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ABSTRACT 
This paper presents a novel training algorithm for Gaussian Mixture 
Model (GMM) -based Voice Conversion (VC). One of the advantages 
of GMM-based VC is computationally efficient conversion process­
ing enabling to achieve real-time VC applications. On the other 
hand, the quality of the converted speech is still significantly worse 
than that of natural speech. In order to address this problem while 
preserving the computationally efficient conversion processing, the 
proposed training method enables 1) to use a consistent optimiza­
tion criterion between training and conversion and 2) to compensate 
a Modulation Spectrum (MS) of the converted parameter trajectory 
as a feature sensitively correlated with over-smoothing effects caus­
ing quality degradation of the converted speech. The experimen­
tal results demonstrate that the proposed algorithm yields significant 
improvements in term of both the converted speech quality and the 
conversion accuracy for speaker individuality compared to the basic 
training algorithm. 

Index Terms- GMM-based voice conversion, over-smoothing, 
modulation spectrum. training algorithm 

1. INTRODUCTION 

Statistical Voice Conversion (VC) is an effective technique for mod­
ifying speech parameters to convert non-linguistic information while 
keeping linguistic information unchanged, and making it possible to 
enhance various speech-based systems [I, 2, 3, 4]. Recently, several 
state-of-the-art methods have been applied to VC [5, 6, 7], but Gaus­
sian Mixture Model (GMM)-based VC [8, 9] has still gained popu­
larity thanks to its computationally efficient conversion processing. 
This framework models the joint probability density of the static and 
dynamic features of speech parameters from both source and target 
voices using a GMM. The conversion stage performs the Maximum 
Likelihood (ML) -based trajectory conversion [9] using the condi­
tional probability density analytically derived from the GMM and an 
additional constraint between the static and dynamic features. In this 
method, the converted parameter trajectories can be determined an­
alytically, also enabling the computationally efficient real-time con­
version processing [10, 11]. However, they suffer from the over­
smoothing effect, which makes the converted speech sound muffled. 

There are various attempts at addressing the over-smoothing 
issue in statistical parametric speech synthesis. Zen et al. [12] 
proposed the trajectory training method for Hidden Markov Model 
(HMM)-based speech syntheSiS [13] by imposing the constraint be­
tween the static and dynamic features in syntheSiS on the training 
criterion. The use of a consistent optimization criterion between 
training and synthesis enables to effectively optimize the trained 
model for syntheSiS. Toda and Young [14] has further incorporated 
an additional criterion on Global Variance (GV) into the optimiza­
tion criterion, where the GV is well known as a feature sensitively 
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correlated to the over-smoothing effect [9]. This method enables 
the use of the computationally efficient parameter generation algo­
rithm [15] for generating the parameter trajectory while keeping 
its GV close to natural one. Hwang et aI. [16] proposed the train­
ing algorithm for GMM-based VC considering the Gv. Although 
it significantly improves the quality of the converted speech while 
keeping the computationally efficient conversion, there still remain 
some problems to be solved: 1) it suffers from the inconsistent opti­
mization criteria between training and conversion, and 2) the GV is 
still insufficient to detect the over-smoothing effect. 

Recently, Takamichi et aI. [17] have found that a Modulation 
Spectrum (MS) of the generated parameter trajectory is more sen­
sitively correlated to the over-smoothing effect than the Gv. They 
have also reported that the MS can be regarded as an extension of 
the GV and the synthetic speech quality is significantly improved by 
conSidering the MS rather than the GV in HMM-based speech syn­
thesis. It is expected that a better consistent optimization criterion 
will be designed by incorporating a criterion on the MS. 

This paper proposes an MS-constrained trajectory training al­
gorithm as a novel training algorithm for GMM-based Vc. After 
implementing the trajectory training, we further integrate the MS 
into the trajectory training. The proposed training algorithm gives a 
unified framework for both training and conversion which provides 
both a consistent optimization criterion and a closed form solution 
for parameter conversion considering the MS. The experimental re­
sults demonstrate that the proposed algorithm yields significant im­
provements in term of both speech quality and speaker individuality. 

2. BASIC FRAMEWORK 

2.1. GMM Training (8) 
A joint probability density function of speech parameters of the 
source and target speakers is modeled with a GMM using a parallel 
data as follows: 

(X,Y) [M;;) ] (X,Y) [ 
1:;; X) 1:��Y) ] 

Mm = (Y) ' 1:m = ..,(YX) ..,(Yy) , 
ttm .LIm £..Jrn 

(1) 

(2) 

where X t and Y t are the source and target feature vectors at frame 
t. respectively. Y t is given by 2D-dimensional joint static and dy-
namic feature vectors, [yi, �yn T, where Yt is represented as a 
D-dimensional vector, [Yt (1)", . ,Yt (D)]T The source feature 
vector is also given by the same form in this paper. N ( ' ; M, 1:) de­
notes the Gaussian distribution with a mean vector M and a covari­
ance matrix 1:. The total number of mixture components is M. A is 
a GMM parameter set consisting of the mixture-component weight 
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am, the mean vector J.L;;'Y) and the covariance matrix �;;.Y) of 
the moth mixture component J.L��,Y) consists of the source and tar­
get mean vectors, J.L;;) and J.L;';) �;;, Y) consists of the source and 
target covariance matrices, �;: X) and �;�Y) and cross-covariance 
matrices, �;,;X) and �;;Y), where they are diagonal matrices in 
this paper, The GMM parameters are estimated by maximizing the 
joint probability density given by Eq. (I). 

2.2. Parameter Conversion [9] 

Given the T -frame feature sequence X = [X i , . , X n T of the 
source speaker's voice, the converted parameter sequence Yrn = 
[yi, ... , yn T is analytically determined by maximizing the con­
ditional probability of the target feature vector Y given X under a 
constraint Y = W Y as follows: 

Yrn argmaxP(WYIX,m,'x) (3) 
y 

R::h1Trn = (w T D::hlW) -1 W T D::h1 Ern, (4) 

where W is a 2DT-by-DT weight matrix to calculate the dynamic 
features [15]. m = [ml,'" , mT] T is the sub-optimum mixture 
component sequence determined by maximizing P (miX, ,X), and 
the other parameters are given by 

D-:l Tn 

Ern 
(YIX) 

J.t1nt,t 

Am 
b", 

�(YIX) 
m 

. [ (YIX)-l dJagzD �"'1 ' . .. �(,YIX)-l] T 
, mr 

[ (YIX)T J.Lii�l .1 , . .. (YIX)T] T , J-trhT ,T 

A",Xt + b,,,, 

�(,YXl�(XX)-l
, m m 

(Y) _ �(YX)�(XX)-l (Xl 
J-tii� tn ri� J-t1n 
�(YY) _ �(YX)�(,XX)-l�(,XY) 
1n 1n rn rn ' 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
The notation diag2D denotes the construction of a block diagonal 
matrix that has the 2D-by-2D diagonal elements. The converted pa­
rameter sequence Yrn is efficiently calculated sequence by sequence 
using the Cholesky decomposition [15], or recursively calculated 
frame by frame using the low-delay conversion algorithm [18]. 

3. CONVENTIONAL GV-CONSTRAINED TRAINING 

3.1. Global Variance (GV) [9] 

The GV v (y) = [v (1) , . . .  , V (D)] T is defined as the second order 
moment of the trajectory y, and its doth component is given as 

1 T 
( 1 T )

2 
V (d) = T {; yd d) - T � YT (d) . 

3.2. Objective Function for GV-Constrained Training [16] 

(11) 

A part of the GMM parameter set, {Am, bm, ���IXl} is updated 
by maximizing the following objective function Lgv consisting of 
the GMM and GV likelihoods: 

Lgv = P(WyIX,m,'x)P(v(y) IX,m,'x,'xv)2WvT, (12) 
P(v (y) IX,m,'x,'xv) =N(v (y); v (Yrn), �v), (13) 

where Wv is a weight of the GV likelihood, �v is a covariance matrix 
of the GV, and 'xv is a model parameter set of the GV The GMM 
and GV likelihoods are normalized by the ratio of the number of 
feature dimensions when Wv = 1 . 0. This training algorithm updates 
the model parameters to make the GV of the converted parameter 
sequence close to natural one. 
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3.3. Parameter Conversion 

The basic parameter conversion process is performed as described 
in Section 2.2. The converted parameter sequence Yrn is equivalent 
to that determined by maximizing Lgv under the constraint Y = 
Wy. Therefore, Lgv is also regarded as the objective function for 
conversion although the constraint needs to be additionally used. 

3.4. Problems 

There is inconsistency of the optimization criterion between the 
training and the conversion; i.e., the explicit relationship between 
the static and dynamiC features given by Y = W Y is ignored in 
training while it is considered in conversion. Therefore, the trained 
model parameters are not optimum for conversion. 

The GV likelihood is used as a penalty term to alleviate the over­
smoothness. Although it can improve the quality of the converted 
speech, the improved quality is still far from the natural one. 

4. IMPLEMENTATION OF TRAJECTORY TRAINING 

In [19], the trajectory training has been implemented for the joint 
probability density modeling in GMM-based voice conversion. In 
this section, we present yet another implementation by reformulating 
the conditional probability density function in Eq. (3) by imposing 
the explicit relationship between the static and dynamic features. 

4.1. Objective Function for Training and Conversion 

The objective function for the trajectory training is written as: 
Ltrj = P (yIX, m,'x) = N (y; Yrn' R::h1) (14) 

The mean vector Yrn is given by Eq. (4) and the inter-frame cor­
relation is effectively modeled by the temporal covariance matrix 
R::h1. In training, the GMM parameters are updated by maximizing 
Ltrj. In conversion, the basic conversion process described in Sec­
tion 2.2 is performed. Note that the mean vector Yrn is equivalent 
to the generated parameter sequence in the basic conversion process. 
Therefore, Ltrj can be regarded as the objective function not only 
for training but also for conversion. 

4.2. Estimation of Model Parameters 

[ T TJT [ T TJT Here, let eA = Ai,' ,AM , eb = b1,"', bM , and 
[ (YIX)-l (YIX)-l] T �-1 = �1 , ... '�M be the joint parameters of 

(YIX)-l Am, bm, and �m over all mixture components, respectively. 
To optimize these model parameters for the objective function, we 
employ the steepest descent algorithm I as follows: 

e(i+l) _ e(i) & log Ltrj I "'A - "'A + a !:Ie . ' 
U<;,A eA=e�) 

(15) 

where a is a learning rate, and i is an iteration index. eb and �-1 
are also optimized in the same manner, The gradients are given by: 

&logLtrj sT..d· -1 [D-:1W( _ A
, )XT] (16) 

&eA Tn lag2D Tn y YTn , 

&log Ltrj 
&eb 

& log Ltrj 
&� 1 

(17) 

1 ST d' -1 [W (R-1 A AT T) 2 rn Jag2D rn + YrnYrn - yy 

-Ern (Yrn - y) T W T - W (Yrn - y) E;,, ] ,(18) 

I Closed form solutions also exist for;A and ;b' 



where Sm = [Sm,,'" , SmrlT ®I2D is a 2DT-by-2DM matrix, 
Sri" is an M -dimensional vector of which the m-th component is 1 
when m = mt and otherwise are 0, and 12D indicates the 2D-by-
2D identity matrix. 

In this paper, the traditional joint density training is firstly 
performed to estimate A .  Then, the proposed algorithms up­
dates {�A' �b' I;-1} while keeping {wm, p,;;), I;;;X)} constant. 
Note that the sub-optimum mixture component sequence m never 
changes in this setting. 

5. PROPOSED MODULATION 
SPECTRUM-CONSTRAINED TRAJECTORY TRAINING 

5.1. Modulation Spectrum 

Whereas the GV represents the temporal scaling of the parameter 
trajectory as a scalar value in each feature dimension, the MS ex­
plicitly represents the temporal fluctuation as a vector [17]. In this 
paper, the MS s (y) of the parameter sequence y is defined as 

s(y) [S(I)T, ... ,s(d)T, ... ,S(D)Tr (19) 

s(d) [Sd (O) ,  . .  · ,sd(l), . .  · ,sd (D� - I)r, (20) 

Sd (I) RL + IL (21) 

= (�Yt (d)COSkt) 
2 

+ (�Yt (d)Sinkt) 
2
,(22) 

where 2Ds is a length of Discrete Fourier Transform (OFT),  k = 

- IT I / Ds is a modulation frequency, and D� is the number of MS 
dimension in each feature dimension, where D� < Dsz In this 
paper, the MS is calculated utterance by utterance. 

5.2. Proposed Objective Function 

We integrate the MS compensation into the trajectory training. The 
objective function consists of both the trajectory likelihood and the 
MS likelihood as follows: 
Lmstrj = P (YIX, m, A) P(s (y) IX, m, A, As)w,T/D:, (23) 

P (s (y) IX, m, A, As) = N (s (y); s (Ym), I;s), (24) 
where As is a model parameter set of the MS, and I;s is a D�D-by­
D�D covariance matrix, and Ws is a weight of the MS likelihood. 
The trajectory likelihood and the MS likelihood are normalized by 
the ratio of the number of feature dimensions when Ws = 1. I;;l is 
represented as [p(l) . . .  p(d) ... p(D )] where p(d) is D'D-by-s1 ' 8 '  ' S ' S S 
D matrix of which columns correspond to s (d). The MS likelihood 
works as a penalty term to the reduction of the temporal fluctuation 
of the converted parameter sequence. 

5.3. Estimation of Model Parameters 

The model parameters are estimated in the same way as the trajectory 
training. Let Lms be the MS likelihood N (s (y); s (Ym), I;s). 
The logarithm function of Lmstrj is given by 

T log Lmstrj = log Ltrj + WS D' log Lms, s 
(25) 

2 Because lower modulation frequency components mainly affect speech 
perception [20, 21]. only these components are conSidered in this paper. 
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and the gradients of log Lms are given as 
[)logLms 

[)�A 
[)logLms 

[)�b 
[)log Lms 

[)I; 1 
where 

ST d' -1 [D-1WR-1 XT] m lagZD m m 8m , 

[s� T, ... , s't T, ... , s;" T] T 

(26) 

(27) 

(29) 

s; [sd1) , ... , sdd), . .  · , sdDW , (30) 

St (d) 2ft (d) p�d) T (s (y) - s (Y)) , (31) 

ft (d) = [It,d (0)"" , ft,d (I) ,'" , It,d (D� - 1)] T , (32) 

It,d (I) = Rd,J c os kt + hf sin kt, (33) 
where Rd,f and id,J are calculated using the d-th dimensional com­
ponents of 11m' 

5.4. Parameter Conversion 

It is unnecessary to consider the MS in parameter conversion because 
the GMM parameters are optimized to make the MS of the converted 
parameter sequence close to the natural one. Consequently, the basic 
parameter conversion algorithm is straightforwardly employed. If 
the proposed objective function Lmstrj is used in the parameter con­
version, the converted parameter sequence to maximize it is equiv­
alent to 11m which is analytically solved. Therefore, the proposed 
framework can also be regarded as a unified framework between the 
training and conversion process. 

Because the MS involves the GV [17], the proposed MS­
constrained algorithm well recovers not only the MS but also the Gv. 
The GV is effectively recovered by the MS-constrained trajectory 
training ("MSTRJ") as observed in Fig. I. 

6. EXPERIMENTAL EVALUATION 

6.1. Experimental Conditions 

In our experiments, we prepared 2 English speakers (rms and sit) 
in the CMU ARCTIC database [22]. We used 50 sentences were 
selected for training and remaining 50 sentences for evaluation. We 
trained the slt-to-rms GMM. Speech signals were sampled at 16 kHz. 
The shift length was set to 5 ms. The Ist-through-24th mel-cepstral 
coefficients were used as a spectral parameter and log-scaled Fo and 
5 band-a periodicity [23, 24] were used as excitation parameters. The 
STR AIGHT analysis-synthesis system [25] was employed for pa-

5 10 15 
feature index 

20 

Fig. 1. An example of the GVs of the converted mel-cepstral coeffi­
cients ("nat" indicates natural speech parameter trajectories) . 



rameter extraction and waveform generation. The spectral parame­
ters and aperiodic components were converted through a 64-mixture 
GMM and a 16-mixture GMM, respectively. The log-scaled Fo was 
linearly converted. The DFT length to calculate MS was set to 2048 
that covers the length of all training utterances. The conventional 
GV-constrained training algorithm and the proposed algorithms were 
applied only to spectral component, and the likelihood weight Wv 
and Ws were set to 1.0. According to the results of our preliminary 
test3, D� was set to Ds/2 (= 50 Hz). 

We compared the following training algorithms: 

BASIC : Basic training [8] 
GV: Conventional training considering the GV [16] 
TRJ : Proposed trajectory training 
MSTRJ : Proposed trajectory training considering the MS 

The trajectory likelihood and the MS likelihood for the natural pa­
rameter trajectories of the evaluation data were firstly calculated to 
analyze the effect of the proposed algorithms. Then, the speech qual­
ity and the speaker individuality of the converted speech are evalu­
ated in the perceptual evaluation. 

6.2. Objective Evaluation 

Fig. 2 and Fig. 3 illustrate the trajectory likelihood Ltrj and the MS 
likelihood Lms for the natural parameter trajectories of  the evalua­
tion data, respectively. The trajectory likelihood is normalized by the 
total number of frames T. The trajectory training ("TRJ") slightly 
improves the MS likelihood as well as the trajectory likelihood com­
pared to the basic training ("BASIC). This result shows that the 
proposed trajectory training models the parameter trajectories more 
accurately than the basic training. 

The MS-constrained trajectory training ("MSTRj") well im­
proves the MS likelihood than the other algorithms. This result 
demonstrates that the MS of the converted parameter trajectory is 
well recovered by "MSTR]," It is observed that the trajectory likeli­
hood is significantly degraded by the conventional GV-constrained 
training ("GV") .  This is because "GV" uses the inconsistent criteria 
between training and conversion. This likelihood degradation is 
reduced by "MSTRj," 

6.3. Subjective Evaluation 

In the evaluation of the speech quality, a preference test ( AB test) 
was conducted. We presented every pair of converted speech of 4 al­
gorithms in a random order, and we forced listeners to select speech 
sample that sounds better quality. Similarity, X AB test on speaker 
individuality was conducted using the analysis-synthesized speech 
as a reference "X." 6 listeners participated in each assessment. 

The results are illustrated in Fig. 4 and Fig. 5. It is observed that 
"TRj" has higher scores than "BASIC" in term of both the speech 
quality and the speaker individuality. On the other hand, the scores 
of 'TRj" are lower than "Gv." Therefore, the effect of the GV com­
pensation on the converted speech is larger than that of the trajectory 
training. We can see that "MSTRj" achieves the best scores than 
others in term of the speech quality. This result demonstrates that 
the proposed MS-constrained trajectory training yields the best per­
formance among these training methods. 

3We conducted the preliminary subjective test to investigate the quality­
wise effect of higher modulation frequency component of MS. As a result, 
there is no Significant difference in quality between analysis-synthesized 
speech and the speech that MS over 50 Hz was cut. 
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Fig. 2. Trajectory likelihood for Fig. 3. MS likelihood for the nat­
the natural parameter trajectories. ural parameter trajectories. 
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Fig. 4. Preference scores on Fig. 5. Preference scores on 
speech quality with 95 % confi- speaker individuality with 95 % 
dence intervals. confidence intervals. 

7. CONCLUSION 

This paper have proposed novel training algorithms for GMM-based 
voice conversion in order to produce the high-quality speech while 
preserving the computationally-efficient conversion algorithm. Tra­
ditional GMM have been firstly reformulated as the trajectory model 
called "trajectory GMM," then, the Modulation Spectrum (MS) have 
been integrated into the trajectory training. The experimental results 
yielded the significant improvements in term of both the speech qual­
ity and the speaker individuality of the converted speech. As future 
work, we will implement the proposed algorithm for HMM-based 
speech syntheSiS, and apply the proposed algorithm to the voice con­
version for arbitrary speakers [26, 27]. 
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