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Abstract

Unit selection synthesis has shown itself to be capable of
producing high quality natural sounding synthetic speech when
constructed from large databases of well-recorded, well-labeled
speech. However, the cost in time and expertise of building such
voices is still too expensive and specialized to be able to build indi-
vidual voices for everyone. The quality in unit selection synthesis
is directly related to the quality and size of the database used. As
we require our speech synthesizers to have more variation, style
and emotion, for unit selection synthesis, much larger databases
will be required. As an alternative, more recently we have started
looking for parametric models for speech synthesis, that are still
trained from databases of natural speech but are more robust to
errors and allow for better modeling of variation.

This paper presents the CLUSTERGEN synthesizer which is
implemented within the Festival/FestVox voice building environ-
ment. As well as the basic technique, three methods of modeling
dynamics in the signal are presented and compared: a simple point
model, a basic trajectory model and a trajectory model with over-
lap and add.
Index Terms: speech synthesis, statistical parametric synthesis,
trajectory HMMs.

1. Unit Selection and Parametric Synthesis
The current preferred speech synthesis technique is probably unit
selection, where appropriate sub-word units are selected from
large databases of natural speech [1]. Over the last ten years this
technique has been shown to produce high quality synthesis and is
used for many applications. For its best examples it is hard to beat
in quality, but it does have a limitation (and advantage) that the out-
put speech will strongly resemble the style of the speech recorded
in the database. As we require speech more varied in style and
emotion, to retain the quality of unit selection we need to record
larger and larger databases with different styles in order to achieve
the synthesis we desire. However we have an alternative method
for synthesis, which although at first seems to be a step backwards
from unit selection may offer the ability to model different styles
without requiring the recording of very large databases. Statis-
tical Parametric Synthesis (SPS) is a new synthesis method, pi-
oneered by HTS [2] where parametric models are trained from
databases of natural speech. SPS falls firmly in the domain of
corpus-based synthesis like unit selection, but distinguishes itself
from older non-statistical parametric synthesis techniques as found
in DECTalk [3], in SPS the parameters are trained from data and
not constructed by hand.

Statistical Parametric Synthesis has the advantage of smooth-
ing the data. The number of possible combinations of segments in
concatenative synthesis is typically vast and some concatenations
may introduce bad joins. Testing for this is very hard, and fixing
such errors is not always simple. Statistical Parametric Synthesis
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resses this issue by building what can be viewed as an average
number of units, rather than in the unit selection case as a set of
ances. There are however disadvantages too in Statistical Para-
ric Synthesis, the technique requires a parameterization of the
ch that is both reversible, and has modelable properties, such
Gaussian distribution. One such parameterization is Mel Fre-

ncy Cepstral Coefficients, as used in HTS, using the MLSA [4]
r for resynthesis. As with many speech parameterizations with
xplicit excitation model the resulting resynthesized speech is
ded and can have an unnatural buzziness, lacking the clear

pness typically found in unit selection synthesizers.
Other parameterization mechanisms have been shown to offer
ntially better quality speech e.g STRAIGHT [5] in [6]. As any

of speech analysis/synthesis technique will undoubtedly in-
uce some signal processing artifacts, unit selection techniques

prided themselves on using no or very little signal process-
to retain the crispness in the generated voices. The cost of
is the requirement for building larger and larger databases.

achieved stylistic variation in unit selection but at the cost of
rding more data in different styles, something that is not nec-
rily easy for a voice talent to do. Although some users do not
about the size of a databases if it gives better quality synthe-

our goal is automatic speech output everywhere for everyone.
hniques that provide smaller models, and work with smaller
bases will help us achieve our goal. The ultimate restriction
at it is clear that most people cannot consistently read thou-
s of utterance (nor have the time to do so). We still believe
resynthesis for parameterized speech is not good enough yet
n though its current quality is perfectly acceptable for some
lications), and there is still work to be done there.
Statistical Parametric Synthesis has sometimes been called
M-generation synthesis”, to distinguish it from HMM-state

d units in unit selection [8], however in this work (and in oth-
there is no actual requirement for HMMs. No HMMs are used
nthesis time, even though HMMs can be used to label the data.

refore Statistical Parametric Synthesis seems a better term.
In this paper we will present CLUSTERGEN, a Statistical
metric Synthesizer that has been created within the widely
Festival/FestVox voice building suite [9]. The first half de-

bes the core technique while the second half will report results.
ough the basic CLUSTERGEN system is only slightly differ-

from HTS, the later results of trajectory modeling are substan-
y newer.
Building English voices for HTS with the FestVox suite of
s has been supported for some time [10]. But there were a
ber of hardwired aspects, particularly in the feature names and

stions for the cluster methods in HTS. This work set out origi-
y to make the link between HTS and FestVox more robust for
rent databases and languages, but grew into a complete syn-
izer in itself (though it still uses exactly the same parameteri-
on technique).
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2. CLUSTERGEN Synthesizer
The CLUSTERGEN synthesizer is a method for training mod-
els and using these models at synthesize time within the Festival
Speech Synthesis System. The training requires well recorded ut-
terances, and text transcriptions of what has been said. The best
databases are those that are phonetically balanced. For our experi-
ments we have used the freely available CMU ARCTIC databases
so that these experiments may be easily duplicated by others.

2.1. Training

The first stage, which is not technically part of the CLUSTERGEN
synthesizer is to label the database using an HMM labeler. For the
results presented here, we have used EHMM, [11], which is in-
cluded within the latest FestVox release. It uses Baum Welch from
a flat start to train context independent HMM models, which it then
uses to force align the phonemes generated from the transcriptions
with the audio. For this work we use 3-state models, that generate
HMM state sized labels, three per phone. We have used other la-
beling techniques (SPHINX and JANUS), but the work presented
here has all used EHMM.

Although in our other work [12] we typically analyze the sig-
nal in a pitch synchronous fashion, here we used a fixed frame
advance of 5ms.

F0 is extracted using the Edinburgh Speech Tools pda pro-
gram. Using the generated phoneme labels, the F0 is interpolated
through unvoiced regions, thus there is a non-zero F0 value for all
5ms frames that contain voiced or unvoiced speech. This is fol-
lowing the F0 modeling techniques in [13].

24 MFCCs are combined with the F0 to give a 25 feature vec-
tor every 5ms.

For each of these vectors high level features are extracted, in-
cluding phone context (with phonetic features), syllable structure,
word position, etc. The extracted features are basically the same
set used by the previous CLUNITS unit selection synthesizer [12],
however in this case we extract them for each vector, rather than
for each segment (phoneme).

Clustering is done by the Edinburgh Speech Tools CART tree
builder wagon. It has been extended to support vector predictees.
CART trees are built in the normal way with wagon to find ques-
tions that split the data to minimize impurity. A tree is built for all
the vectors labeled with the same HMM state name. The impurity
is calculated as

N ∗ (
24X

i=1

σi) (1)

Where N is the number of samples in the cluster and σi is the stan-
dard deviation for MFCC feature i over all samples in the cluster.
The factor N helps keep clusters large near the top of the tree thus
giving more generalization over the unseen data.

Initial studies built joint F0/MFCC models, but slightly better
results are possible when separate F0 and MFCC models are built.

In these tests no delta features are used, initial studies did not
give better results so that is left for later research.

An additional CART tree is built to predict durations for each
HMM state. Unlike HTS, we predict each state duration indepen-
dently, though do include features to identify the states position in
its phoneme.

2.2. Synthesis

At synthesis time the phone string is generated from the text as is
done in other synthesis techniques within Festival, then an HMM
state name relation is build linking each phone to its three sub-
phonetic parts. The duration CART tree is used to predict the
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th of each HMM state. A set of empty vectors is created to
he length of the predicted state duration. Using the CART tree
ific to the state name, the questions are asked and the means

the vector at the selected leaf are added as values to each
or.
Note, unlike HTS when a single vector is predicted for each

(though the treatment of dynamics does complicate this a
), in CLUSTERGEN we are predicting multiple vectors per
. This means that the predicted vector may be different
ugh the state.
After prediction smoothing is done by a simple 3-point mov-
average to each track of coefficients.

s′t = (st−1 + st + st+1)/3.0 (2)

ere sn is the sample at time point n.
Then the speech is reconstructed from the predicted param-
s using the MLSA filter [4]. Voicing decisions are currently
e by phonetic type directly from the labels, rather than trained

the acoustics. A more elaborate model taking into to account
stic information with respect to voice would probably give

er results.

3. Experiments
ough other experiments have been done using CLUSTER-

in the multilingual space [14], the work presented here con-
rates on English, specifically the US English CMU ARCTIC
bases [15].
The base experiments were carried out on CMU ARCTIC SLT,

female database. The database consists of 1132 phonetically
nced sentences. For testing we held out one tenth of the A set
in the databases, this gives a test set of 59 sentences (actually
y fileid that matches “arctic a.*9”) and 1073 for testing. Much
e testing was actually done on the A set alone, thus the train-

consisted of 534 utterances. The full 1132 utterance database
sists of 41888 segments, around 56 minutes of speech, includ-
less than 0.5 seconds of silence at the beginning and end of
utterance.

Unlike our unit selection work where we use short listening
to evaluate different parameter settings in out systems [16],
we use an objective measure. For our held-out test set we use

r defined state durations and predict F0 and MCEP features
each vector. We then calculate a distance measure between
predicted spectral features and the actual ones. This measure
res duration modeling.
We choose to use Mel Cepstral Distortion (MCD) as a mea-
, which we have already used in our voice conversion work
. The measure is defined as

10/ln(10) ∗

vuut2
24X

i=1

(mct
i − mcp

i )2 (3)

ere mci is the ith MFCC coefficient in a frame, mct is the
et MFCC we are comparing against and mcp is the predicted
CC
For voice conversion work we achieve values in the range of
6.0. In this work we achieve values in the range of 4.5-8.0 (and
etimes larger). Smaller numbers are better.
Note this measure does not weight the Mel Cepstral param-
s as the range of Mel Cepstral Coefficients gets smaller for
er coefficients, thus this measure is more sensitive to mini-

ing the lower order ones.



The first experiment presented is for SLT with a training set of
1072 utterances and 59 test utterances. This experiment is to deter-
mine an appropriate stop value for training the CART trees. That
is the minimal number of examples in cluster that are necessary
before considering potential splits for that cluster.

Stop value to MCD
MCD

Stop Value5.70

5.75

5.80

5.85

5.90

5.95

6.00

0.00 50.00 100.00 150.00 200.00 250.00

Stop value for clustering

Using information from the above distribution we fixed the
stop value at 70. Interestingly this gives approximately the same
number of CART tree leaves over all as when using the CLUNITS
unit selection [12] clusters that has a stop value of 20. As CLUS-
TERGEN is training on more data (a number of vectors per state)
it appears we are still ending up with approximately the same num-
ber of spectral distinctions.

F0 modeling is also done by a CART tree predicting values
for each vector, a larger stop size found to be better. The results
give a RMSE for F0 as 14.09Hz, the same F0 model is used for the
trajectory models described below.

The next experiment shows how varying the amount of data
in the training set affects the synthesis results. It is notable that
even modest amounts of data (200 utterances) can produce quite
acceptable synthesis. The training subset was created by select-
ing the first N utterances from the complete 1073 utterance set.
We start at 100 utterances, as that number is necessary to get full
phonetic coverage.

Number of Utterances to MCD
MCD

3Num Utts x 105.70

5.80

5.90

6.00

6.10

6.20

6.30

0.20 0.40 0.60 0.80 1.00

Variation in size of database

4. Trajectory Modeling
The basic CLUSTERGEN method does not take into account the
dynamic properties of the signal. Prediction is done in isolation
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e prediction from the vectors before and after. However, un-
HTS as we are predicting potentially different vectors every
e we do model some of the desired dynamic variability (HTS
eves this through dynamic Cepstral features). But neither of
e techniques really addresses the explicit modeling of dynam-
n the segments we are trying to model.

Trajectory modeling [18] offers a potential solution here. In-
d of modeling a single vector of Gaussians for each state, we
ld be modeling a sequence of vectors. In speech synthesis we

trying to model the variation of the speech over time, and a
le Gaussian may be too gross a level to capture that variabil-
Here, we present two basic trajectory models. The first, we
trajectory where we model a HMM state-sized segment by a
ence of cepstral vectors. We optimize our CART tree to clus-
o minimize the variance of the sequence of segments in the
ter.

This measure is very similar to the measure used in our previ-
CLUNITS technique [12], but there we keep a set of instances
er than representing the cluster in a model of means and vari-
s.

One important issue is defining the number of vectors in the
ence. It should be related to the length of the samples in the
ter. At first we used the mean size, but after experimentation
settled on size 7 or the mean if greater. Each segment in the
ter is linearly interpolated to the size of the model for the clus-
nd sufficient statistics are updated. Note we do not use DTW

lign these as the time differential through the segments is part
hat we want to model, normalizing them through DTW would
e some of that information.

The second trajectory model presented is trajola a trajectory
el with overlap and add. In this second model each instance
clustering consists of two parts the current segment and the
ious segment. In an analogy to the motivation for using di-
nes for synthesis, here we are modeling the transitions between
MM state sized units. The left and right parts are stored in
rate models within the cluster, (again of size 7 or the mean

ch ever is bigger). At synthesis time the appropriate cluster is
cted, the right portion is added to the signal, while the left is
lapped with the previous segment with a windowed weighting,
the sum of such weights adding to 1.0.

We tried both a triangular window and a Hanning window and
d the triangular window gave better results. In addition to
g the window and synthesis time while constructing the full
icted sequences of vector. We also found using the same win-
as weights in the impurity measure in the CART tree builder

htly improved results.

The stop value used for the trajectory and trajola modeling
10, discovered by experiment. As trajectory modeling is done
HMM-state sized units rather than the vectors within a state,

e are less instances to train on, thus a smaller stop value is not
pected..

The following table shows a comparison of the three presented
stical parametric techniques on 7 different ARCTIC databases.
is the simple single vector per leaf model. The databases all
approximated the same number of utterances, and they are

t into training and test sets as with the SLT experiments above.
ugh as not all databases have exactly the same number of utter-
s these are not directly comparable. Although some speakers
not US English speakers, in all cases we used a US English
t end (lexicon and phone set).



Sex Dialect cgp traj trajola
AWB M Scottish 6.557 6.480 6.471
BDL M US 6.129 5.857 5.770
CLB F US 5.417 5.076 4.992
JMK M Canadian 6.165 5.934 5.872
KSP M Indian 5.980 5.823 5.733
RMS M US 5.731 5.437 5.394
SLT F US 5.713 5.525 5.472

In all cases the trajola models are better than the traj models
which in turn are better than the cgp model. The number of vec-
tors in each voice’s test set varies from 32,000 to 45,000 (due to
different speaker rate, and amount of silence at either end). Using
two-sided paired T-tests the results for traj and trajola are statis-
tically significant at the p < 0.0015 level, while the other results
are statistically significant at the p < 0.001 level.

It is also worth mentioning the size of each model. The cgp
model is much smaller than the trajectory ones. Although all have
approximately the same number of leaves, there are more param-
eters in the leaves of the traj model and even more in the trajola.
For SLT, there are 6455 vectors, for traj 73582 vectors in all se-
quences, and for trajola 198628 vectors. Although the above bet-
ter results for trajectory models are partly due to more parameters,
its also due to better modeling. As we can see from the stop value
graph for cgp, allowing larger models does not improve the cgp
model.

5. Conclusions
We see CLUSTERGEN as a first step forward for a new kind of
synthesis, and there is still much work to make it better. Our cur-
rent focus is on the area of signal representation and we are inves-
tigating both STRAIGHT [5] and HNM [19].

The updates to Edinburgh Speech Tools and Festival to build
and run CLUSTERGEN voices are already released in the latest
beta version 1.96. The scripts and accompanying Scheme support
code (current version 0.8) will be released with the next version of
FestVox. All code is released under a free software license.
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