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ABSTRACT

This paper describes some of the results from the project entitled
“New Parameterization for Emotional Speech Synthesis” held at the
Summer 2011 JHU CLSP workshop. We describe experiments on
how to use articulatory features as a meaningful intermediate rep-
resentation for speech synthesis. This parameterization not only al-
lows us to reproduce natural sounding speech but also allows us to
generate stylistically varying speech.

‘We show methods for deriving articulatory features from speech,
predicting articulatory features from text and reconstructing natural
sounding speech from the predicted articulatory features. The meth-
ods were tested on clean speech databases in English and German,
as well as databases of emotionally and personality varying speech.

The resulting speech was evaluated both objectively, using tech-
niques normally used for emotion identification, and subjectively,
using crowd-sourcing.

Index Terms— speech synthesis, articulatory features, emo-
tional speech, meta-data extraction, evaluation

1. INTRODUCTION

This paper reports results from the “New Parameterization for Emo-
tional Speech Synthesis” group of a workshop which was held at
Center for Language and Speech Processing at the Johns Hopkins
University in Summer 2011 [1].

Over the last few years, speech synthesis research has moved
from using unit selection speech synthesis technology, where sub-
word instances of speech are selected from large databases of natu-
ral speech, to a new technology called Statistical Parametric Speech
Synthesis (SPSS or HMM synthesis), where generative models of
speech are constructed. In spite of the obvious advantages of a gener-
ative speech model, the quality of pure statistical parametric speech
synthesis systems has not yet surpassed the naturalness of the best
unit selection ones, but an explicit model offers a new opportunity
for more interesting modeling of speaker specific phenomena.

Much of the work on statistical synthesis uses standard represen-
tations of spectral parameters (MFCCs, LSP) but the techniques do
not require such a direct parameterization. In this work we are there-
fore investigating significantly different parameterizations, which
we believe are easier to manipulate in order to increase variability in
speech synthesis.
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In addition to requiring that basic interpolation and distance met-
rics are well-defined, an ideal parameterization must: (a) be auto-
matically and robustly derivable from recorded speech; (b) be able
to reproduce high quality speech from the parameterization; (c) be
able to predict the parameterization for text; and (d) capture the vari-
ance of the speech in the interesting dimensions (speaker identity,
emotion, dialect, style, register, etc.)

Potential parameterizations include: Articulatory Features
(AFs), i.e. non-segmental features of speech such as nasality, as-
piration, voicing, etc. [2]; Articulatory position data, as derived
from systems like electromagnetic articulograph (EMA) as found in
the MOCHA data [3]; and “Klatt”-like features, as used in Klatt
format synthesis [4] and in KlattStat [5].

In this paper, we will present our specific experiences with Ar-
ticulatory Features (AFs). During the workshop we also investigated
the use of the Liljencranz-Fant model, which provides an explicit
mode for excitation, but we do not report those results here.

2. DATA SETS

In order to investigate how well AFs can represent the variation
found in natural speech, we applied our techniques to both standard
neutral single-speaker databases in English and German [6], as well
as multi- and single-speaker emotion and personality databases:

LDC Emotional Prosody Speech and Transcripts (LDC2002S28)
contains English dates and numbers from 7 actors: 2418 ut-
terances, average 3 sec, total = 2h. The database contains a 4
class problem (happy, hot-anger, sadness, neutral), a 6 class
problem ([...], interest, panic), and a 15 class problem ([...],
anxiety, boredom, cold-anger, contempt, despair, disgust,
elation, pride, shame).

Berlin Emotional Database (emoDB) [7] contains German se-
mantically neutral utterances from 10 actors: 535 utterances,
average 2.8 sec, total ~ 25 min. The 6 emotions are (in ad-
dition to neutral): anger, boredom, disgust, anxiety/ fear,
happiness, sadness.

Berlin Personality Database [8] contains one professional Ger-
man speaker acting both high and low targets on the “Big
Five” personality scales. The database contains 3 parts, with
the same and free text spoken in eleven different personalities,
= 5h of speech in total.
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For automatic classification of emotions and personality, we
extracted 1582 features using openSMILE [9]. We extracted 124
prosodic features (72 Fy, 38energy, 154 duration/ position), 140
voice quality features (68 jitter (JT), 34 shimmer (SH), 38 voicing
(VC)), and 1178 spectral features (570 MFCC, 304 MEL, 304 LSP).

3. ARTICULATORY FEATURES

In this work, we are not attempting synthesis by inversion. Rather,
we view articulatory features as a representation of the intended per-
ception of the speech signal by a listener, similar to own earlier work
[2]. Modeling speech using multiple parallel feature streams allows
going beyond the “beads-on-a-string” model [10] of speech, and ear-
lier work shows that AFs are well suited for modeling changes in
hyper-articulated speech [11], which we regard as a prototype of a
strong emotion. Lisping was also found to clearly affect isolated AFs
in speaker adaptation [12].

We are therefore not trying to manipulate a physical model of
the exact position of the tongue, lips, etc., but we seek to work on
a description of the perception of a sound, and hope to be able to
show that the observed variations are systematic and meaningful.
Generally, we expect that a set of features will generally map 1:1 to
speech sounds, even though this is not strictly enforced.

Also, AFs are generally regarded as being dialect and language
independent, so that our proposed scheme might be suitable for
language-independent or cross-lingual speech synthesis as well.

3.1. Generating AFs from Audio

In this work, we will compare three different approaches to including
AFs into speech synthesis:

e Purely binary: good for disambiguation, inspired by phonol-
ogy — containing 40 to 80 binary classifiers [2]

e Multi-stream classification: used for recognition — ca. 8
multi-valued individual classifiers [13]

e Continuous representation — one network, trained to give a
continuously-valued vector output, which however is not nec-
essarily a posterior probability

In our experiments, we decided to focus on the third, continuous,
representation, for a number of reasons: when trying to predict AFs
using Artificial Neural Networks (ANNSs), this approach is similar
to ASR “bottle-neck” front-end feature representations, which have
been shown to be robust against gender and other traits, which we
want to normalize. Also, in multi-stream classification, vowels and
consonants are treated separately, which opens the question of what
to do about semi-vowels, diphthongs, affricates, plosives, voicing?
These do not map very well. Our first task will therefore be to com-
pare different AF representations with respect to observe changes
between emotions, styles, etc., and investigate their suitability for
training, categorization, etc.

As an example of this continuous representation, Figure 1 shows
the continuous output of the “place of articulation” node of a neu-
ral network trained using QuickNet’s' “continuous” mode using a
0.4 sec. window of stacked MFCC features as input.

We are currently trying to optimize the prediction of AFs w.r.t.
various training error metrics, and learning a topology-preserving
mapping as in Figure 1, for comparisons across databases, lan-
guages, speaking styles, etc. Similar results have been achieved for
other speakers and input representations.

Uhttp://www.icsi.berkeley.edu/Speech/qn.html
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Fig. 1. Output distribution (quasi-histogram) of the “front-back”
node of an ANN for sounds belonging to different AF categories,
trained with the target values shown in the legend. The learned distri-
butions for the § classes exhibit inversions of articulatory targets and
bi-modal distributions, which, according to manual analysis, mostly
stem from improperly labeled, or insufficiently prepared data.

3.2. Generating AFs from Text

The AF parameterization is only useful in a text-to-speech environ-
ment if it can be predicted from text. We used our standard Cluster-
gen [14] statistical parameteric synthesis system to predict AFs from
text. We take the AF predictions from the previous sections at 5 msec
intervals and combine these AFs and MCEPs into a supervector. The
vectors are then labeled with a large number of contextual features
including sub-state position, phone context, syllable context, etc. We
build CART trees for each HMM-state labeled set (three per phone).
The tree asks context questions and predicts a vector of Gaussians
at its leaf. The optimization function for the questions during the
building of the CART is minimizing the variance in the AF part of
the supervector. This is exactly the same technique we use in build-
ing an MCEPs predictor, just in this case we are clustering on the
AFs rather than the MCEPs.

To test the effectiveness of such a model, we used the CARTS to
predict feature vectors for each frame in a set of held out sentences.
We then calculate the Mel Cepstral Distortion (MCD) between the
predicted MCEPs and held out set. MCD is a standard measure used
in SPSS and Voice Conversion.

We tested on three standard databases: “RMS” (ca. one hour of
English male speech), “SLT” (ca. one hour of English female speech)
and “FEM” (ca. 30 minutes of German male speech).

In the following, the prediction of MCEPs was done by using
the Gaussians of the MCEPs of the features in the leaves of the trees
(even though in the AF case the MCEPs were not used directly in the
CART question selection). The MCEP example is our baseline us-
ing no AFs at all. All examples use Maximum Likelihood Parameter
Generation (MLPG, for smoothing MCEP) and the Mel Log Spec-
trum Analysis (MLSA) filter for re-synthesis. “13c” represents 13
continuous AFs, and “26b” represents 26 binary AFs, as motivated
in the previous section.

[ | 13¢c [ 26b | MCEP |

RMS | 5.360 | 5.320 | 5.197
SLT | 5.284 | 5.278 | 5.140
FEM | 5.822 | 5.761 | 5.600

MCD is a distortion measure, so lower is better. A difference of 0.12
is about equivalent to doubling the data, and you probably cannot
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hear differences less than 0.07 [15]. Thus the above AF-base syn-
thesis is measurably worse than not using AFs but it is close, and
without careful listening tests sounds the same.

As the AFs are predicted without knowledge of their own AF
context we added smoothing (“S”) to them, and we added AF deltas
(“D”) to the supervectors. We used a simple 5-point smoother (five
times) and added delta features.

[ Smooth/ Delta | 13¢SD [ 26bSD | MCEP |

RMS 5.310 5.274 5.197
SLT 5.218 5.203 5.140

This improved the quality, but the AF cases are still not as good
as the MCEP alone. The secondary stage we use in Clustergen is
to move the HMM-state labels to optimize the prediction quality of
the models. Move-label (“ml”) is an iterative algorithm [16] that
typically improves the MCD score by 0.15 to 0.20. We find:

[ Move-Label [ 13¢SDml [ 26bSDml | MCEP |

RMS 5.141 5.047 5.018
SLT 4.998 4.961 4.974

Interestingly the move label algorithm gives better gains for the AF
based models than the MCEP models. This may be due to the fact
that the original boundaries were derived from MFCCs. Now the AF
system marginally beats MCEP models for SLT and reaches close in
the RMS case. We would not wish to claim the AF models produce
better raw synthesis in the case, but do wish to claim the difference
between an AF-base system and an MCEP system is negligible.

3.3. Mapping AFs to Cepstral Coefficients

The above figures are all based on using the joint MCEPs from the
AFs cluster trees. We also investigated building direct models. Us-
ing neural nets we trained models for prediction of MCEPs direct
from the context of 5 AFs.

For the SLT voice the neural network gave an MCD of 4.97 on
the held our test set and 4.91 on the training set, but these AFs were
not from our TTS system, but from the original labeling. When put
into our TTS system we got 5.45 (as opposed to 5.28 for the joint
MCEP prediction). Feeling that there was still something worth-
while in a separate prediction system for MCEPs we investigated an
adaptation technique. The AFs we predict with the initial MCEP
source are almost certainly noisy. As we are looking for an optimal
parameterization that can be predicted by text, and can best produced
the desired MCEP we implemented a simple iterative adaptive algo-
rithm. For each set of AF Gaussians in the cluster tree we calculated
the error in with respect to the training data. We then adapted AFs
to a small percent of that error and retrained the AF to MCEP neural
net. We iterated (6 times) until the error ceased to decrease. This
system gave an MCD of 5.24.

This technique looks promising though is computationally ex-
pensive to train, but the we do not yet know if the move label algo-
rithm is addressing a similar part of the error space. The AF values
may not be optimal, so changing them slightly could give a better
result, as both this technique, and the above smoothing have done.

4. EVALUATION OF EMOTIONAL SYNTHETIC SPEECH

Given the above results on non-emotional data, we look at how
best to evaluate our result when using AFs to synthesis more varied
speech. We investigated two methods, an objective method based on
emotion ID techniques, and for confirmation a subjective method to
ensure our objective measures correlate with human perception.
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Fig. 2. Automatic “objective” classification of emotions on Hu-
man and synthetic speech: the “human” bars in the background
show UAR (Unweighted Average Recall) on Human speech from
emoDB, the horizontal line marks the chance level. The “tts” bars
show how these classifiers label non-emotional, fully synthesized
speech, which is almost at chance level, as expected. The “cgpE”
(re-synthesized) speech gets recognized similar to Human speech.

4.1. Objective Evaluation

First, we verified that established approaches to automatic detec-
tion of emotions in human speech can also be used to detect emo-
tions in synthesized speech of various qualities. Figure 2 shows
the unweighted average recalls (UARs) of emoDB emotion classes
achieved by various types of features extracted using openSMILE
[9] and using WEKA [17] for classification. For the purposes of this
paper, we present the following conditions:

tts Text to speech without emotion content. Predicts durations, Fp,
and spectrum (through AFs)

cgpE text-to-speech with emotion flag, (with natural durations).
Predicts Fy and spectrum (through AFs)

We see that automatic emotion classification can be used for syn-
thesis evaluation, and that spectral features are most reliable over
all databases (not shown here). We achieve comparable results for
English and German, so that the proposed method passed a sanity
check for assessing synthesized speech.”

Further experiments confirm this impression, and in ongoing
work we are investigating the conditions under which certain fea-
tures (spectral, duration, etc.) can influence the automatic assess-
ment of not the linguistic content of a message, but the perception of
the speaking style, in which it is delivered.

4.2. Subjective Evaluation

Given the short timeframe available during the workshop, we de-
cided to use crowd-sourcing using Amazon Mechanical Turk (AMT)
as our “‘subjective” verification instrument. We ran a number of ver-
ification experiments, to make sure that AMT evaluation produces
meaningful results, even if workers may not be using good audio
equipment, may be in noisy environments, or may actively try to
cheat.

20n the LDC Emotion database, this method can predict emotions from
the linguistic content (dates & numbers) even if NO emotion parameters are
used in synthesis, because certain “non-emotional” words, i.e. years, are not
distributed randomly across all emotions.
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Almost all workers on AMT speak English, so we first evalu-
ated performance on the English LDC emotion database, using stan-
dard and ad-hoc measures to exclude unreliable workers and tasks.
Using 74 unique workers, which had completed 169 Human Intelli-
gence Tasks (HITs), we achieved an average classification accuracy
of 60% on the four-class problem (anger, sadness, neutral, happi-
ness), which most confusions appearing between happiness, neutral,
and sadness. On the fifteen-class problem, we achieved an average of
12% (neutral=29%, hot anger=26%, sadness=25%, ..., anxiety=5%,
disgust=5%, shame=4%), with most confusions occurring between
sadness, neutral, and contempt (68 workers, 218 HITs).

Using the same setup, the German Berlin Emotion Database’s
seven-class problem was classified with 41% accuracy, using 37
workers and 245 HITS, which seems reasonable (given that AMT
workers are probably not German speakers) and is between the two
accuracies achieved for the two conditions of the LDC database. We
conclude that AMT can also be used for cross-lingual experiments
on emotion recognition, and possibly other voice characteristics.

Taken together, these experiments establish that humans are sig-
nificantly more accurate than chance for smaller numbers of emo-
tions even in cross-lingual experiments, and with less-controlled set-
tings such as AMT. In our experiments, emotions such as sadness,
neutral, and hot-anger could be identified best.

5. SUMMARY AND NEXT STEPS

The workshop has established a framework to automatically extract
Articulatory Featuress from speech, generate them using text, and
synthesize speech using these or the Liljencrants-Fant model, inte-
gratint both with automatic and crowd-based evaluation.

Articulatory Features are a competitive and meaningful param-
eterization of the speech signal, not just arbitrary PCA, which can
be independently modified. Neural Networks and CART trees were
used to successfully map between spectral features, text, and feature
representations on new databases.

The successful use of AFs opens up new research areas con-
cerning more suitable choices of AFs for speech synthesis, more
complex generative models, and improvements that can be achieved
using for example embedded training. AFs should also be integrated
into voice conversion techniques.

Future evaluations of speech synthesis systems should also ben-
efit from our initial results that show that objective and subjective
measures of speech qualities are related, also if synthesized speech
is evaluated using signal-based measurements of voice quality, and
crowd-sourced, cross-lingual evaluations of voice quality. Having
an automatic technique available to assess the quality of a voice not
only with respect to the linguistic message, but also with respect to a
certain emotion or personality will be important for future research.

As part of this workshop, we extracted AF parameters for several
databases (ARCTIC, LDC Emotion, Berlin Emotion, Berlin Person-
ality), and developed software which we will add to the FestVox
tools distribution. We have also developed the LF-model feature ex-
traction and tools for subjective and objective tools for evaluation
of emotional speech synthesis. These are currently being integrated
into a single Virtual Machine, which can be run in Virtualbox or
other virtualization environments, so that other groups can easily (re-
)Juse our research tools and results.
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