy :: K and 1 Dy +n ;- D; and ' Dy v A ;- DY, then there is a configuration D such
that x D} =" D for some j < n', and ¥' D/ +—>Zf,i’K D for some k < m/, where YUY’ = Y". The messages produced
along the channels Y N’ are identical in D] and DY and D,. The steps in x are (locally) identical to the steps of ' that
do not occur in 1. And the steps in %' are (locally) identical to the steps of 1 that do not occur in 1.
Moreover; every process in D} that is not an active process of Dy = A\ 1 DY is in D. And every process in DY that is not
an active process of D1 —\I, D} is in D.

Proof. It follows by standard inductions from the diamond property (Lem. 10). The induction is on the pair (n/,m/). If n’ =0
and m’ = 0, the proof is straightforward. Similarly, if n’ =1 and m’ =0 or n’ = 0 and m’ = 1 the proof is straightforward.
For n’ = 1 and m/ = 1, we apply the diamond property (Lem. 10). Assume that n’ = n + 1 and m’ = m + 1. We form the
following diagram to sketch the structure of the proof.

Ty, 1o T=T,Tsz
m / '
D1 —=arx Dy —ark D

>3 D> IA
T T3 BIA
= = T
b i o) T3 15Xz = Ty, T u{a}, Ta

i s S i (@#y): TiU
Dy —ark D3 “ark D .l wsgnd.
T =TTy T U {4}, 15, T

By induction hypothesis, from D4 and D), we build D, (with the blue steps) that satisfies the required properties. Then,
again by induction we build D3 (with the red steps) and D, (with the violet steps). And finally, with a last induction, we build
D (with the brown steps). The diagram depicts how the required properties move along the steps. For each configuration, we
put the set of channels that it sends along them near the configuration. In particular, for D7, we put T = T, Yo,z and for
DY, we put Y/ = Y%, T, y. The set Y5 is in both Y and Y’, and we have Y1 NYT) = 0, i.e. we put all the common channels
(except possibly = and y) in T5. We assume that the step D5 — D produces a message along channel . In the case that this
step does not produce any message we can simply ignore x. Similarly, we assume that the step Dy — DY produces a message
along channel y. In the case that this step does not produce any message we can simply ignore y. At the end, we can build
D with at most m + 1 steps from D} and at most n + 1 steps from D/. The configuration D sends messages along the union
of T and Y, and by induction the messages along the intersection of T N Y’ are identical in D} and D} and D. The proof
of the second part of the lemma is straightforward by stating the required property for each inductive step and passing them

down to D in the diagram.
O

As a straightforward corollary to the first part of the confluence lemma, we get that the messages produced along the channels
T NY’ are identical in D] and DY, i.e., identical messages will be produced along the same channels, independent of the
non-deterministic path that we take to produce them.

Corollary 1 (Active set independent of non-determinism). If Dy —* D ADY ~ Diproc(z, P)D? and Dy —* DyA'DY
Diproc(z, P)D3, where A and A’ are the active parts that produce proc(z, P), then A = A’

Proof. This is another corollary to the second part of the confluence lemma (Cem. TT). First observe that A is not active in
Dy —* DLA'DY: if it is active, we produce proc(z, P) twice in Dy —* DyA'DY — Diproc(z, P)D3, which contradicts
with uniqueness of process productions (Lem. 9). Similarly, A’ is not active in Dy —* D} AD{. With the second part of the
confluence lemma, for some D, we have D] ADY —* D and D4 A'DY —* D such that both A and A" occur in D. If A # A,
we can produce proc(z, P) twice from D which by is contradictory. Thus, know that A = A’.

Note: here we rely on the fact that the steps in produce the post-steps uniquely from the pre-steps. In particular, in
the spawn rule we assume that the fresh channel name is uniquely determined based on the offering channel and the process
term of the caller. O

Similarly, we can prove that if Dy —* D{ AD! — Dimsg(M)D3? and D; —* DLA'DY — Dimsg(M)D3, where A and
A’ are the active parts that produce msg(M), then A = A’.

31



In the proof of we used the fact that the pre-step for each substitution is unique. This can be proved independently
by a straightforward observation that if D; —* D{AD} — Dilzs/ya]D? and Dy —* DLA'DY — Dilxs/ya]D3, where A
and A’ are forwarding processes that step by renaming the resource y, to zg ([zg/ya]), then A = A’

Lemma 12 (Building minimal sending configuration). Consider A |+ D5 :: K, a set of channels Y1 C A, K and Da —*T2 Dy
for some Y2 D Y.. There exists a set Y and a configuration Dy such that Y1 C Y C Yo and Dy —*Y Dy and YD}, T3 D
Y. if Dy —=*Ys D} then DY +—*Ys Di. We call DY and Y the minimal sending configuration and the minimal sending set with
respect to Y1 and Ds, respectively.

Proof. We first provide an algorithm to build Dy and Y based on the transition steps in D —**2 Dj and the set Y1 and we
show that Dy —*T DY and D) —*T2 Dy and Y1 C T C Y». Then, we prove that if we apply the algorithm on every D3 with
D, —*T1 D} and Y1 C Ts, we build the same D4 and Y that satisfies D4 —**s Di.

Algorithm 1 Building the minimal sending configuration

Require: A set T of channels, configuration D5, and a configuration D with Dy +—*T2 D and T; C Ts.
Ensure: A set Y, and a configuration D} with Dy —** D} and D) —**> Dand T;1 C T C Ts.
S := the local transition steps in Dy —*T2 D

1:=0

XO = @

M := the messages in D along Y
A:=10

while (M # 0) do
for (sinS) do

if ( 3p € post(s). p € M) then > post(s) is the list on the right-hand side of s.
A:=AU{pre(s)} > pre(s) is the set of processes on the left-hand side of s.
Xi = Xz U {S}
end if
end for
1:=1+1
X; =0
M:=A
A:=0
end while
Cfg = DQ
Tns:=-
i=1i—1

while (: >= 0) do
for (s in X;) do
Cfgpost := the global post-state when the local step s applies to the configuration Cfg.
Tns.append(Cfg — Cfgpost)
Cfg := Cfgpost

end for
1=1—1
end while
Dy = Cfg
T := Send(DY) > T is a set of channels along which Dj is ready to send.

return D), Tns, T

For every given Y1, Do, and D with Dy +—*T2 D and Y1 C T, returns a configuration D and set Y and builds
the dynamic transition Dy —** DY in Tns. Observe that the steps of Dy —*T DY are all local transitions of Dy —*T2 D.
Thus, by the confluence lemma (Lem. 11)), we know that Dj —**2 D.

It remains to be shown that the Dy that |[Algorithm 1| builds is independent of the choice of D and Y, and is uniquely
identified for each D, and T;. By the confluence lemma, we know that for each D with Dy —*T2 D and T; C Y5, the
algorithm initialized set M with the same messages. In the first for loop, the algorithm collects the generators of the set M
in A and the local steps that produces the set M in X;. By the set of generators of a set M is the same for
each D with Dy —*72 D. Similarly, the set of local steps that produces the set M from its generators is the same despite the

32



choice of the configuration D with Dy —*T2 D. As a result, we collect the same local transition steps in all X;s for every D
with Dy —*T2 D. The local transition steps in all X;s are those with which we construct D4 from D5 and from D} we can
uniquely identify the set T, and the proof is complete. O

B. Backward closure

Lemma 13 (Backward closure on the second run). The second run enjoys backward closure:

1) If (D1;D3) € E[A - K]* and for DY € Tree(A IF K), we have DY +* Dy then (D1; DY) € E[A IF K.

2) If (D1;D2) € V[A I+ K%/ and for DY € Tree(A I+ K), we have DY —* Dy with DY sending along channel yq, then
(Dy; DY) e V[A IF K]]’“;Ll

3) If (D1; D7) € V[A I+ K[3+! and for DY € Tree(A |+ K), we have Dy —* Dy, then (Dy; DY) € V[A IF K]k

Proof. We prove the first statement separately and then use it to prove the second and third statements.

1) If k = 0, the proof is trivial. Consider ¥ = m + 1. By assumption, we have (D;; D) € £[A IF K]™*L. By line (12) of
the logical relation we know

(x) VY1,01,D1.if Dy —**101 D then 39, D) such that Dy —*T2 D and
V2, € Out(A I- K).if 2, € Ty.then (D}; D) € V§[A I- K]7 ! and
Va, € In(AIF K).if 2, € ©;.then (Dj; D)) € V5[A I- K]7+1.

Consider D, for which by the assumption we have D4 +* Dy. Our goal is to prove (D1; DY) € E[A IF K™ 1. We need
to show that
(t) VY1,01, Dy if Dy —*T101 D, then 3T, Df such that DY —*T2 Dyand T1 C Yo and
Yz, € Out(A - K).if 2, € Ty1.then (D}; D) € V§[A I+ K] and
Vo, € In(A - K).if 2, € ©1.then (D}; D)) € V§[A IF K]7HL
With a V-Introduction, an if-Introduction on the goal followed by a V-Elimination and an if-Elimination on the assumption,
we get the assumption

(¥") 3T, D) such that Dy —*T2 DY and
Vo € Out(A I K).if 2, € Ty.then (D}; D) € VS [A IF K75 and
Vo, € In(A I K).if 2, € ©1.then (Dj; D)) € V5 [A IF K]7HL

and the goal
(") 3Y4, D) such that DY —**2 D} and
Vi, € Out(A IF K).if 2, € T1.then (D}; D)) € V5[A IF K]m and
Va, € In(A - K).if z, € ©;.then (D}; D)) € V§[A IF K7L,

We apply an 3-Elimination on the assumption to get To and D) that satisfies the conditions and use the same Y5 and D}
to instantiate the existential quantifier in the goal. Since DY —* Dy, we get DY —**2 D}, and the proof is complete.

2) The proof is by cases on the row of the logical relation that makes the assumption (D1;Ds) € V[A IF K ]]kj;al true. Here
we only consider an interesting cases, the proof of other cases is similar. (
Row 4. By the conditions of this row, we know that A = A’ A", and K = y,:A ® B. Moreover, we have

D, = D Timsg(sendzj y;,) for 71 € Treey (A" IF z5:A),
D, = DyTymsg(send, x5 y,) for To € Treey (A" I 25:A),
(1) (Ti;T2) € EG[A" - ws:A[d]]*, and
(t2) (D13 D5) € EGIA IF yara:B]*

These are also the statements that we need to prove when replacing Do with D). By the assumption that DY is sesstion-
typed and sends along y, uniqueness of channels, and D4 —* D, we get

DY = D3 T, 'msg(send, 5 Yg) for Ty € Treeg (A" I zg:Alc])

Moreover, since 75 and D3 are disjoint sub-trees with the common parent msg(send, 3 yg,) and cannot communicate
with each other internally, we have 7! —* T3 and D} —* Dj.
Now we can apply the the result of part (1) of this lemma on (f;) and (f2) to get

(1) (T T2) € EGIA" I 2g:A[]¥, and

33



(15) (D};D3) € EGIA’ IF yoi1:B]*

and the proof of this subcase is complete.
3) The proof is by considering the row of the logical relation that ensures the assumption (Di;D:) € V[A I K]it!. We
provide the detailed proof for an interesting case, the proof of other cases is similar.
Row 5. By the conditions of this row, we know that K = y,:A — B. We have (D1; D) € Treeg (A IF yo:A — B) and

() Yag € dom(A, K). (Dymsg(sendzj y,, ); Domsg(sendz§ y,, ) € ESIA, 25:A - yoir:B]"

These are also the statements that we need to prove when replacing Do with DJ. The first tree statement is straight-
forward by the assumption that Dy is session-typed. Using the local transition steps, we get Dymsg(sendz§ yg,) —*
Dymsg(sendz y;, ). We can apply the result of part (1) of this lemma on () to get

(t")Yxg & dom(A, K). (Dymsg(sendzj y;, ); Dy msg(sendzf y5)) € ESIA, 25:A W yoir:B]"

which completes the proof of this case.
Row 9. By the conditions of this row, we know that A = A’ y,:A ® B. We have
Vog & dom(A;,ya:A® B, K). (D1; D) € Treeg (A, yo:A® Bl K) and

() (msg(sendzj y,,)D1; msg(sendz§ y,, )D2) € EE, [A 25:A, yoy1:B IF K]

These are also the statements that we need to prove when replacing Dy with D4. The first tree statement is straight-
forward by the assumption that Dy is session-typed. Using the local dynamic steps we get msg(sendz§ yg)Dy —*
msg(sendmg y<)Dy. We apply the result of part (1) of this lemma on T to get

(1) Vag & dom(A;,ya:A ® B, K). (msg(sendz y;,)D1; msg(sendzj y5, ) Dy ) € ESIA x5:A, yar1:B IF K]*
O

C. Forward closure
Lemma 14 (Forward closure on the first run). Consider (Dy;Ds) € E[A I+ K]¥ and Dy +* DY. We have (D}; Ds) € E[A IF
KJ*.
Proof. 1If k = 0 the proof is trivial. Consider k = m + 1. By assumption, we have (Dy;Dz) € E[A IF K™+,
By line (12) of the logical relation we get

*VY1,01,D).if Dy —*T1:01 D), then Y9, D) such that Dy —**2 D)and T C Yo and
Vo € Out(A I K).if 2, € Ti.then (D}; D) € V§[A I- K75 and
V2o € In(AIF K).if 2, € ©;.then (D}; D) € V5 [A IF K7L
Consider DY, for which by the assumption we have D; +—* DY. Our goal is to prove (D};Ds) € E[A IF K]™ 1. We need

to show that
T, V1,01, D].if DY —*r1:€1 D], then 3D} such that Dy —*Y2 D)and T C Ty and

V2, € Out(A Ik K).if z, € T1.then (D}; D) € Vé[[A - K]+ and
Va, € In(AIF K). if 2, € O;.then (D}; D}) € V5 [A I- K]7L.
With a V-Introduction and an if-Introduction on the goal, we assume Dy —*T1:©1 D/. By assumption of D; —* D} we get
D; —*r1:01 D]. We use this to apply V-Elimination and if- Elimination on the assumption, and get

* Y9, D) such that Dy —*T2 D) andY; C YTy and
Vza € Out(A - K).if z, € T1.then (D};Dh) € V§[A I K]75H and
Vo € In(A I K).if 2, € O1.then (D}; D}) € V§[A IF K71
Which exactly matches our goal and the proof is complete. O

Lemma 15 (Forward closure on the second run with some specific conditions). Consider (Dy; D) € E[A I+ K]* and
Dy —*Y DY such that if Dy sends along the set Y1, we have Y1 C Y and also DY is the minimal configuration built by
em. 12| given the set Y| and configuration Dy. We have (D1; DY) € E[A IF K]*.

Proof. If k = 0 the proof is trivial. Consider k = m + 1. By assumption, we have (D1;Dz) € £[A IF K]™F1. By line (12)
of the logical relation we get

34



* VY1,01,D;.if Dy —*Tuer DY, then 3D, such that Dy —*T2 Djyand T1 C Ty and
V2o € Out(A I K).if 2, € T1.then (D}; D) € VS [A IF K7 and
Vo, € In(A - K).if 2, € ©1.(D}; D)) € V§[A IF K7L

Consider DY, for which by the assumption we have Dy —** D4. Our goal is to prove (D1;D5) € E[A I K]™ 1. We
need to show that
+VY1,01, D). if D; —*T1€1 D), then ID} such that DY +—*T2 D} andY; C T and
Vi, € Out(AIF K).if 2, € T1.then (D}; D) € V5[A IF K]m 1 and
Va, € In(A - K).if 2, € 1. (D}; D)) € VE[A IF K7L

With an if-Introduction on the goal followed by an if- Elimination on the assumption, we get the assumption

* Y9, D) such that Dy —*T1:91 D) andY; C YT and
Yz, € Out(A - K).if z, € T1.then (D};Dh) € V§[A I K]75H and
Vo € In(A I K).if 2, € O1.(D}; D) € VE[A I K7
and the goal
" 375, D) such that Dy —*T2 Dy andY; C Ty and
Vo € Out(A - K).if z, € T1.then (D};Dh) € V§[A I K]7:H and
Vo € In(A - K).if 2, € ©1.2(D}; D)) € V[A IF K7L

We apply an 3-Elimination on the assumption to get D), that satisfies the conditions, i.e., Dy —*T2 D) and Y1 C To. We use
the same D), to instantiate the existential quantifier in the goal, we need to show that D} —**1 D). Since D} is the minimal
configuration built for Yy and Ds, and T; C Y5, by Lemma |12 we get D5 —*T2 D}, and the proof is complete. O

35



X. MOVING EXISTENTIAL AND COMPOSITIONALITY

This section introduces two lemmas, [Lem. 16| and [Corollary 2] which are instrumental in proving transitivity (see [§ XI) and
adequacy (see |8 X1I).

A. Moving existential over universal quantifier

Lemma 16 (Moving existential over universal quantifier). if we have

(1) ¥m.¥Y1,01,D,. if Dy *11:©1 D}, then 35, D) such that Dy ++*T> Dyand T1 C T and
Vo € Out(A IF K).if 2, € Ty.then (D};D}) € V[A I K]+ and
Vi, € In(A - K).if 2, € ©;. then (D}; D)) € V[A IF K]t
then
VYq,01,D).if Dy —*Tuer D then 3T s, D) such that Dy —*Y2 Diand YTy C Yo and
Vo € Out(AlF K).if z, € Y. then VEk. (D};DS) € V[A IF K]]"”rl and
Vi, € In(A - K).if 2, € ©1. then Vk. (D; D)) € V[A IF K]ktL

Proof. First put m =1 to apply VE. on the assumption (instantiating Vm only). We get as an assumption

1,091, Dy. it Dy =191 Dy, then 315, Dy such that Dy =772 andY; C Yyan
() ¥X1,01,D,. if Dy +3*T1:01 DI, then 3T, D} such that Dy +*72 Dyand T1 C T and
Vi, € Out(A Ik K).if 2, € T1.then (D}; Dy) € V[A IF K]% ! and

Vo € In(A - K).if 2, € ©. then (D}; Dy) € V[A I K]0+L.

Next, apply a VI. and if I. on the goal followed by a corresponding VE. and if E. on the assumption (f’). Now apply an
JE. on the assumption (1) to get D} such that Dy +—**2 D) and T; C Y. Given D}, by we can build the minimal
DY such that Dy —** DY and T; C Y. Moreover, we know that for every D such that Dy —**s D and T; C T3, we get
DY —*1s D.

We use this minimal D} to instantiate the existential (31.) in the goal, and use VI. on the goal. In particular, we instantiate
k with an arbitrary natural number. The goals are:

(D}; DY) € V[A IF K5+ and (D}; DY) € V[A I K]k

Next, we instantiate the V quantifier in the original assumption () once again, this time with m = k followed by a VE, and
if E instantiating the quantifiers with similar D}, Y, and ©; as the first time. We get as an assumption:

(") 3T, Dj such that Dy —*T2 Dand T1 C YTy and
Vi, € Out(AF K).if 2, € T1.then (D}; Dj) € V[A IF K]*!and
Vi, € In(A - K).if 2, € ©1. then (D}; Dy) € V[A I+ K]kTL.

Next, apply 31. to get a Y/ and D’ that satisfies the conditions, i.e., D —*" D’ and Y; C Y’. Instantiate z, as those
chosen for the goal. We have as assumptions:

(") (Dy; Dy) € VIA |- KT and (Dy; D) € VIA IF Kk

Since DY is the minimal configuration built for T; and D5, we know that Dy —*x’ D’. We can apply the backward closure
results of to get the goal from the assumptions ("), and this completes the proof.
O

B. Compositionality
Corollary 2 (Compositionality). Vm. (D1;Dz) € E[A, un:T I+ K|™ iff forall Tz and Tz s.t. 1o ¥Vm. (T1;T2) € E[A" Ik ug:T]™
we have 1Vk. (TiD1; TaDo) € E[A’, A I- K]k

Proof. The left to right direction is a corollary of Lemma [I7)in which we compose multiple configurations instead of just two.
For the right to left direction, we put 7; = -, and A’ = u,:T, and the rest of the proof is straightforward. O

Lemma 17 (Generalized compositionality). For i € {1,2}, and index set I consider session typed tree-shaped configurations
A" |F B :: K™ such that n € I and their compositions form session typed tree-shaped configurations A I+ D; :: K, ie.,
D; = {Bl'}ner. If for all n € I, we have t, VYm. (BY; BY) € E[A™ IF K™]™ then tVk. (Dy1;Ds) € E[A IF K]k
Proof. Our goal is to prove the following:
For all index set I and all session-typed configurations A™ I+ B :: K™ with n € I such that t; VYm. (B}; By) €
E[A™ - K™]™ we have 1 Yk. ({B Y ner; {B3 }ner) € E[A IF K]F.
This is equivalent to the following statement which we prove:

36



For all natural numbers, k, and for all index set I, and for all session-typed configurations A™ [ B}* :: K™ such that
T Vm. (BY; BR) € E[A™ IF K™ we have /' ({By}ner; {B3 bner) € E[A IF K]F.
We proceed the proof by an induction on k.
Base case (k = 0). The proof is straightforward, since by the definition of the logical relation for session-typed configurations
A" IF B i K™ with Al {BP}ber it K, we have ({B7}her; {BS bner) € E[A IF K]°.
Inductive case (k = k' + 1). Our goal is to prove the following:
For all index set I, and for all session-typed configurations A™ I+ B :: K™ where n € I such that {,, Ym. (B; By) €
E[A™ IF K™]™ we have 1 ({B }ner; {BE}ner) € E[A IF K]F+1
where 1’ is defined in line (12) of the logical relation as
VY, @1,’1)/1. Vj e N.if {B’f}nel —Jr1501 D/l then 375, 'Dé such that {Bg}nej —*T2 'Dé and T; € YTy and
Va, € Out(AlF K).if 2, € T1.then (D};D;) € V[A I K]]k;tl and
Vz, € In(A I K).if 2, € ©1.then (D}; D}) € V[A IF K]F +1.

Again, we rewrite the above goal as an equivalent statement as follows:
For all natural numbers j, for all I, and for all session-typed configurations A™ I B} :: K™ with n € I such that
tn Vm. (BY; BY) € E[JA™ IF K™]™ we have
VYy,01, D). if {B7},er =771 D) then 3T, D) suchthat {BY} e —*T2 Dhyand Y1 C Ty and
V., € Out(A I K).if 2, € Yy then (D[;D}) € V[A I- K]%.* and
Yz, € In(A I K)if 2, € ©1. then (D[; D)) € V[A I- K]+,
We proceed the proof by a nested induction on j.

Base case (j = 0). Consider an arbitrary index set / and an arbitrary session-typed configurations A™ I B :: K™ that satisfy
the conditions t,. We need to show that

VY1, 01, Dy if {B} }nes —0T1€1 D) then 3T, D) suchthat {B5}ues —*T2 Dyand T; C Toand
Yz, € Out(A I+ K).if 2, € Ty.then (D}; D)) € V[A I+ K]+ and
Vo, € In(A IF K).if 2, € ©1. (D}; Dy) € V[A I K5+
Consider an arbitrary Y, ©1, ans D, and apply If I. on the goal. By the assumption {B7},c; —71:©1 D] we know that
D) = {B"}ner, and {B}},cr sends along T and receives along ©;. Our goal is to show the following:

* AYo, D} suchthat {BL},cr —*2 Dhyand Ty C Tsand
Yz, € Out(AlF K).if 2, € Y1.then ({B}}necr; D) € V[A IF K]+ and
Va, € In(A |- K).if 2, € ©;.then ({B]'}ner; D) € V[A IF K[V A1

By the definition of the logical relation, and from assumptions f,, for n € I we get

2 YmNY,,, O, BY . if B —*Ynen B} then 3T, BY suchthat B —*™2 BY and T, C T, and
Yz, € Out(A" |- K").if x, € T, then (BY';By') € V[A™ |- K"+ and
Yz, € In(A" Ik K").if 2, € ©,.then (BY; By ) € V[A" IF K"]1.
By we get
Y, O, BY L if B +*Tnon B2 then 3T, By such that By —**n2 B and T,, C Y,,, and
Yz, € Out(A™ |- K").if 2, € Ty then Vm. (BY'; BY') € V[A™ I- K]+ and
V., € In(A" Ik K).if 2., € ©,,. thenVm. (BY'; BY') € V[A™ |- K"+,
We instantiate the forall quantifier in {// by B} and the sets Y, and ©,, along which B} sends and receives. Note that by
definition we have Y1 C |J{ Y }ner and ©1 C |U{Op }ner. We get:
3Y,.,, BY suchthat By —*T2 By and
Vi, € Out(A” IF K™).if z, € T,,.then Vm. (B}; By) € V[A™ I K”]}mztl and
Yz, € In(A" Ik K™).if 2, € ©,.thenVm. (By; By ) € V[A" IF K"]m1.

By existential elimination, for all n € I, we get a BS, and Y,,, such that By —""n2 BS,, and ¥,, € T,, and

W Va, € Out(A™ I K").if 2, € T\, then Vm. (BY; By') € V[A™ IF K"+ and

n

Vi, € In(A" - K™).if ., € ©,,.thenVm. (B}; By') € V[A™ I K”]]g:“

37



Note that by definition Out(A I K) C |J,,.; Out(A™ I K™) and In(A IF K) C {J,,o; In(A™ IF K™).
We apply |L to get the minimal sending configurations B% " and set Y’ for each glven T, and BY. We get B" such
that BY +—""n B” Since these configurations are minimal, for all n € I, we have B" " na B"

Since T,, C T}, C T,,, we can apply the backward closure (Lem. 13) on {! to get

i Va, € Out(A" Ik K™).if 2, € T, then Vm. (B7; By") € V[A™ IF K"]74+ and
Vo, € In(A" Ik K™).if 2, € ©,.Vm. (B By ) € V[A™ |- K]l

Moreover, we apply forward closure on the second run on assumptions t, to get for all n € I:
on VYm. (BY; BY') € E[A™ IF K™]™

We can apply the forward closure on the second run since the conditions of are satisfied, i.e. T, C T/ and Bgl/is
the minimal sending configuration with respect to By and T,.

We build D) to be {BY }ner. We have {B}}ner —**2 {BY }ner with T1 C Yo, and {B}Y }ner —*Ts {BY }ner with
To C T35. We, then instantiate the existential quantifier in the goal (x) with Y5 and D) that we built for which we know
{BS }ner —*72 D). We need to show

* YV, € Out(A - K).if 2, € T1.then ({B}}neri {BY }ner) € VA IF K]5+ and
Y, € In(AlF K).if 2, € ©1.then ({By }neri {BY }ner) € VIAIF K] 1

Part 1. Consider arbitrary z, € Out(A |- K) and assume z, € Y;. By the structure of the configurations, for some
nel, z, € A", K" and thus z, € Out(A” |- K™) and z, € T,,. The goal is to prove

w1 (B neri (B3 ner) € VIA IF K]

Part 2. Consider arbitrary x., € In(A |- K') and assume z., € ©1. By the structure of the configurations, for some n € I,
z, € A", K™ and thus z, € In(A™ I- K") and z., € ©,,. The goal is to prove

*o ({BP Y ner; {BY Yner) € V[A IF K]]k +1

In both parts, we continue the proof by considering the type of z,. The type of ., determines whether we need to prove

Part 1. or Part 2. We provide the detailed proof for two interesting cases, the proof of the rest of cases is similar.

Subcase 1. z,:A® B € K. This case corresponds to Part 1. of the goal in which we have =, € Out(A I- z,:A® B) and
x € T1. By the structure of the configuration, there exists a tree Bf that provides the root channel K = K* = z,:A®Q B.
We use assumption 14 for that specific channel (%), we have

2 Vm. (B B5) € V[A® - K7t

First, instantiate the forall quantifier with m = 0. By Row 4. of the logical relation, we have A" = AY, A5 and for some
yp € chnl, we have: Bf = Bf Aymsg(send ygz,) and B = By A;msg(send ygz-).
We want to prove

o' Vm. (Ar, Ag) € E[AS IF yg:A]™  and " Vm.(BY ,BS ) € E[Af I+ x4 q:B]™

Consider an arbitrary m given by VI on the goals o’ and o”. Once again, instantiate the quantlﬁer in 3, this time with
the arbitrary m. Again, we get A" = Af A% and for some ys € chnl, we have: Bf = B A;msg(sendysz,) and
By = B5 A;msg(send ygz,). Moreover,

(A1, Ag) € E[AS IFys:Al™  and (B, BS) € E[AS IF 2yy1:B]™

Since the namings in the configuration is unique, we get the above for the same yg as we got in the case of m = 0 and
the proof of o’ and o is complete.
From this we can prove

D = {B?I}nel = {B{l}ﬁel&n;ﬁﬁ Bf//l}/msg(send Yax~) and
Dy ={BY }ner =By }nerenzs BS Axmsg(sendysr,)

First, observe that by the structure of the configuration, there is no tree B} or 33” using K" = z,:A® B as its resource,
i.e., x4 is the root. We can break down the resources Af and A5 as Af = A AR and A5 = A5 A5, such that AY
and Ag’ are in the interface of D; and D) and A'f” and Ag” are the resources provided by other trees. We can partition
I\{x} into two disjoint sets I, and I, such that the configurations {87 },,c7, and {B}" }nc1, provide the resources in A%

38



and configurations {B}} ez, and {By" },c 1, provide the resources in A5 . In other words, we have A = Ay, A% Ay, A5
and K = z,:A® B and

(i) Al {Bf}uer, = A'f”” A'f:,A’f: I+ Bf:”:: z,41:B Al,A’f: I+ {B?/};nehB?' oy
Ay IF{BY }her, o A% AV LAY IEBS s xyqq:B A, A F{BY Yhern, BS i xyq1:B
(i) Do l-{Biner, = A5 A5 A5 I A nysA Ag, A5 - {B] Jner A = yg:A
Ao IH{BY }her, i+ A A5 AL IE Ay ygiA Ng, Ay IF{BY }nern, Az i ys:A

We also have

o Dy = {B{l/},ng = {B{‘}ﬂg&n#n Bl’“”/A,},msg(send YRLy) = {B{L}neuh {B{‘}ne{? B’f/Almflg(send yp)and
Dy = {BY }tner ={B5 }nerengs BS Asmsg(sendyszy) = {BY }ner, {B} }tner, B5 A:msg(sendysz,)

Recall that earlier we proved
o' Vm. (A1, A) € E[AS I yz: Al and o Vm. (B ,BS ) € E[AF I+ zyy1:B]",

and we also have for all n € I; U I, .
oy Vm. (BY; By ) € E[A™ IF K™

We can apply the induction hypothesis on the smaller index &', (i), o/, and oy for those trees indexed in I; to get
o5 (B} Ynen BY + (B Yner B ) € E[A1 A} Ik 2y 1:B]".

Similarly, we can apply the induction hypothesis on the smaller index %', (ii), o/, and oq for those trees indexed in I5 to
get , ,
o3 ({BY hner, Ai; {B 2 tner, Az) € E[AL AL IFys:A]" .

By Row 4. of the logical relation, this is enough to establish the goal
1 (D1;Dy) € V[A IF K]}

Subcase 2. z,:A® B € A, ie, A = A’,xW:A ® B. This case corresponds to Part 2. of the goal in which we have
2, € In(AIF K) and x, € ©y, and the goal is to prove ({B} }ner; {BY }ner) € V[A IF Kﬂ’;;“
By the structure of the configuration, for some index x € I, we have 2,:A ® B € A", ie. A" = A"”"', 2 A® B.
By assumption 1%, we have
Ym. (By;BS') € VIAY 2y A@ BIF K*]pt?

By Row 9. of the logical relation, we get:

12 Yyp & dom(A”lﬂcW:A ® B, K")¥m. (msg(send yzx )BT ; msg(send y[jacﬂ,)BSH) € 6'[[A”,7 yg:A, xyy1:B I K™
Moreover, we have

A yg:A, z,:B |- msg(send ygzy ) { BT tner = K A, yg:A, z,:B I msg(send y,@xv){BgL”}neI t K
Recall that for all n € I\{x} we also have
oy Ym. (B} BY') € E[A™ IF K"]™

We can apply the induction hypothesis on the smaller index &', oz, and 1> to get

Vys & dom(A,0,:A ® B, K).(msg(send s ) {B} }ne s msg(send ysa, {BY Fner) € E[A,ysid,vy41:B | K]¥

By Row 9. of the logical relation, this is enough to establish the goal.
Inductive case (j = j’ + 1). Consider an arbitrary index set I and an arbitrary session-typed configurations A™ |- B} :: K™
that satisfy the conditions f,,. We need to show that

VY1,01, D if {BP} s —7 Tlrier D) then 3Ty, DY such that {BY }uer —*72 Dyand T1 C Y5 and
V., € Out(A I+ K).if 2, € Ty.then (D};D}) € V[A I K] and
Vz, € In(A I K).if 2, € ©1.then (D}; D}) € V[A I- K]+,
We apply a VI. and if I. on the goal: consider an arbitrary Ty, ©1, and D] and the first step of {B7},cr psd Hlr, €1 D;.

There are two cases to consider:
Case 1. the first step is an internal step but not a communication between the sub-trees.

39



Without loss of generality, let’s assume that the communication is internal to Bf for some « € I and all other trees B} for
n # K remain intact, i.e. we have {B}},cr = {B} }ner, Bi{B} }ner, and
(B Ynen BB Yner, = (Bl bnen, BY {B{ }ner, 7 1001 DY
By forward closure (Lem. 14)) on the assumption {, (i.e.,},for n = k), we get
- Vm. (BY ; By) € E[A" I+ K<™
Recall that by T,, we also have for n # &
Ym. (BY; By) € E[A™ I K™]™.
We can apply the induction hypothesis on the number of steps j’ to get:
VY1,01, DI VY1 0f {BY bher, Bf/{B{L}neIZ 3 101 D} then 3Ty D). {BY}ner —*T2 Dyand Ty C Yy and
V., € Out(A I K).if 2, € Ty.then (D}; D)) € V[A I- K] and
Vo, € In(A I+ K).if 2, € ©y. then (D}; D}) € V[A IF K]5+1.
Since {Bil}neh B?{B{L}neh = {Bil}nehaB’f/{B’{L}neIz Hj/rl;el D/17 Wwe can prove the goa]:
39, D) such that {B5},er —*72 Dyand Ty C Yoand
Yz, € Out(A I+ K).if 2, € Ty.then (D};Dj) € V[A I K]+ and
Va, € In(A - K).if z, € ©1.(D}; Dy) € V[A IF K[¥ 1.
which completes the proof of this case.
Case 2. the first step is a communication between two sub-configurations. Without loss of generality, we assume that the
communication is between trees indexed by x, A € I, i.e., Bf offers a resource u,:7" and B{‘ uses the resource, and there
is a message available along u,, that is received in the first step. The proof proceeds by case analysis on type of u¢:T. We

provide the detailed proof for one case. The proof of the rest of the cases is similar.
Subcase 1. T = A ® B, i.e., we have

(i) AFIFBY K" where K" = uy:A® B

A% |- BS = K
(i) AMF B KX where AN = AN u,:A® B
AMF B K2

By the assumptions of this case, we know that there is a message sent along u%,:A ® B in Bf that is received by a process
in By, i.e., Bf = Bf A;msg(sendyg u,) and

{B?}HGI = {B?}neh ’ B?B{\{B?}neh = {B?}HGImBlK,Al msg(sendyﬁ ua)Bi\{B?}ﬂelb and
{Bi'}nen, BY Ai msg(sendyg ua) BB bner, = (B tnen, BY AiBY B} bner, =’ Tver Dy
By ts, , and BflAlmsg(sendyg Ue,) —0rLer, Bf'Almsg(sendyg Uy ), We get
3Y,.,B5 suchthat B5 " =2 B5 and Y., C T,

Yz, € Out(A® |- ug:A® B).if 2, € T)..then ¥m. (Bf Aimsg(sendys ua); B5 ) € V[A® I ua:A ® BT+ and
Yz, € In(A" IF ua:A @ B).if 2, € ©). thenV m. (Bf Aimsg(sendys ua); B ) € V[A" IF ua:A ® B!
In particular, we know that u,:A ® B € Out(A” IF uy:A ® B) and u, € T/, which gives us:
Vm. (Bf Aymsg(sendys u,); BS ) € V[A® - ug:A® BJHt
By Row 4. of the logical relation, we have A" = Af A and

B5 = By Aymsg(sendys u,), and
o' Vm. (Ar; Az) € E[AS IF yg:A]™  and o Vm. (B ;By) € E[A} IF uai1:B]™.
Next, we consider B;. By f, , and B} =0T B, we get

3T, B3 suchthat By — "2 By and
Yz, € Out(AN ug:A® B I K*).if 2y € T then Vm. (BY; By') € VIAYN  uq:A®@ B I+ K} 7+ and
Vo, € In(AY ug:A® Bk K*).if 2, € ©4.Ym. (B};By') € V[AN ua:A® B IF KMt?

40



In particular, we know that u,:A ® B € In(AN | u,:A® B I- K*) and also u, € ©), which gives us:
Vm. (B By') € VIAN ug:A® B IF KA]mt!
By Row 9. of the logical relation for the specific channel ys (for which by the tree structure, we know yg ¢ AN ug:A®
B, K*) we have
Vm. (msg(sendys u,)B7; msg(sendys ua)B3') € E[A*, ys: A, ta1:B - K™,
By forward closure and msg(sendys u,)B} — B} we have:
o Ym. (B} ; msg(sendys us) B} ) € E[A, ys:A, tuas1:B IF K™

Put I’ = I,¢, where ¢ does not occur in I and define B{ = A; and B5 = A. By induction on the number of steps, o', o,
o and t, for n # K, \ we get

VY1, 01, D if (B hner, BY ALBY (B bner, — 101 D}
then 3Ty, D} such that {B3},er, B Asmsg(sendys ua)B {B3 Y ner, —*> DyandY; C Tyand
Y, € Out(A IF K).if 2, € Y1.then (D};D}) € V[A IF K%+ and
Vz, € In(A I K).if 2, € ©;.then (Dj; Dj) € V[A |- K]k +1.

By a VE. and {B} }ner, BY A1BY {BP bner, 7 11 D) we get:

3Ty, DYy such that {BY}ner, BS Asmsg(sendys ua ) By {BY yner, —*72 DyandT; C Toand
Vo, € Out(A - K).if z, € Y. then (D};D}) € V[A IF K]]ﬁ;tl and
Va, € In(AlF K).if 2, € ©;.then (D; D)) € V[A IF K}]’;jl
We also know that {BY}ner = {BY bnern, BsB{BS yner, —* {B3 nen By Asmsg(sendys uq)B {BY bner,. We get
the following for the same Y5 and Dj:

35, DYy such that {BY }ner, BS Asmsg(sendys ua ) By {BY yner, —**2 DyandY; C Toand
Va, € Out(AlF K).if 2, € Tq.then (D};D;) € V[A I K]]k;‘:l and
Vz, € In(A I K).if z, € ©1.then (D}; D}) € V[A IF K]k +1.

41



XI. LOGICAL EQUIVALENCE
A. Equivalence

Lemma 18 (Reflexivity). For all security levels £ and configurations A+ D :: x,:T, we have
(AIFD 2y T)= (AIFD 2y T).

Proof. The proof is straightforward by applying the reflexivity Lemma proved in the next section on a trivial lattice
that has only one element L. We annotate all channels and processes with max secrecies and running secrecies equal to L and
annotate process definitions in the signature all with one secrecy variable ). The spawn terms in a process use a substitution
that maps ¢ to L. With this translation, all session-typed configurations are also IFC-typed under the trivial lattice. O

Lemma 19 (Symmetry). For all configurations Dy and Ds, we have (A I+x D1 i 2o:T) = (A IF D 2 xo:T), iff (A IF Dy =
2a:T) = (A F Dy i xa:T),

Proof. The proof is straightforward by the definition of triple equality. O

Lemma 20 (Transitivity). For all configurations D1, Ds, and Ds, we have

if(AIFDy 2 T)=(AFDsi:xa:T), and (AlF Dy i 20:T) = (A kD3 i zo:T)
then (A Ik Dy :: 20:T) = (A IF D3 :: 2o T).

Proof. The proof follows from [Corollary 3| when we instantiate Uy with the trivial lattice only containing the element L and
&tobe L. O

B. Noninterference

Lemma 21 (Reflexivity — only for IFC-typed processes). For all security levels & and configurations Wo; T IF D :: 24:T[c],

we have
(T IH|D| :: 2o:T[c]) E?D (T'IF D] = xo:T[c]).
Proof. Corollary of the fundamental theorem (Thm. 5)). O

Lemma 22 (Symmetry). For all security levels & and configurations D1 and Ds, we have (I'y I+ Dy :: zo:Th[c1]) E;IIO (T2 I+
DQ o yﬁtTg[CQD, lﬁr (F2 I+ DQ o yﬁZTQ[CQ]) Eg’o (Fl I+ D1 b $a:T1[C1D.

Proof. The proof is straightforward by O
Corollary 3 (Transitivity). For all security levels &, and configurations D1, D, and Ds, we have
if (11 Ik Dy 12 2a:Th[e1]) =¢° (T2 - Dy 22 yp:Thlea]), and (Ta Ik Dy :: yg:Ta[ea]) =¢° (Ts |- Ds :: 2 Ts[cs))
then (I'y Ik Dy = za:Ti[er]) = (Ts I Dy i: 2:Ts[cs)).
Proof. Consider arbitrary C;, F; and Cs, and F35 we need to show
VYm. (C1D1F1;CsD3F3) € ElA - K]™ and Vm. (C1D1F1;C3D3F3) € E[A I K™

By the assumptions, we get (C1D1.Fy;CoDaFo) € E[JA IF K™ and (CoDaFe; C3D3F3) € E[JA IF K]™. The result follows
by -

Lemma 23 (Transitivity of the term relation). If 11 Vm. (Dy1;D3) € E[A IF K™ and 12 Ym. (D2;Ds) € E[A I K|™ then
*Vk. (Dy;Ds) € E[AIF K]*,

Proof. Our goal is to prove for all Dq, Ds, and D3 with Vm. (D;1;D2) € E[A IF K™ and Ym. (D2; D3) € E[A F K™
then Vk. (D1;D3) € E[A I K]*. We prove an equivalent statement that says for all k, D;, Da, and D3 with Vm. (Dy;Ds) €
E[A IF K]™ and Vm. (D2; D3) € E[A IF K]™ then (D1;Ds) € E[A I- K]*. We proceed by induction on .

Base case. (k = 0) Consider arbitrary configurations D, Do, and Ds. By the assumptions, we know that (D;;Ds) €
Tree(A IF K) and (D3; D3) € Tree(A IF K), which gives us (Dy;Ds) € Tree(A IF K). It is enough to complete the proof in
this case.

Inductive case. (k = k’ + 1) Consider arbitrary configurations D1, Ds, and D3. Our goal is to show

VD].VY1.if Dy —*71 D, then D% such that Dy —*"1 D} and
Yz, € Out(AIF K).if 2, € T1.then (D};D}) € V[A IF K] ! and
Va, € In(A - K). (D; D) € VA IF K[k *L

Consider an arbitrary D] and T, and assume Dy —*T1 Dj. Our goal is to prove

42



3Dy such that D3 —**1 Dj and
Yz, € Out(AIF K).if 2, € T1.then (D}; D}) € V[A IF K]+ and
Va, € In(A I K). (Dy; D) € VA IF K[ *L

By assumption 1 and we have

11V D1V Y1.if Dy —*71 D, then 3D} such that Dy —*"1 D) and
Vz, € Out(A Ik K).if z, € T;. then VYm.(Dy; Dy) € V[A IF K] and
Vo € In(AIF K).Ym.(D};Db) € V[A I K]

And by assumption T, and we have
15V D5 Y Y. if Dy —*"1 Dj, then 3D4 such that D3 —*T1 Df and
Vo € Out(A - K).if 2, € Y. then Vm. (D}; D) € V[A I+ K]],’:;.tl and
Vi, € In(A - K).Ym. (Dy; Ds) € V[AIF K]t
We apply VE. on ) by instantiating the existential quantifiers with D} and T';. We can apply ifE. since we know D; —*T1
Di. We get a D}, with Dy —**1 D). Next, we apply VE. on {5 by instantiating the existential quantifiers with D) and Y;.
We apply ifE. as we know Dy —*T1 Dj. As a result, we get a D with D3 —*Y1 D as required by the goal. We need to
prove:

Yz, € Out(AIF K).if 2, € T1.then (D};D}) € V[A IF K] and
Va, € In(A I K). (Dy; D) € V[A IF K[+
By {1/, and {5, we have as assumptions

1 Vao € Out(A I K).if 2, € T1.then Vm.(D}; Dj) € V[A |- K], and
VYoo € In(A - K).¥m.(D}; Db) € V[A I K]+

and
YV, € Out(AlF K).if z, € T1.then Vm. (D};D5) € V[A IF K]}mltl and

Vo € In(A I K).Vm. (Dy; DY) € V[A I+ K]+t

There are two parts to prove:
Part 1. Consider an arbitrary z, € Out(A |- K) and assume z, € 1. Our goal is to show

(Dy; D4) € V[AIF K]5 1
And by t/, and 14, we have as assumptions
#Ym.(D;; D) € VIA I K™ and  14'Y'm. (Dy; Dj) € V[A I K]t

We consider cases based on the type of x,. We provide the detailed proof for a few interesting cases. The proof of other
cases is similar.
Case 1. (K = 2,:A® B). By 1/’ and {5'we get

A=A Ay and D] =D/ A;msg(sendyp z,) and D) = DjA,msg(sendys z,)
and Dj = DjA;msg(sendyp ) and D = D5 Asmsg(sendys z,)

Moreover,
Ym.(DY; DY) € E[A1 Ik o y1:B]™ Vm.(Az; Az) € E[Ag IF yg:A]™
Vm.(DY; DY) € E[A1 IF xor1:B]™ Vm.(Asg; As) € E[Ag I yg: A]™

We apply the induction hypothesis on a smaller observation index k' to get
(DY DY) € E[AL - 2o41:B]¥ (A1; A3) € E[Ag - yg: AT
Which by Row 4 of the logical relation is wnough to prove the goal of this subcase, i.e.,
(D};Dh) € VIA I K51

Case 2. (A = z,:A — B, A)
Part 2. Consider an arbitrary z, € In(A I+ K) and assume z,, € ©1z. Our goal is to show

(D}; D4) € V[A IF K]E 2.

43



By t/, and 14, we have as assumptions
P/ m.(Dy; D) € VIA IF K] tY and 1 VYm. (Dy; Dy) € VA I K[7tL

We consider cases based on the type of z,. We provide the detailed proof for a few interesting cases. The proof of other
cases is similar.
Case 1. (A = A/, 2,:A® B) By /" and 15'we get for all yg & dom(A,z,: A® B, K).

Vm.(msg(sendyg u,)D}; msg(sendyp ©,)D5) € E[A,ys : A, xo41 : BIF K™
Vm.(msg(sendyg uy)Dh; msg(sendyp ©,)D5) € E[A,ys : A, xat1 : BIF K™

We apply the induction hypothesis on a smaller observation index k' to get
Yys & dom(A, xo : A® B, K). (msg(sendyg u,)D,; msg(sendys 2,)D4) € E[A,ys : A, xav1 : BIF K]¥
Which by Row 9 of the logical relation is wnough to prove the goal of this subcase, i.e.,
(D}; Dy) € V[A IF K]E !
Case 2. (K = z,:A — B)

44



Internal transition = defined as:
D, - D} iff Dy — D

Actions 229y, LYt gpg Rvad defined as below when y € fn(D;):

(1) Dymsg(close y,,) D2 Ta close DD,
(2)D1 msg(ya-k) D2 ok DDy
(3)D1 msg(send Zp Ya) Do Yo T DDy

L y, close

(4) Dyproc(zs, wait y,; P)Ds msg(close y,,) Diproc(zs, wait y,; P) D2

(5) Di1proc(zs,casey, (€ = Pi)cr) D2 Lyak, msg(ya.k)Diproc(zs, casey, (£ = Pp)oecr)D2

(6)D; proc(zs, w + recv y,)Ds Lya—mﬁ> msg(send zg y,) D1 proc(zs, w < recvy,) D
(7)D;1 proc(ya, case y, (£ = Pp)ocr)Da Byak, D1 proc(yYa, casey, (£ = Pp)ocr) Domsg(yq k)
(8)D1proc(ya, w + recv y,) D M) D1proc(Ya, w < recv y,)Da msg(send x5 y,)

Fig. 7: The transition rules. An overline indicates that an outgoing message, an otherwise the message is incoming.

XII. ADEQUACY
Definition 22 (Free names of a configuration). for A I- D :: A/, we define fn(D) as dom(A, A’).

Definition 23 (Weak transition relations).

(1) = is the reflexive and transitive closure of —».
(2) = is =5,

Definition 24 (Asynchronous bisimilarity). Asynchronous bisimilarity is the largest symmetric relation such that whenever
Dy =, Ds, we have
1) (1 — step) if D1 = D} then ID,. Dy = D)y and D} ~, Db,

2) (output) if Dy ~=% D then ID}. Dy ==L D)y and D) ~, D).

3) (leftinput) for all ¢ & fn(Dy)., if Dy Liad, D) then 3D}y. Dy = D} and D} ~, msg(z4.q)D5,

4) (rightinput) for all q & fn(Dy)., if D1 R2ag, D! then 3D}. Dy = D} and D} ~, Dymsg(z4.q).
where msg(z,.q) is defined as msg(close z,,) if ¢ = close, msg(x,.k) if ¢ =k, and msg(send z5 x,) if ¢ = zs. o

Definition 25 (High provider and High client). We repeat the definition of high provider and high client configurations (|§ VIII-A
here.

- € H-Provider*(-)
B € H-Provider®(T', z,:A[c]) iff ¢Z andB=B'T and B’ € H-Provider®(T') and T € Tree(- IF z,:A4), or
cE&andB € H—Providerg(r)

T € H-Client® (z,:Alc]) iff cZ&andT € Tree(zq:AlF_:1),0r
cCéandB="-

45



Definition 26. For D; € Tree(|T'1] IF z4:A41), D2 € Tree(|T'a| I yg:As) we define
Iy FDy oz Arfer] &5 Ty - Dy yg:Aslca] as

[ €=T2,4 € and yg:dslea] I} £ = 2a:Ai[c1] § € and
VB, € H-Provider®(T';), By € H-Provider® ('), 71 € H-CLient® (2,:4;[c1]), T2 € H-Client®(y5:Asca]).
BiD:iTi =q B2D2To.

Corollary 4. For all Dy € Tree(|I'1| IF z4:A1) and Dy € Tree(|I'a| IF yg:Asz), we have (I'1 IF Dy i zq:A1]c1]) Ego (T2 -
Dy :: yg:As[ca]) iff (T1 IF Dy i wo:Ar]c1]) &5 (T2 IF Do i yg:Az|ea)).

Proof. The proof is straightforward by considering and the following corollary (Corollary 3)). O

Corollary 5. for all (D1,Ds) € Tree(A Ik K), we have Vm.(D1,D2) € E[A IF K|™ and Ym.(Da,D1) € E[A IF K™ iff
Dl g Dg.

Proof. Tt is a corollary of the following lemma (Lem. 24) O

Lemma 24. Consider a pair of session-typed forests (C1,Cs) € Forest(A |- A’) consisting of multiple session-typed trees
indexed in the set I, i.e., C; = {C]}jer for i € {1,2}, and (C{,C3) € Tree(AJ I+ K7) with A = {AT}jer and A = {KT}j¢y.
We have: o o

Vj € I.¥m.(C],C}) € E[AT IF K7™ and (C3,C]) € E[A IF KI|™ iff C; =, Co.

Proof. The proof consists of two parts.
(1) Soundness. We want to prove for any arbitrary pair of forests C; = {C{ 3 jer and Co = {ci} jer such that Vj € 1. (C{ NCARS
Tree(A7 |- K7), if Vj € 1.Vm. (C1,C)) € E[AT IF KI]™ and Vj € I.Ym.(C},C) € E[AT IF KI]|™ then {C]}jer ~a
{C }JEI
We proceed the proof by coninduction on the generating function of the bisimilarity. Consider an arbitrary C; = {c] } jer and
Cz = {C}}jer such that Vj € I.(C{,C3) € Tree(AJ I K7), and assume Vj € I.¥m.(C],C3) € E[AI IF K7]™. Our goal is
to show {C{ }jer =a {C3}jer. We prove it by showing the items (1)-(4) by assuming Vj € 1.Vm. (c.cl) e E[AT IF
K7]™ only. The symmetric relation can be established with the other assumption Vj € 1.Vm.(C3,C)) € E[AT I KI]™ We
continue by estabhshmg items (1)-(4) in
1) Assume C; —> C1, then by the deﬁmtlon of T—transition, we have C; — Cj. In other words we have {CJ }JEI — {C }JEI
for ¢ = {CJ }]EI To establish item (1) in the definition, it is enough to prove that {CJ }]el ~q {Cl};er. Since we
unfolded the conindcutive definition of the bisimilarity’s generating function once, we can apply the coinductive case if
the assumptions are satisified, i.e., we need to prove that each tree in the post-step forest is session-typed and the pairs
are related by the logical relation.
By assumption Vj € I.Vm. (¢1,¢d) € E[AT IF KI]™ and by the forward closure lemma we get Vj €
1. Vm (C{ ,CJ € E[AT I+ KI]™. This along with type-preservation of session-typed programs, is enough to get
{C1 }Vier ~a {C3}jer by coinduction.

2) Assume C; —% C}, then by we have C; = Cimsg(z.¢) Cf, with C] = Cj, C}.
This means that for some # € I, we have either C = C} msg(z4.q) or Cf = msg(24.¢)CY , and €} = {C’ }jGI {H}C1 .
In particular, we know that Vm.(CF,C§) € E[AF IF K*]™, and CF — T CF, such that z, € T%. By the definition
of the term interpretation and we get

VY5, 0%, CFif CF = TEOT CF | then 314, C5 suchthat C§ —*"5 C4§ and T4 C Y% and
Vi, € Out(A" IF K%).if z, € T5.then V. (CF';C5) € V[A” IF K*]% 1 and
Va, € In(A” I- K%).if 2, € OF. then Vk. (Cf';C5') € V[A® IF KF]k+L

We can instantiate the V quantifiers and apply an if —Elimination rule to get Cy "% CQ/ for some Y45 O T4 and some
C5'. Since z, € T4, we get by the deﬁnition of the logical relation Vm (o ,C2/) € V\I, [A% I+ K "‘]]erl This (depending
on the type of the channel ) gives us C§ = C xyMSE(T4a.q) OF C5' = msg(zq. q)Cyy . Note that if ¢ is a channel name,
C5 "isa forest, rather than a tree, and if ¢ is the label close, the configuration C§ s empty.

Put C) = {C%}je[_{ﬁ},Cg"”. To establish item (2) in the definition, it is enough to prove that C; =, C}. Since we
unfolded the conindcutive definition of the bisimilarity’s generating function once, we can apply the coinductive case if
the assumptions are satisified, i.e., we need to prove that each tree in the post-step forest is session-typed and the pairs
are related by the logical relation.

The proof proceeds by cases on the type of x,. Here we only provide one interesting case, the proof of other cases is
similar.

46



Subcase 1. K" = z,:A® B € %’. We have A” T,A% and Cy = Cllmsg(send Ys :/ca) with Cf = CI" A,
Moreover, we have C§ = C§ msg(send ys xa) w1th cs” = 5" Ay, And Vm.(CF;C5") € E[AS I zo41:B]™
and Vm.(Ay; A2) € E[AS IF ys: A]™.

Recall that all other trees in the forest are still related, i.e. Vj € I — {x}, we have Ym.(CJ;C)) € E[AT - K7]™ This is
enough to apply the coinductive argument and get C} ~, C, where C} = {C/ }jef,{,{},Cf/ and Cy = {C3}jer—{n} cs.

3) Assume for an arbitrary ¢, we have C; Liad, Ci. By Eig. 7| there is a process proc(zg, P, ) € C; which is waiting to
receive a message along . In particular, for some tree C{ for x € I, we have proc(zg, P,,) € Cf.
We know that Vm.(CF,C5) € E[A" I K*]™, and Cf — T®f CF, such that z, € ©f. By the definition of the term
interpretation and we get
VY5, 0%, CFif CF = TEOT CF | then 314, C5 suchthat C§ —*"5 C4§ and T% C Y% and
Vi, € Out(A® IF K%).if 2, € T5.then V. (CF';C5) € V[A” IF K*]% 1 and
Yz, € In(A% IF K*).if z, € Of.then Vk. (CY';C5') € VA |- K*]k+L

We can instantiate the V quantifiers and apply an if —Elimination rule to get C5 "% Cg"' for some T4 O Y% and
some C5 . Since x, € OF, we get by the definition of the logical relation Vm.(CF,C5 ) € Vﬁ,o [A% - K*]7t! We put
Ch ={C3}jer—(xy, C5 .

The proof proceeds by cases on the type of z,. Here we only provide one interesting case, the proof of other cases is

similar.

Subcase 1. z,:A ® B € A* C A (i.e., A* = A% 2,:A® B) In this case, we know that C¥ = Ci* proc(zs,w +
recv ,)Cr? and ¢ is a channel ys which is fresh in both C and C5' . Moreover, we have Cf = msg(send y;5 x4 )C,
and thus C{ = msg(send ys x4 )C1.

By the logical relation, we get Vm.(msg(send ys 7, )C}; msg(send ys 2,)C5 ) € E[A" , ys:A, x011:B IF K5]™.
Recall that all other trees in the forest are still related, i.e. Vj € I — {x}, we have ¥m.(C{;C3) € E[AJ IF KI]™ This
is enough to apply the coinductive argument and get C; ~, msg(send ys z,)C} as required.

4) Assume for an arbitrary ¢, we have C; Rad, C}. The proof is similar to the previous case:
By there is a process proc(z,, P, ) € C; which is waiting to receive a message along . In particular, for some
tree Cf for x € I, we have proc(z,, P) € Cf.
We know that Vm.(C,C5) € E[A® IF K*]™, and Cf —"TTf CF, such that z, € ©F. By the definition of the term
interpretation and we get

VY, 08, CrFLfCF = TEO CF | then3TY,CS suchthat C5 —*"5 C5 and Y% C Y5 and
Yz, € Out(A” I- K%).if 2, € T5.then V. (Cf ;C5') € V[A® IF K*]%+1 and
Vo, € In(A” - K%).if 2, € ©F.then Vk. (Cf';C5') € V[A® IF K*]k+L

We can instantiate the V quantifiers and apply an if —Elimination rule to get C5 —*"5 C§ for some Y5 D Y% and
some C§ . Since x,, € ©F, we get by the definition of the logical relation Vm.(C,C5') € Vé,o [A% - K*]mtE We put
Cy = {Cé}jeff{n},cé‘,.
The proof proceeds by cases on the type of x,. Here we only provide one interesting case, the proof of other cases is
similar.
Subcase 1. K% = z,:A — B € A’. In this case, we know that C{ = C|* proc(z,,w < recvz,)Cy? and ¢ is a channel
ys which is not free in Cf' (and by the typing not in cg' either). Moreover, we have Cf, = Cfmsg(send y; z,), and
thus C; = Cymsg(send y; z,,).
By the logical relation, we get Vm.(Cimsg(send y; z,); C5 msg(send ys 2,,)) € E[A", ys: Ak zqq1:B]™.
Recall that all other trees in the forest are still related, i.e. Vj € I — {x}, we have Vm.(C{;C3) € E[AY I K7]™ This
is enough to apply the coinductive argument and get C| ~, Cymsg(send ys x,) as required.
(2) Completeness. We want to prove for any arbitrary pair of forests C; = {C{}jer and Cy = {C] }JG 7 such that Vj €
1.(C1,C)) € Tree(Ad IF K7), if {Cl}jer ~a {C)}jer then Vj € I.Ym.(C],C)) € E[AT IF KI]™.
We instead prove an equivalent statement that says
For any natural number m and any arbitrary pair of forests C; = {C] '}jer and Co = {C}},er such that Vj € I.(C],C}) €
Tree(A7 IF K7), if {C]}je1 ~a {C}}jer then Vi € 1.(CL,C}) € E[AT IF KI]™.
We proceed by induction on m.
Base case. (m = 0) The proof is straightforward by the definition of logical relation and the fact that the configurations
are session-typed.
Inductive case. (m = m' + 1) Consider an arbitrary x € I. By the definition of the term interpretation, we need to prove

47



VY5, 0%, Crif Cf s TTet ¢ then 314, C5 suchthat C§ —*Y% €4 and T% C T4 and
Vo, € Out(A” I- K*).if 2, € T§.then (Cf';C5') € V[A® IF K*]™*+! and
Va, € In(A” - K%).if 2, € ©f.then (Cf';C5') € V[A® IF KF]m

. . / I * <. OK !
Consider an arbitrary Y5, ©%, and C{, and assume C{ +— " Y1°7 Cf, we need to prove

375, C5 suchthat C§ —*Y5 €5 and T% C T4 and
V. € Out(A” |- K*).if 7, € Yi.then (Cf';C5) € V[A® |- K*]™ +!and
Yz, € In(A" |- K*).if 7, € ©f.then (Cf';C5 ) € V[A® - K]+

By local transition steps, we know that C; —* C{, where C] = {Cf}jej_{K}Cf/. By C1 =, Ca, we can apply the clause
for T-transitions in for zero or multiple times, to get Co —* C} such that C] ~, C}. Consider the channels in the
sets Y5 and ©F. There are three cases:

A. By item (2) of [Def. 24| and C{ =, C}, we know that for all z, € Out(A |- K) such that z € T, we have Cj =" C3°
such that C3* sends along the channel z, and C; = Cimsg(r,.q)C? and C5° = Cy°msg(z4.q)C;° and we have
CLC2 ~, CEoCE.

B. By item (3) of Def. 24 and C| =, Cj, we know that for all z, € In(A Ik -) such that z, € ©f, we have Cj —* C3"
such that msg(z,.q)C] =, msg(z,.q)C5".

C. By item (4) of Def. 24| and C{ ~, C}, we know that for all z, € In(- IF K) such that z, € ©F, we have Cj —* C3"
such that Cimsg(z4.q) =, C5"msg(x4.q).

Apply the confluence lemma on (i) C5 —* C3* for all z, € Out(A Ik K) such that x, € T§ and (ii) C; —* C5"

for all z, € In(A IF K) such that z, € ©F to build C4. In particular, by the confluence lemma, we get C —*Y2 C§ where

TH C Yy, and (i°) C5* —* C§ for all z, € Out(A I+ K) such that z, € T and (ii) C3" —* C4 for all z, € In(A I+ K)

such that z, € OF.

More precisely, by the forest structure, we have C} = {Cé‘”"”}jeI_{,ﬁ}Cé“”, with C5 —*" C5” with T% C T5. We use Y5

and cg” to instantiate the existential quantifier in the goal. We need to prove that

Va, € Out(A” I- K%).if z, € T5.then (Cf';C5") € V[A® IF K*]™ 1 and
Vi, € In(A" Ik K7).if 2, € ©F.then (CF;:C5") € V[AF Ik Kr]™ 1

By the forward closure lemma for the bisimulation (Lem. 23)), we get
A’. By item [A.] we get, for all z, € Out(A Ik K) such that 2, € T%, we have C} —* CJ such that C§ sends along the
channel z,, and we have C} = Clmsg(4.q)C? and CJ = C*msg(4.q)C* and C1C2 ~, CT+C* .
B’. By item B., the confluence lemma, and the forward closure lemma for the bisimulation , we get: for all
Zo € In(A IF ) such that z, € OF, we have C}, —* CJ such that msg(z,.q)C] ~, msg(zs.q)CY.
C’. By item C., the confluence lemma, and the forward closure lemma for the bisimulation (Lem. 25), we get: for all
zq € In(- IF K) such that z, € ©F, we have C}, —* C4 such that C{msg(z.q) ~, CYmsg(z,.q).
There are two parts we need to prove:
Part 1. Vo, € Out(A” I- K*).if 2, € Yf.then (Cf';C5") € V[A® |- K<]m+!
Assume an arbitrary z, € Out(A” |- K*) with 2, € T;. we consider cases based on the type of x,. Here we provide
the detailed proof for one case, the proof of other cases is similar.
Subcase 1. K" = z,:A ® B. We need to prove (Cf,C5") € V[A® IF z,:A ® B]]’”I/;r1 We first establish Cf =
¢y Aymsg(sendyg z,) and C§ = C5" Aymsg(sendyg z,, ), using item [A’] above and well-typedness of programs.
Next, we apply the inductive hypothesis to show (A;;.4s) € E[AY IF yg:A]™ and also (Cf;C5") € E[AS I+
Tat1:B]™ with A" = A% A% We get this by configuration typing, C1C2 ~, C*-C®* given in item [A’] above and
the fact that both Ay, Ay, CF and C§" are separate trees in the forests C!C? and C7+C** .
Part 2. V2, € In(A* |- K*).if 2, € Of.then (Cf';C5") € V[A® IF K~ +1. Assume an arbitrary z, € In(A* |-
K*) with 2, € ©;. we consider cases based on the type of x,. Here we provide the detailed proof for one case, the
proof of other cases is similar.
Subcase 1. A* = Afz,:A ® B. We need to prove (C,C5") € V[AF,z4:A ® B IF K”]]ggfl. We apply the
inductive hypothesis on msg(send ys z,)C; ~, msg(sendys z,)C5 which is given by item [B’] above to get
(msg(sendys 2,)Cy , msg(sendys 2,)C5 ) € E[AF, ys:A, zoy1:B IF K*]™ which completes the proof of this
case.
O

Lemma 25 (Forward closure). For all D1, Dy if Dy =, Do and Dy = D), then Dy =, Dj.

48



Proof. The proof is by coinduction on the generative function of the bisimulation (D; =2, D). We consider four cases required

to establish Dy =, Dj.

1) (7 — step) if D; = Dj then by the assumption Dy = DY and D} ~, DY. This gives us Dy —* Dj. We also know by
assumption that Dy —* Dj. By the confluence lemma(Lem. 11, we can build a D such that Dj —* D and D} —* D. By
coinduction on D} =, D4 having the assumption D4 —* D, we get D} ~, D, which along with D} = D is enough to

get the result. - -
2) (output) if D; =% D} then by the assumption Dy ==L D3 and D) ~, Di. This gives us Dy —* DY, and Dy =% DY,
and Dy’ —* Dj. We also know by assumption that Dy —* Dj. By the confluence lemma(Lem. 11), we can build a D

such that DY —* D and D} —* D. Moreover, for some D’ we have D =% D', such that D}’ —* D’. Recall that we also
have Dy —* Dj. Again, we apply the confluence lemma(Lem. 11} to get a D" such that D3 —* D” and D’ —* D". By

. . . . Ta q .
coinduction on D} =, Dj having the assumption D3 —* D", we get D} ~, D”. Moreover, we have D) === D", ie.,

Lo q

D) +—* D, and D —= D', and D’ —* D”. This is enough to get the result.
3) (leftinput) Consider an arbitrary ¢ which is not free in Dy, and assume D; Lad, D!, then 3DY. Dy = DY and D} =,

msg(z,.q)DY,. This gives us Dy —* DY. We also know by assumption that Dy —* Dj. By the confluence lemma(Lem. 11}),
we can build a D such that D —* D and D), —* D. This also gives us msg(z,.q)Dj —* msg(z,.¢)D. By coinduction
on D} ~, msg(z,.q)D} having the assumption msg(z,.q)Dy —* msg(z,.q)D, we get D] ~, msg(x,.q)D. Moreover,
we have D) = D, i.e., D5y —* D. This is enough to complete the proof of this case.

4) (rightinput) for all ¢ & fn(Dy), if Dy Road, D} then 3D). Dy = D) and D} =, Dymsg(r,.q). The proof is similar to

the previous case.
O

49



XIII. BIORTHOGONALITY
A. Equivalence

Definition 27 (Session-typed environment). A session-typed environment with the interface A & K, is of the form C[ |F, such
that for some A’ and K', we have A" I+C :: A and K I+ F :: K'.

Definition 28 (Program- and environment- relations). A session program-relation is a binary relation between session-typed
programs, i.e., open configurations of the form A I- D :: K. Given the interface A | K, we write PRel(A |+ K) for the set
of all program relations that relate programs A |- D :: K.

A session environment-relation is a binary relation between session-typed environments. Given the interface A |+ K, we
write ERel(A Ib K) for the set of all environment relations that relate environments C| |F with the interface A I+ K.

Definition 29 (The (_) ' operation on relations). Given any interface A I K and r € PRel(A I+ K), we define v’ €
ERel(A - K) by
(C1[ )F1,Co[ | F2) € rT iff (D1, D2) € 1.(C1D1F1 Rq CoaDoFo);

and given any s € ERel(A |- K), we define s' € PRel(A IF K) by
(Dl,Dg) S ST iff V(Cl[ ]‘/—"1,62[ ]]‘—2) S S.(Clplfl g CQDQ‘FQ);

As explained in [1|], just by virtue of how these definitions are defined, we get that the operation is a Galois connection,
which is inflationary, and idempotent.

Definition 30.

e Define the relation A I+ Dy :: K = A Ik Dy : K as (D1,D3) € Tree(A IF K) and Vm. (D1, D2) € EJA I+ K] and
VYm.(Ds2,D1) € EJA IF K].

e Define the relation A 4 C1[|F1 4 K = A 4 Cy[|F2 4 K as (i) IK such that K v Fy = K' = K I Fy ©: K’ and
(ii) 3A’ such that (C1,Cs) € Forest(A’ - A) and V71 € Cy, andVTs € Cy with (T1,T2) € Tree(A} I+ K"), we have
AT K'=AIFT o K.

Theorem 6 (T T-closure). Consider (D1, D3) € Tree(A I+ K), we have

(AlFDy: K)=(AIFDy:: K)
iff
VC1,Ca, Fi1, Fa.s.t. (A = C1[ }]:1 — K) = (A — C2[ ]]:2 = K) we have
Vm‘Cllel ~a CQDZJ:Q

Proof. There are two directions to consider:
Left to Right: The result is straightforward by the compositionality result(Corollary 2) and the soundness result
and the definition of equivalence = for programs and environments (Def. 30).
Right to Left: Consider C; = Cy = F; = F» = -. By|Lem. 21|and [Def. 30, we know that (A 4-[]- 4 K)= (A []- 4 K).
From this we get Ym.D; =, D, and by the completeness lemma we get Vm. (D1,Ds2) € E[A IF K]™ and
Vm. (Dq,Dy) € E[A IF K]™. By we have A IF D :: K = A IF Dy :: K, which completes the proof.
This result is enough to prove that our equivalence relation is T T-closed, i.e., following the results presented in the results
presented in [1], it shows 7 = s ', when r and s defined as our logical equivalence. O

B. Noninterference

Definition 31 (Session-typed environment). A session-typed environment with the interface A & K, is of the form C[ |F, such
that for some A’ and K', we have A’ I+ C :: A and K I+ F :: K'.

Definition 32 (Program- and environment- relations). A security session program-relation is a binary relation between session-
typed programs, i.e., open configurations of the form A |- D :: K. Given a security level £ € Vg, and two interfaces
Iy Ik zq:Ar]c1] and T Ik yg:As[ca] we write PRelg(I‘l IF zo:Ai[c1],To Ik yg:As(ca]) for the set of all security program
relations that relate programs |I'1| - Dy :: x4: A1 and Ty Ik Dy :: yg:As.

A low-security session environment-relation is a binary relation between low security session-typed environments. Given
two interfaces T'1 |k z4:A1[c1] and T'o I yg:Aslca], we write ERels(Fl IF zo:Aile1], T2 IF yg:Ascs]) for the set of all
environment relations that relate low security session-typed environments Cy[ |F1 with the interface |T'1 | &| IF |zq:A1[c1] I €]

and Ca[ |Fo with the interface |T's | &| I |yg:Aalca] | €|

50



Definition 33 (The (_) " operation on relations). Given two interfaces I'y IF 24:A1[c1] and Ty IF yz:As[ca] and the observer
security level £ € Wy and v € PRelg(Fl IF zo:Ai[c1], T2 Ik yg:As[ca]), we define rl e E'Relg(Fl IF zq:A1][c1], T2 Ik
yp:Az|ca]) by

(Cl[ ]]:1,02[ ].7:2) crl iff V(Dl,Dg) SES
VB, € H-Provider®(T';), By € H-Provider® ('), 71 € H-CLient®(24:41[c1]), T2 € H-Client®(y5:Asca]).
BiCiD1FTh = B2l2DaFaTa

and given any s € ERel(A IF K), we define s € PRel(A - K) by

(Dl,Dg) € sl iff V(Cl[ ]./—"1,62[ ].7:2) € s.
VB, € H-Provider®(T';), By € H-Provider® ('), 71 € H-CLient® (24:4;[c1]), T2 € H-Client®(y5:Asca]).
BiCiD1FTh ~q B2CoDaFoTo

As explained in [|1|], just by virtue of how these definitions are defined, we get that the operation is a Galois connection,
which is inflationary, and idempotent.

Definition 34 (Equivalence of forests by the logical relation upto the observer level). We write T IF Cy :: Ty Eﬁ,o Ty I Co i Ty
iff
(i) (Both forests are well-typed.) C; € Forest(|T"}| I |T'1|) and Co € Forest(|T%| IF [T'2|)
(ii) (Their observable interface is the same.) I'} | £ =T, | £ and T | £ =T2 | & and
(iii) (Each tree in the 1st forest with an observable interface has a counterpart in the 2nd forest which is equivalent to it.)
for every Ty € Cy such that T1 € Tree(|TY| I |xo:A1[c1]]), and T CTY and xz4:A1]c1] € T'1 and (T, xq:A1]ca]) I € # -
there exists a Ty € Co such that Ty € Tree(|T'4] IF |yg:Az[ce]|), and T C T and yg:As[ce] € To for T 4 £ =T% |} £ and
ypiAz[ea] U € = z0:Ai[c1] I & and
(iv) (Each tree in the 2nd forest with an observable interface has a counterpart in the 1st forest which is equivalent to
it.) vice versa.

Definition 35. Define the relation
Dy A Ci[JF H zacAi[er] =5, Tz A Cof 1F2 4 ypidafes] as

(i) (The observable interface of the environments are the same.) We have T' =T |} ¢ =T | £ and K* = z4:A1[c1] |
£ =yp:Az2[c2] U &, and
(ii) (The configurations C; and C offer channels annotated as observable and use the same channels and are equivalent for
any observable (low-confidentiality) annotation of their resource channel.) for some A, we have (C1,Cs) € Forest(A IF
|T|). In particular, if T' = -, we have C; = Cy = -.
Moreover, for every I, and T such that |I'}| = |T'5| = A, and Yw,:Alc] € T'|. ¢ T £ and Yw,:Alc] € T%. ¢ T & we have
Il Cy T =5 ThI-Cyu T
(iii) (The configurations F; and F, use channels annotated as observable, offer the same channels, and are equivalent
for any observable (low-confidentiality) annotation of their offering channels.) If K* = _:1[T], then F, = Fa = -
Otherwise, for some w,:A, we have (Fy1,F2) € Tree(K® IF w,:A). Moreover, Ve, ¢ T & we have K* |+ Fy i w,:Alc] Eé,o
K* I+ Fy : wy:Ald] and.
o
Lemma 26 (Compositionality of Eé,o). If

(i) (M FCLuTl)=y, (I CouT) with T =T1 Je=T5 ¢ and
(#11) (T1IF Dy xg:Ar]c1]) Ea,o (T2 IF Dg :: yg:Ascs]) and
(i) (K® - Fy s K§) =5, (K* I Fy o K3) with K° = 20:A1[e1] I € = ys:Asfes] U € then

(T}, T} - CiDyFy 2 K) =5, (T5,Th I CoDyF 1 K3),
where T is the set of all channels w,:C[d] € Ty with d IZ & and T'} is the set of all channels w,:C[d) € 'y with d Z €.

Proof. By the configuration typing and definition of equivalence and (1), (ii), (iii), we know that C; D1 F; € Tree(|T}| IF
|K$|) and CoD2Fy € Tree(|T'| IF | K5|). Moreover, by definition of equivalence and (i), (i) we get IV = (T}, T%) |
= (5T I éand K¥ = K§ € = K5 L €.

Assume arbitrary configurations B; € H-Provider®(I'}), B} € H-Provider*(I'?), B, € H-Provider*(I'},), B} ¢
H-Provider®(I'}), 7; € H-Client®(K?), and 75 € H-Client®(K3). Our goal is to prove

Vm. (ByBrCiDyFiTh, BoBECs Dy FoTo) € E[ITY| IF |K*'[]™, and
VYm. (BQBSCQIDQ.FQE,316?017)1]:171) S 8[[|F/| I+ |Ks,|]]m.

51



By assumptions (i)-(iii) we have:

(i’) Note that for any trees A} € C; and Aj € C; they have an observable offering channel occuring in I'. Assume that C; as
a forest includes n separate trees. By the previous observation, we know that Cy also consists of n separate trees. For any
i<n _Szonsidf:r the tree A € C; gonsidc_ar the corresponding tree A% € Cy that exists by and for which we have
(t;) T - Af = wl: A [] Eg,l,o I} I AY = w) Al [d].

From 1;, we get TV = F{/ = Fg/ and for arbitrary configurations 7 € H—Clientg(F{/), and 7§ € H—Clientg(l“g), we
have

Vm. (BC1, BiC2) € E[ITT"  ¢| I wi:AT]™, and
Vm. (BCa, BIC1) € E[ITT" | €] I wi:AT]™.

Observe that T} = {T] },<,, and T = {I} };<p, and T = {w}: A7 [/]} <.
(ii") By [Def. 17, we know that for arbitrary configurations B € H-Provider®(I';), and B € H-Provider®(I'y), and T €
H-Client® (z,:4;[c1]), and T3 € H-Client® (ys: As[cs]).

Vm. (B¢DyTE, BID-TH) € E[|T| IF |K*[]™, and
Ym. (BgDQEd, BillDlﬂd) S 5[[|F| I+ |Ks|ﬂm.

(iii") By [Def. 17} if ¢; C € and ¢y C &, we have for any 7; € H-Client®(K?), and T; € H-Client®(K3)

V. (Fu T, FoT) € E[|K| - |[K*'|]™, and
Vm. (F TP, FiT) € E[IKS) - |K[]™,

It is straightforward to show that given (i’-iii’), and several applications of the compositionality lemma we get
the goal. O

Theorem 7 (T T-closure). Consider Dy € Tree(|['1] IF |zq:Ai[c1]|) and Dy € Tree(|Ta| IF |yg:Az(c2]|) and a given observer
level £ € Uy. We have

(T1 Dy i zo:Ayca]) Efl,o (T2 IF Dy :: yg:Asea])
iff
VC1,Co, Fi, Fa.st. (T1 A C1[ |F1 A za:Ai[er]) =5, (T2 A Co[ ]F2 Hyp:4s[ca]) we have

VB, € H-Provider®(T';), By € H-Provider® ('), 71 € H-CLient®(24:41]c1]), Ta € H-Client®(y5:Azca]).
BiCiD1FiTi =g BaCoDaFoTy

Proof. There are two directions to consider:
Left to Right: Consider (I'; IF Dy :: 24:A1[c1]) Eﬁ,o (T2 IF Dy :: yg:Aslcs]) and arbitrary Cq,Cq, F1, F2 such that we have

(C1 A Ci[|F1 A 2aidifer]) =5, (T2 A Co[ | P2 H yp:As[ca)).

By we get that T =T |} € =Ty |} € and K°® = 2,:A1[c1] |} € = ys:Asz]ca] |} £ Moreover for some A, we have
(C1,C3) € Forest(A IF |I'|) and for any low secrecy annotations of A as I} and I'y we get '] I Cy «: T’ E?I,O Iy I-Co i T
Also if K* = _:1[T], we have F; = F, = -, and otherwise (F1, F2) € Tree(K* I w,:A) for some w,:A, for any low secrecy
annotations (with ¢z, ¢4 T &) of w,:A as wy:A[cs] and w,:Afcs] we get K° |- Cy i wy:Alcs] E?I,O K*IF Cy i wy:Aleal.
Our goal is to prove:

VB, € H-Provider®(T';), By € H-Provider® (T'y), 71 € H-CLient*(2,:4:]c1]), Ta € H-Client® (y5:As|ca]).
CiD1F1 = C2DaJs.

By compositionality of equivalence upto relation , we get T, TH IF CyD1Fy it 24 A1 [c1] Efpo I, Th I CoDy s
yg:Asz[co] in the case where K* := _:1[T], i.e., c1,c2 Z &, and otherwise we get I, T I+ C1D1Fy i wy:Alcs] E?I,O
[, Th IF CoDaFy i wy:Alcs] where T? is the set of all channels z.,:C[d] € T'y with d Z € and '} is the set of all channels
2:Cld] € Ty with d Z €.

By the soundness theorem for equivalence relation (Corollary 4), we get I'|, T} I CiD1Fy t zq:difer] &5 T4,TF I
CoDaFy i yg:Asca) in the first case where K* = _:1[T] and otherwise T'},I'} IF CiD1Fy : wy:Ales]) ~§ Th,Th IF
CoDaFy it wyy:Alcy]. In the first case, the proof is complete by and the observation that all channels in I} and T'%
are annotated with channels of secrecy d’ C &. In the second case, the proof is complete by and observing that all

channels in T} and T are annotated with channels of secrecy d’ C £ and that ¢1,c C € and c¢3,¢4 C £.

52



Right to Left: Assume C; = Cy; = F; = F2 = -. By [Lem. 21| and [Def. 30, we know that (I'y 4[] 4 x4:A1[c1]) = (T2 -

1+ yg:Ai[co]). From this we get T'y I- Dy 2 w4:A1]c1] &5 Ta - Dy it yz:Asca]. Now, we can apply the completeness

lemma to get (' IF Dy it 24:A1]c1]) Eﬁ,o (T2 Ik Dy yg:As[ea)).

This result is enough to prove that our equivalence relation is T T-closed, i.e., following the results presented in the results
presented in [1], it shows 7 = s, when r and s defined as our logical equivalence.

O

REFERENCES

[1] Andrew M. Pitts. Parametric polymorphism and operational equivalence. Mathematical Structures in Computer Science, 10(3):321-359, 2000.

53



	Further examples
	Examples of leakage (rejected by CONSESSION)
	Different recursive calls after branching on a high secrecy channel
	Exploiting non-termination
	Exploiting concurrency

	Sneaky verifier - revisited.
	Secrecy-polymorphic processes to the rescue

	Abstract syntax
	A typing system for session types
	Concrete security lattice and security theories
	A secure typing system
	Progress and Preservation
	Session-typed processes
	Poised configuration and configuration permutation
	Lemmas
	Progress
	Preservation

	IFC-typed processes
	Progress
	Preservation


	Recursive session logical relation
	Open configuration transition
	Recursive Session Logical Relation

	Noninterference
	Up-to equivalence, projections, and splitting up closed configuration
	Quasi-running secrecy and relevant nodes
	Fundamental theorem

	Diamond property, confluence, and backward/forward closures
	Diamond property, confluence, and minimal sending configuration
	Backward closure
	Forward closure

	Moving existential and compositionality
	Moving existential over universal quantifier
	Compositionality

	Logical equivalence
	Equivalence
	Noninterference

	Adequacy
	Biorthogonality
	Equivalence
	Noninterference

	References

