Speech Technology

Making computers work naturally with speech

Alan W Black Language Technologies Institute Carnegie Mellon University

Speech: most natural form of communication

 \square Everyone can talk

– but people have to learn to read and write

 \square We can engage in dialog with people through speech: – why can't you do that to computers.

But

 \Box its not good for everything

 \Box for large amounts of information slow and bulky

 \Box can't be searched easily

 \Box its not digital

From meat to voice

 \Box From ideas to sound waves:

- voicing from glottal excitation
- changing shape of vocal tract
- obstruents: puting things in the way
- causes various sound waves to be created

 \Box From sound waves to ideas:

- sound waves hit your ear
- flex various hairs in your inner ear
- brain detects various frequencies
- magically decodes them

(Note: this trivializes the *understanding* part)

Linguistics: making it more manageable

 \Box Definition of words:

– small useful sized objects

 \square Definition of phonemes:

- small inventory of sound units

different for languages/speaker

 \square Definition of prosody:

– phrasing, intonation, durations

Phonology

"smallest unit that when changed (can) change meaning of word."

- $\square "bat" \rightarrow "pat"$
- \square "pat" \rightarrow "pam"

US English Vowels

UH	IH	ER	AY	AW	AH	AA
fUll, wOOd	blt, shlp 10na n0ca	makER, sEARch	hIde, bIble	hOW, sOUth	bUt, hUsh	wAshington
UW	NU	ΕY	ΕH	AX	AO	AE
fOOl, wOOd	bEAt, shEEp	gAte, Ate	gEt, fEAther	About, cAnoe	lAWn, mAll	fAt, bAd

US English Consonants

Stops: P,B,T,D,K,G
Fricatives: F,V,HH,S,Z,SH,ZH,TH,DH
Affricatives: CH, JH
Nasals: N, M, NG

 \Box Glides: L, R, Y, W

Number of phonemes in a language

□ UK English: 44 \square US English: 43

 \Box Japanese: 25

□ Hindi: 81

But numbers are not definite

But not all variation is phonological

 \square Phonology: linguistic space of sounds: – may be a collection of actual sounds

 \square Phonetics: "acoustic" space of sounds

- different sound but not linguistically different

flaps in US English

- "water" \rightarrow / W AO T ER /

- but common pronunciation / W AO DX ER /

Not all languages are the same

another Phonetic variation in one language may be phonological in

 \square Asperated stops (Korean, Hindi) P vs PH

 \square L-R in Japanese not phonological

 \square US English dialects:

– mary, merry, marry

 \square Scottish English vs US English:

– No distinction between "pull" and "pool"

Distinction between: "for" and "four"

 speaker type: regular user new user child/eldery/stressed "value" of information 	 acoustic conditions: quiet recording studio vs quiet office standing waiting for the bus on a cell phone on an aircraft carrier 	 channel: 16KHz/16bit wide band 8KHz/8-12bit telephone 4.8KHz CELP, cell phone 	□ microphone: – head mounted, far field, telephone	Different factors affect voice quality	Channel Conditions
CMU032002					

The key speech technologies

 \square Speech recognition:

– taking digital waveforms and producing text

 \square Speech synthesis:

– taking text and producing waveforms

 \Box dialog systems:

– making this flow in the expected way

Speech Recognition

 \square Acoustic parameterization:

- representing speech invariant of environment

- time slicing and spectral processing

 \square Acoustic modelling:

– what are all the ways you say "s"

- HMM modelling

 \Box Language modelling:

– what are the most likely words to say

- "Carnegie ...", "President ..."

Requires "typical" speech to train from

Language modelling: listeners expectations

shocked to find their beach cordoned off for a UC Berkeley and a regular swimmer at Waipouli beach, complained that environment. Richard Carlson, one of the annoyed tourists Last Saturday in Hawaii, numerous Waipouli vacationers were fled the scene to avoid compromising photos play. Many of the tourists appeared ruffled by the content and they really knew how to wreck a nice beach with the nudist tures exclusively topless men and women in an everyday office Drama enactment of "Personal office space". The play fea-

Language modelling: listeners expectations

system is its revolutionary three-dimensional interface, which speech recognition toolkit. According to Michael Armstrong recognize speech with the new display, and how the toolkit In yesterday's press release, AT&T unveiled SpeechKit, its new opens a new universe of possibilities for the speech recognihas already played a crucial role in his research Blues, a senior researcher at AT&T Labs, explained how to tion community. During the official software release, Jonathan the COO of the company, the most innovative feature of the

Language modelling: listeners expectations

 \Box how to recognize speech with the new display

 \square how to wreck a nice beach with the nudist play

Speech Synthesis

 \Box Find out what to say:

– get pronunciations of words, token etc

 \square Add prosody:

– make it not be a boring monotone

 \square Make a waveform by:

- concatenating small pieces of pre-recorded speech

Dialog systems

□ Who's turn is it

 \square What the current topic:

– what does "it" refer to

 \square Is the dialog directed:

- is there a goal, are we getting to it

 \Box What is the state:

– was a question asked/answered

– was the phrase relevant

What are the key uses

- □ Command and control
- \square Spoken dialog systems:
- (telephone-based) information services
- \Box Information retrieval from audio:
- tell me all CNN broadcasts about WorldCom
- meeting summarization
- \square Speech-to-Speech translation:
- device that will translate
- \square Computer aided education:
- language training
- \Box Interactive agents:
- robot characters that talk with you

 general voices □ In English or other languages 	 Different techniques: recorded prompts limited domains 	 Building a voice: record <i>appropriate</i> speech in <i>appropriate</i> style build unit selection synthesizer 	 Tools, documentation, aligners, and scripts Build your own voice synthesizer US and UK English diphone synthesizer (1-2 days) Other languages (1 week to much longer) 	Making the computer talk in your voice http://festvox.org/
---	--	---	--	---

Speech Synthesis Components

- \Box I want my computer to talk
- Speech Synthesis Engine
- Festival Speech Synthesis Systems
- converts text to speech in English and other languages
- \Box I want my computer to talk in my voice
- tools for building new voices
- The FestVox project
- general and domain voices
- \Box I want my voice on my PDA/Cell phone now
- Small footprint synthesis
- CMU Flite
- Client based content delivery systems

Make it sound better

- □ General voices
- Say anything
- word concatenation
- phone concatenation
- diphone concatenation
- unit selection synthesis
- □ Domain voices:
- targeted to a domain
- much higher quality:
- clocks, weather, stocks, simple dialogs

Make it smaller and faster

□ General voices

- large requiring big servers
- greater than 1GB memory

 \square Small footprint synthesis:

- small memory, processor requirements
- no compromise on quality

USI: Universal Speech Interface http://www.cs.cmu.edu/~usi/

A common, easy-to-learn interface to speech applications

 \Box Choice:

make you speech interface accept anything, or

- spend a little time to educate you user to a standard

 \Box Like "Graffitti" for Palm:

– not standard writting

– but easy to learn

– and easy to recognize

□ http://www.speech.cs.cmu.edu/usi

Communicator: mixed initiative spoken dialog http://www.speech.cs.cmu.edu/Communicator

□ DARPA funded project with multiple site:

– MIT, Colorado, AT&T, Lucent etc

¹ Telephone based access to flight information : $- \text{ call } 412 \ 268 \ 1084 \ (1-877-\text{CMU-PLAN})$

 \Box Any speaker

 \square Mixed-initiative

 \square Accessing live data on the web

Fluency: computer aided language learning http://www.lti.cs.cmu.edu/Research/Fluency/

□ compare against "golden voice" □ Have language learners speak utterances \square Coaching for "difficult" phonemes - "th", vowel length

 \Box find duration, F0, stress, spectral problems

 \square Hard problem of recognizing non-native speech

CSTAR: speech to speech translation http://www.c-star.org/

Joint effort with 16 other sites worldwide

 \Box Speech translation in the tourism information domain

"," "Can you tell me the way to the conference center"

– Kaigi sentaa no hou ga oshiete kudasaimasen ga

 \Box Includes:

English, German, Italian, Korean, Japanese, ...

DARPA Babylon project

 \square Hand held, portable speech-to-speech translation

- □ "One way"
- fixed phrase translation
- answers can be yes, no and pointing
- \square "One+One way"
- fixed phrase translation both ways

 \Box Two way:

- constrained but general speech
- Medical triage, Refugee Processing, Force protection

In languages with little cuurernt support:

- Pashto, Dari, Farsi and Arabic.

Meeting summarization

Record a meeting and annotate it with who said what

 \Box More than one speaker at once

 \square People may move, arrive, leave

 \square Voices may get heated

 \square Audio "grep":

"find bits where Fred complained about Q1 figures"

Project Listen: teaching children to read http://www.cs.cmu.edu/ listen/

 \Box Use speech recognition to listen to children reading:

- detect errors
- read passages to students

□ Follow progress and improve reading standard

 \Box Attacking hard problems:

- how do you recognize non-fluent children's speech
- how do you know if the system works

Some difficult speech problems

 \square How do you deal with real speech input

 \square How do you teach the users what they can say

 \Box How do you present to the user complex information

 \square How can you make it fast enough

 \square How do you mix speech and graphics

 \square How do you make dialogs work in new domains/languages

Future speech applications

 \Box Singing synthesis:

– would you like to sing along to ...

 \Box Interactive agents:

- Personal Digitized Assistants

– information gatherers and presenters

 \square Speech based question and answering:

– auto-FAQ by telephone

 \square Speech will become default interaction language