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Abstract
There is growing interest in building phone recognition sys-
tems for low-resource languages as the majority of languages
do not have any writing systems. Phone recognition systems
proposed so far typically derive their phone inventory from the
training languages, therefore the derived inventory could only
cover a limited number of phones existing in the world. It fails
to recognize unseen phones in low-resource or zero-resource
languages. In this work, we tackle this problem with a hierar-
chical model, in which we explicitly model three different enti-
ties in a hierarchical manner: phoneme, phone, and phonologi-
cal articulatory attributes. In particular, we decompose phones
into articulatory attributes and compute the phone embedding
from the attribute embedding. The model would first predict the
distribution over the phones using their embeddings, next, the
language-independent phones are aggregated to the language-
dependent phonemes and then optimized by the CTC loss. This
compositional approach enables us to recognize phones even
they do not appear in the training set. We evaluate our model on
47 unseen languages and find the proposed model outperforms
baselines by 13.1% PER.
Index Terms: multilingual speech recognition, phone recogni-
tion, zero-shot learning, phonetics

1. Introduction
With the development of deep neural networks, there is grow-
ing interest in applying deep neural network models to speech
recognition [1, 2, 3]. Those deep models, however, are re-
stricted to languages with a large amount of training set such as
English and Mandarin [4, 5], therefore, they are not available for
most languages in the world. Additionally, the majority of the
languages in the world have never been written [6], as a result,
the only accessible speech recognition systems are phone recog-
nition systems. Many works have focused on developing phone
recognition systems for low-resource languages [7, 8, 9, 10].
However, most of them face the problem of the limited phone
inventory. As the training languages typically consist of rich
resource languages such as English and Mandarin, the training
phone inventory usually consists of common phones available
in European languages and East-Asian languages. This situ-
ation makes it hard to recognize unique phones in other lan-
guage families. Another problem is the imbalanced phone dis-
tribution among the training set: some phones might appear fre-
quently in many languages, but other phones might only occur
in limited cases in one specific training language and therefore
have much fewer training samples. This issue would cause the
model to predict the first group more frequently and suppress
the second group. Note that we distinguish the concept of phone
and phoneme in this work [11]: phone represents the physi-
cal speech sound, it is the language-independent unit shared by
all languages. In contrast, phoneme is the language-dependent
unit, it is the smallest unit to distinguish meaning in a specific
language. Phones and phonemes are highly related to each other

Figure 1: The architecture of the hierarchical model. We first
compose the phone embeddings from their attribute embed-
dings. Then we compute the phone distributions using the em-
beddings and the hidden vector from the encoder, Next, the
language-independent phones are transformed into language-
dependent phonemes with the allophone mappings, which
would finally be optimized by the loss (CTC) function.

and one phoneme might correspond to multiple phones (those
phones are referred to as the allophones). For example, the
phoneme /p/ in English have two actual phonetic realizations
(allophones) [p] and [ph].

In this work, we propose a novel hierarchical model to
tackle the two problems stated above. While most traditional
works tend to consider each phone as the basic independent
building block, we further decompose phones into their com-
ponents: phonological articulatory attributes. For instance, the
phone [a] can be characterized as a open front unrounded vowel
where each word (e.g: open) can be seen as its attribute. We
assign each attribute an attribute embedding to encode its in-
formation, then the phone embedding can be constructed by
summing up its corresponding attribute embeddings. Those em-
bedding would be fine-tuned during the training process. With
those embeddings, we can build the recognition model as illus-
trated in Figure.1: the encoder (BLSTM) first receives the input
features and generates hidden vectors. We take the inner prod-
uct of the phone embedding and the hidden vector to compute
the phone distributions. Then the phone distribution is mapped
to phonemes in each language using the allophone mappings.
Finally, the phoneme distribution is optimized by the loss (CTC)
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function. This approach enables us to solve the aforementioned
two problems: first, the phones are no longer independent units,
they are interconnected by articulatory attributes shared with
each other. Even for a new phone which we have not encoun-
tered so far, we can decompose it into existing attributes and
then compute its embedding as well. Therefore, this model has
the ability to handle unseen phones. Furthermore, this model
would suffer less from the imbalanced phone distribution prob-
lem as we are optimizing the attribute embeddings instead of the
phones themselves: even the rare phones would be fully trained
through their attributes shared with other frequent phones. We
apply our models to 47 unseen languages and the results in-
dicate that our model improves the average PER (Phone Error
Rate) by 13.1%.

2. Related Work
Training speech recognition systems for low-resource lan-
guages remains a challenge due to the limited supervised train-
ing set. One common approach is to train multilingual models
on languages with rich supervised resources and then transfer
its knowledge to new languages [12, 13, 14]. Another promis-
ing method proposed recently is to use the unsupervised ap-
proach to pretrain the encoder with a large amount of unsuper-
vised dataset. The pretrained encoder can be fine-tuned to the
target language with a limited size of training set [15, 16, 17].

Despite the success of those models, they still rely on the
supervised set for the target language and could not be applied
to any unseen languages. In particular, the unseen language
might contain unseen phones which are not available in the
training languages. One solution is to use language-independent
phones instead of the language-dependent phonemes or sub-
words [18]. During the training phase, the model can first
predict the distribution over the language-independent phones,
then it transforms the distribution into the language-dependent
phonemes to be optimized (as most of the training set is typ-
ically available in the form of phonemes). As the language-
independent units are shared by all languages, this model can be
applied to unseen languages without any training set for the tar-
get language. The only information required for such a model
is the phone inventory, which is easy to obtain as PHOIBLE
has published the inventory containing more than 2000 lan-
guages [19]. However, even this model cannot solve the issues
of unseen phones as the available phone inventory is limited to
the phones covered by the training languages. Additionally, it
suffers from the problem of the imbalanced phone distribution
we mentioned above.

One potential approach to overcome those two problems is
to use phonological articulatory attributes. The articulatory at-
tributes are well-defined by the linguists and most phones can
be reduced to a list of discrete articulatory attributes [11]. By
learning the representations over the articulatory attributes, we
can associate any unseen phones with well-known attributes
and therefore be available to use those phones during inference.
Note that applying articulatory attributes to speech recognition
tasks is not a new idea. To name a few, it has been applied
to improve robustness under the noisy environment [20], im-
prove performance for multilingual speech recognition [21], do-
ing phoneme clustering for unwritten languages [22]. However,
most works do not apply them to predict unseen phones. One
work has applied a similar idea to recognize unseen phones as
ours [23]. This work, however, does not distinguish between
phones and phonemes, it constructs the language-dependent
phonemes directly from the articulatory attributes. We find this

model would not be properly trained when the number of train-
ing language increases because more languages would bring
more phone-phoneme inconsistencies.

3. Approach
3.1. Compositional Phonetics

In this work, we introduce the approach of compositional pho-
netics, where we decompose phones into a list of phonological
articulatory attributes. Each attribute has been assigned a fixed
length of embedding which we refer to as the attribute embed-
ding, those embeddings are first randomly initialized and get
fine-tuned together with other parameters during the training
process. By using those attribute embeddings, each phone can
also be assigned an embedding by linearly composing the em-
bedding from their attributes. Formally, consider a set of phones
P , for each phone p ∈ P , we could determine a list of its at-
tributes Ap. For each attribute in the list a ∈ Ap, we could
assign an attribute embedding ea ∈ Rn where n is the hidden
size of the model. Then, the phone embedding ep ∈ Rn can be
computed by aggregating its attribute embeddings.

ep =
∑
a∈Ap

ea (1)

Suppose that the encoder computes the hidden vector h ∈
Rn for the current frame, we can obtain the logit lp for this
phone p by taking inner product

lp = hT ep (2)

Note that the embedding composition approach is not the
only way to associate attributes and phones. A more simple
idea used in [8] is to first compute the attribute logits lA ∈ R|A|

from the encoder, where |A| is the size of entire attributes, then
add up logits of corresponding attributes. We would refer to this
model a linear model.

lp =
∑
a∈Ap

la (3)

While the two approaches seem to be similar, we find that
the embedding composition approach is more stable and typ-
ically leads to better performance. Our hypothesis is that the
linear model encodes the hidden information with a small size
of |A|, on the contrary, the embedding approach encodes the in-
formation with a much larger hidden size n and thus has better
expressive power (in our experiment, n = 640, |A| = 23). Ad-
ditionally, the embedding approach enables us to have a better
understanding of the model through their embedding spaces.

Notice that while the potential number of phones is very
large, the number of articulatory attributes is significantly
smaller. In our estimation, we find PHOIBLE has listed more
than 2000 unique phones across all registered languages [19],
however, the articulatory phonological attributes are well-
defined and we only consider 22 unique attributes (+1 ctc at-
tribute) in this work. Even if a particular phone does not exist
in the training set, we can still do the inference as we can easily
compose its embedding from the known attribute embeddings.

3.2. Allophone Layer

The allophone layer is to transform the language-independent
phone distributions into the language-dependent phoneme dis-
tributions. For the allophone layer, we follow the architecture
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proposed in the previous work [18]. Suppose the current lan-
guage is L, and its phoneme inventory is QL. For each phoneme
in the inventory q ∈ QL, it has multiple allophones correspond-
ing to it. Suppose the allophone set for q is Pq . Then each
phone p ∈ Pq is an allophone for q. The allophone layer com-
putes the phoneme logits by selecting the max logits among its
allophones.

lq = max{lp|p ∈ Pq} (4)

Finally, the phoneme distributions are fed into the CTC loss
to be optimized [24]. CTC loss is selected as it has the condi-
tional independence assumption, which reduces the dependency
to the language modelings of the training languages, and thus
make it easier to predict unseen phone sequence patterns.

4. Experiments
4.1. Settings

In this section, we describe our experiment in this work. We
select 11 training languages as described in Table.1. Those lan-
guages are selected as they have large training sets and their
phonology is well understood. We use Epitran to convert text
into phoneme for each utterance in the text [25]. Each phoneme
might correspond to several phones, those mapping rules are
provided by Allovera [26]. Finally, we extract discrete phono-
logical articulatory attributes from each narrow phone by us-
ing Panphon [27]. The tool supports 22 distinct features, we
create two different attributes from each feature by considering
whether that feature exists or not. For instance, +syllabic
means it is a syllabic phone, -syllabic means it is not.

For the testing languages, we use a recently proposed
dataset [28]. The dataset contains many small corpora from
around 100 languages. Each corpus is phonetically annotated
by linguists and manually aligned. We sort all corpus by their
size and extract corpus whose size of utterances is larger than
50. The number of unique languages in this subset is 47, their
ISO-639 id are abk, ady, afn, afr, agx, ajp, apc, ape, apw, asm,
azb, bam, cbv, cpn, dan, ell, fin, guj, hau, haw, heb, hil, hin, hrv,
hun, hye, ibb, ilo, isl, kan, kea, khm, klu, knn, lad, lav, lit, lug,
mlt, mya, nan, nld, pam, pes, prs, wuu, yue.

For the evaluation, we compare 4 different acoustic mod-
els. The first one is the English phone recognition model which
is a standard LSTM model trained using only English training
sets. This model is used as a baseline to contrast language-
dependent models and language-independent models. The sec-
ond model is the Allosaurus model [18] whose architecture has
an allophone layer mapping between phones and phonemes, it
does not model any articulatory attributes and thus each phone
is considered independent from each other. Those two mod-
els are open-sourced and available on Github.1. The other two
models are hierarchical models we propose in this work. One
hierarchical model is using a simple linear model mapping artic-
ulatory distributions into phone distributions. The other model
is the main model we discuss in the previous section where we
compose phone embeddings from the attribute embeddings and
apply those embeddings to estimate distributions. All 4 models
are using the same input feature and same encoder architecture:
40 dimension MFCCs and 5 layer bidirectional LSTM with 640
hidden size, the loss function are all CTC loss. The English
model connects the encoder directly to the loss function, the Al-
losaurus model has an allophone layer between the encoder and

1eng2102 and uni2005 from https://github.com/xinjli/allosaurus

Table 1: Training corpora and size in utterances for each lan-
guage. Models are trained with 11 rich resource languages

Language Corpora Utt.

English voxforge, Tedlium [29], Switchboard [4] 1148k
Japanese Japanese CSJ [30] 440k
Mandarin Hkust [31], openSLR [32, 33] 377k
Tagalog IARPA-babel106b-v0.2g 93k
Turkish IARPA-babel105b-v0.4 82k
Vietnamese IARPA-babel107b-v0.7 79k
German voxforge 40k
Spanish LDC2002S25 32k
Amharic openSLR25 [34] 10k
Italian voxforge 10k
Russian voxforge 8k

loss function, the hierarchical models have the aforementioned
compositional architecture.

4.2. Results

Table.2 shows the main results of our experiment. For each
model, we evaluate it across all 47 languages and take the av-
erage of their PER (phone error rate). In addition, we also
show the percentage of errors of addition, deletion, and sub-
stitution. The table indicates that the English model has 72%
PER, which is the worst phone error rate among all models.
The result is expected as the English model could only recog-
nize phones available in English but is not able to recognize any
unseen phones in our testing languages. This also explains the
high substitution error rate in English as it typically replaces
unknown phones with English phones during inference. The
Allosaurus model performs better than the English model as it
is a language-independent model and could cover a larger phone
inventory. It improves the substitution error rate from 45.6% to
37.8%. Both hierarchical models perform significantly better
than the Allosaurus model. The linear model has 57.6% PER
and the compositional model has 51.2% PER.

Table 2: Average Performance of 47 testing languages for each
model. The proposed Hierarchical model using embedding ap-
proach performs best. PER is the phone error rate, Add, Del,
Sub denotes the addition, deletion and substitution errors. All
numbers are shown in %

Model PER Add Del Sub

English model 72.0 11.2 15.2 45.6
Allosaurus model 64.3 7.86 18.6 37.8

Hierarchical (linear) 57.6 7.87 13.6 36.1
Hierarchical (embedding) 51.2 3.4 18.9 28.8

To have a better understanding of performance across lan-
guages, Figure.2 shows the box plot of the 4 models. It is clear
from the figure that each model has a very large variance: some
languages perform better and other languages perform worse.
By investigating the performance of each language, we find lan-
guages with better recording environments tend to obtain bet-
ter scores, and languages with many background noise tend to
score worse. We also compute the correlations across 4 mod-
els as shown in Figure.3. It demonstrates that Allosaurus model
and both hierarchical models are highly correlated, but the En-
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Figure 2: The boxplot of performance distribution across all 47
languages for each model

Figure 3: Performance correlation between 4 models

glish model is much less related. This is because the three mod-
els are language-independent models but the English model is
language-dependent.

Next, we investigate the most common errors of the em-
bedding model. Table.3 shows the top 3 errors and their occur-
rences across the dataset. The statistics indicate that the most
common error is the deletion of phone [s]. Our hypothesis is
that our model might have some difficulties in recognizing un-
voiced sounds. For example, [s] is an unvoiced fricative conso-
nant and [t] is an unvoiced plosive consonant. We find those un-
voiced sounds typically have some characteristic patterns in the
high frequency regions of spectrograms. However, our train-
ing set contains many 8k frequency audios and therefore the
resolution of our model is restricted to 4k due to the Nyquist
sampling theorem. Those deletion errors might be overcome by
using high resolution audio corpus in the future. Another major
errors come from the substitution errors, they have longer tails
than the other two errors. The table suggests that most common
substitution errors come from ambiguous vowels.

4.3. Analysis of Embeddings

During the training process, we also obtain the embeddings of
both articulatory attributes and phones. The attribute embed-
dings do not have much patterns in them as they are mostly in-
dependently from each other. However, the phone embeddings

Table 3: Most frequent errors in the Hierarchical model (em-
bedding), the left side in the tuple is the error and the right side
is its total occurrences in the test set. In the substitution row,
the phone on the left side is the reference and the phone on the
right side is the hypothesis

Types Most Common Errors

Add ([i], 104), ([a], 53), ([m], 47)
Del ([s], 247), ([a], 238), ([t], 221)
Sub ([a] -> [@], 122), ([u] -> [o], 109), ([a] -> [A], 104)

Figure 4: PCA projected embeddings for all phones available
in English. The embeddings are from the Hierarchical (embed-
ding) model.

have several interesting patterns. Figure.4 shows the embed-
dings of English phones. The embeddings originally have 640
dimension and get reduced to 2 dimension by PCA. There are
several interesting things we can observe in the figure. First,
there are a couple of clusters in the graph. The easiest one to
identify is the vowel cluster at the right bottom corner. We have
vowels such as [a], [o], [u] clustered together. This provides an-
other reason for the substitution error: the embeddings of those
phones are near to each other, therefore it is easy to confuse
them with each other. On the top of the figure, we have the plo-
sive velar group: [k] and [g]. [ng] near them is another velar
consonant. Furthermore, we could find several word2vec like
relations (e.g: king - queen = man - woman) in the figure. For
example, for voiced and unvoiced sounds,

e([k])− e([g]) = e([p])− e([b]) (5)

Similarly, for aspirated and unaspirated sounds, we find fol-
lowing relations:

e([ph])− e([p]) = e([kh])− e([k]) (6)

5. Conclusion
In this work, we propose the hierarchical model for low-
resource phone recognition where we explicitly model three
different entities: phoneme, phone and articulatory attributes.
We test the model on 47 unseen languages and the result
demonstrates that our approach achieves 13.1% PER better than
the baseline model. The model will be integrated into the
Allosaurus repository for more researchers to explore phone
recognition systems.
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