
Embedding DRT in a Situation Theoretic Framework

Alan W Black

Dept of Arti�cial Intelligence, University of Edinburgh,

80 South Bridge, Edinburgh EH1 1HN, UK.

awb@ed.ac.uk

Abstract

This paper proposes the use of situation theory as a

basic semantic formalism for de�ning general seman-

tic theories. Astl, a computational situation theoretic

language, is described which goes some way to o�ering

such a system. After a general description of Discourse

Representation Theory an encoding of DRT in astl is

given. Advantages and disadvantages of this method

are then discussed.

Topic: computational formalisms in semantics and dis-

course

Introduction

The purpose of this paper is to show how a compu-

tational language based on situation theory can be

used as a basic formalism in which general semantic

theories can be implemented. There are many dif-

ferent semantic theories which, because of their dif-

ferent notations, are di�cult to compare. A general

language which allows those theories to be imple-

mented within it would o�er an environment where

similar semantic theories could be more easily eval-

uated.

Situation Theory (ST) has been developed over

the last ten years [2]. Much work has been done in

both the formal aspects of situation theory and its

use in natural language semantics (situation seman-

tics), however so far little work has been done in its

computational aspects. It is the eventual goal of

the work presented here to show how situation the-

ory can be used computationally and how a com-

putational situation theoretic language can provide

an environment in which di�erent semantic theories

can be easily compared.

Because there are so many variants of ST we

must de�ne our own here. The language astl [3]

has been de�ned. Although it uses surprisingly

few features of situation theory, it seems power-

ful enough to act as a basic language for seman-

tics. It has been considered that some extension

to \classical" feature structures be made and use

those to encode semantic forms. Features systems

augmented with set values, cyclicity and other ex-

tensions may be powerful enough but the method

described here takes an existing semantic theory

and re�nes it rather than building a new one.

This paper is basically split into two sections.

The �rst discusses how ST can be used in a compu-

tational system, and introduces the language astl.

The second half of this paper discusses Discourse

Representation Theory (DRT) as a theory in itself

and shows how it can be encoded with astl.

ST and Computation

The view according to situation theory is that parts

of the \world" can be described as situations. Sit-

uations support facts. Facts can be true, false, or

unde�ned in some situation. A fact's truth value

may be di�erent in di�erent situations. Situations

are �rst class objects in the theory, and hence they

can be used as arguments to facts so that rela-

tions can be de�ned between situations. Situations

are useful in translations for naked in�nitives (e.g.

\see"). Situations make ST di�erent from more

conventional logical theories although there have

been proposals to add situation-like objects to more

classical theories like Montague grammar [8].

As well as situations and partiality, situation

theory o�ers many other intensional objects, in-

cluding abstractions, types, and parameters (par-

tially determined objects). These form a rich for-

malism for describing semantic phenomena. How-

ever these features alone do not constitute a com-

putational system, with the addition of constraints

and rules of inference we can have the basis for

a computational system. The idea of a computa-

tional situation theoretic language has been con-

sidered elsewhere. Most notable is the language

Prosit [9] which o�ers a Prolog-like language

based on situation theory rather than �rst order

logic. Other systems (e.g. [5]) allow the representa-

tion of situations etc. within some other formalism

(e.g. feature structures) but do not use situation

theory itself as the basis for the language.

Astl

Astl is a language based on situation theory. It

takes a very conservative view of situation theory,

admitting only some basic parts. Although astl

may need to be extended later, it already can be

used to describe simple versions of semantic theo-

ries (such as situation semantics and DRT). Rather

than use, or extend, Prosit it was decided to de-

velop a new language. Astl includes some built-

in support for natural language parsing based on

the ideas of Situation Theoretic Grammar [4] while

Prosit is designed more for knowledge representa-

tion than direct language processing.

Astl allows the following basic terms:

Individuals : e.g. a, b, c.

Parameters : e.g. X, Y, Z.

Variables : e.g. *X, *Y, *Z.

Relations : e.g. see/2. Relation name and arity.

i-terms : consisting of a relation, arguments and

a polarity (0 or 1), e.g. <<sing,h,1>>.



types : consisting of an abstraction over proposi-

tions. For example

[S ! S != <<sing,h,1>>

S != <<see,h,S,1>>]

That is the type of situation which supports

the fact that h sings and h sees that situation.

Situations : written as names optionally followed

by a type. e.g.

S1::[T ! T != <<run,t,1>>].

S2::[S ! S != <<see,h,S1,1>>].

In addition to terms there are the following sen-

tences:

Propositions : consisting of a situation and a

type e.g.

Sit1:[S ! S != <<see,h,S,1>>

S != <<dance,h,1>>]

Constraints : are de�ned between propositions,

they consist of a proposition following by <=

followed by a list of propositions. For example

Sit1:[S ! S != <<happy,h,1>>]

<= Sit1:[S ! S != <<smile,h,1>>].

The semantics of astl (de�ned fully in [3]) are de-

�ned in terms of a model consisting of individuals,

relations, parameters, situations and a set consist-

ing of pairs of situations and facts. Informally, a

proposition is true if the denotation of the situation

supports all of the facts in the type. A constraint is

true if when all the propositions in the right hand

side of the constraint are true, the left hand propo-

sition is true also. As it is currently de�ned astl

has no built-in de�nition with respect to coherence,

that is there is no built-in mechanism that stops a

situation supporting both a fact and its dual (the

fact with the opposite polarity).

Constraints can be generalised using variables.

An example will help to illustrate this. If we de�ne

the following basic situation and constraint:

Sit1:[S ! S != <<smile,t,1>>].

*S:[S ! S != <<happy,*Y,1>>]

<= *S:[S ! S != <<smile,*Y,1>>].

Informally the constraint states that in any situ-

ation where something smiles it is also happy (in

that same situation). From the above basic axioms

we can derive that the following is true:

Sit1:[S ! S != <<happy,t,1>>

S != <<smile,t,1>>]

Rather than just use the linear forms for display-

ing astl objects, an extension has been added for

output. Based on EKN [1] astl objects can be

displayed as boxes, making complex objects much

easier to view. In this notation we write situations

as boxes with their names in a top left inset with

facts written (in a more conventional predicate ar-

gument form) inside the box.

Using the work of Cooper [4] we can process

language in a situation theoretic way. Situation

Theoretic Grammar takes the view that utterances

can be represented by situations. For example

\Hanako";

SIT123

cat(SIT123,ProperNoun)

use of(SIT123,"Hanako")

That is, the use of the phrase \Hanako" gives rise

to a situation that supports the facts that it (the

situation) is a ProperNoun and it is a use of the

word \Hanako". We call these utterance situations.

As an utterance happens at a particular time and

location this fact should also be recorded in the

situation. In astl this temporal aspect is built-

in to the language. A special form of constraint,

grammar rules, can be used to constrain utterance

situations. General constraints apply to any form

of situation (utterance or otherwise) while gram-

mar rules only apply to utterance situations. A

grammar rule between utterance situations such as

*S:[S ! S != <<cat,S,sentence,1>>]

<- *NP:[S ! S != <<cat,S,NounPhrase,1>>],

*VP:[S ! S != <<cat,S,VerbPhrase,1>>].

takes into account that the two utterance situations

occur next to each other. It is possible to model all

of this within the standard constraint system by

adding facts about start and end points of utter-

ances (in a similar way that DCGs are interpreted

in Prolog) but as one of the main uses of astl is lan-

guage processing it was felt more e�cient to build

utterance situations (and constraints on them) di-

rectly into the language.

A basic implementation has been made within

Common Lisp which takes astl descriptions (de�-

nitions, basic situations and constraints) and allows

queries to be made about their sets of constraints

and basic situations.

Discourse representation theory

Given a simple language like astl there is now the

question about how it can be used in representing

other semantic theories. DRT [7] o�ers a represen-

tation for discourses. A discourse representation

structure (DRS) is de�ned at each stage in a dis-

course describing the current state of the analysis.

A DRS consists of two parts; a set of domain mark-

ers, which can be bound to objects introduced into

the current discourse, and a set of conditions on

these markers. DRSs are typically written as boxes

with the markers in the top part and conditions be-

low. For example a DRS for the utterance \a man

sings" is

X

man(X)

sing(X)

The following description of DRT in astl is based

on the DRT de�nition in [6]. First we need a syn-

tactic backbone to be able to discuss the construc-

tion of a DRS for a discourse. As seen (brie
y)

above astl o�ers a basic grammar formalism. That

is, grammar rules are speci�ed as constraints be-

tween utterance situations.



Given such a backbone we need to de�ne an

astl representation for DRSs. DRSs have two

parts. Discourse markers can be represented as pa-

rameters in astl. In situation theory parameters

denote partially determined objects. Parameters

can be anchored to other objects as information

about their denotation is found. DRS conditions

are represented by i-terms. A DRS itself is repre-

sented as a parametric situation|a situation whose

type contains parameters. Discourse markers are

not explicitly listed in the DRS representation. An

astl representation of the DRS for \a man sings"

is

Sit345::[S ! S != <<man,X,1>>

S != <<sing,X,1>>]

where X is a parameter.

This allows a simple semantics close to that of

a conventional DRS. That is an astl DRS will be

true for some situation (i.e. a model) if there exists

an anchoring for the parameters in it which make

it a type of the model-situation. A special de�ni-

tion will be needed for the condition every (and

possibly others if extensions to basic DRT are in-

cluded). It may be better to think of the situation

name also as a parameter which gets anchored to

the model-situation. But as the semantics of astl

relates situations names to situations (i.e. two sit-

uation names can denote the same situation) there

is still a level of indirection.

DRSs are objects which are related to utter-

ance situations. They are not themselves repre-

sentations of the utterances but representations of

what the utterances describe.

Threading

An important aspect of DRT is how a DRS is con-

structed from a discourse. Here (and in [6]) we use

the technique of threading. The general idea is that

a DRS gets passed through a discourse being added

to as the discourse progresses.

In this description, a discourse consists of a

set of utterance situations which can be viewed

through a number of di�erent structural relations.

The �rst is through the relation daughter which

de�nes the syntactic structure of the discourse as

de�ned by the grammar rules (immediate domi-

nance and linear precedence). Secondly the thread

relation de�nes an ordering of the utterance situ-

ations used in the generation of the DRSs. Lastly

there are two relations, range and body used in

de�ning the logical structure of the discourse.

The threading relation is a binary relation be-

tween utterance situations. We will say the �rst

argument is threaded to the second. Each utterance

situation appears exactly once as the second argu-

ment in the thread relation (i.e. it has exactly one

incoming thread). There is one exception, a special

situation called DStart which does not have an in-

coming thread (it is used to represent the null con-

text at the start of a discourse), but does appear

as an incoming thread for one or more utterance

situations. There are no cycles in threading but

as we shall see there may be more than one linked

thread of utterances within a discourse. The actual

construction of the threading relations is discussed

later.

Each utterance situation is related to two DRSs,

through the relations DRSIn and DRSOut. A DRSIn

DRS is the DRSOut DRS of the incoming thread.

This constraint can be written in astl as

*S:[S ! S != <<DRSIn,S,*DRS,1>>]

<= TS:[TS ! TS != <<thread,*S1,*S,1>>],

*S1:[S1 ! S1 != <<DRSOut,S1,*DRS,1>>].

The relation between the two DRSs related to an

utterance is also constrained. This is a core part

of DRT. Basically the outgoing DRS contains the

same information as the incoming DRS plus any

information the utterance adds to the discourse. In

the case of a proper noun utterance situation we can

capture this relation with the following constraint:

*S:[S ! S != <<DRSout,S,*DRSout::

*DRSInType &

[D ! D != <<name,*X,*N,1>>],1>>]

<=

*S:[S ! S != <<cat,S,ProperNoun,1>>

S != <<use_of,S,*N,1>>

S != <<sem,S,*X,1>>

S != <<DRSIn,S,*DRSin::*DRSInType,1>>]

Information is monotonically increasing in DRSs as

we traverse along a thread. We are not destruc-

tively modifying a DRS as the discourse progresses

but constructing a new DRS which supports the

same conditions as the incoming DRS. The con-

straint above forms the outgoing DRS from the

type (*DRSInType) of the incoming one, which will

contain all the conditions of the incoming DRS,

plus a new condition introducing the parameter for

the proper noun and a condition on its name.

We also have the constraint that any argument

or relation that appears in the conditions of a DRS

must be related to some utterance situation by the

relation sem previously in that thread. This con-

dition means that arguments are threaded before

predicates. For example both the subject NP and

object NP of a simple sentence will be threaded be-

fore the VP. In contrast in [6] the VP comes before

a object NP which means a DRS is created with

an argument in a condition which is not yet deter-

mined (i.e. a free variable).

The other structural relations are range and

body. Each determiner utterance situation appears

in exactly one range-relation and exactly one body-

relation. The second argument to these relations

are utterance situations that do not appear as �rst

arguments in any threading relation (i.e. they are

ends of threads). The DRSOut of a determiner ut-

terance situation is a function of the DRSIn DRS

plus information from the range and body related

threads. In the every determiner case the DRSOut

constraint is

*S:[S ! S != <<DRSOut,S,*DRSOut::

*DRSInType &

[DS ! DS != <<every,*RangeDRS,

*BodyDRS,1>>],1>>]



<=

*S:[S ! S != <<cat,S,Determiner,1>>

S != <<DRSIn,S,*DRSIn::*DRSInType,1>>

S != <<sem,S,every,1>>],

TS:[TS !

TS != <<body,*S,*Body::

[S ! S != <<DRSOut,S,*BodyDRS,1>>],1>>

TS != <<range,*S,*Range::

[S ! S != <<DRSOut,S,*RangeDRS,1>>],1>>]

While for the inde�nite determiner the DRSOut sim-

ply contains all the conditions from the DRSin,

range and body related utterances.

*S:[S ! S != <<DRSOut,S,*DRSOut::

*DRSInType & *DRSRType &

*DRSBType,1>>]

<=

*S:[S ! S != <<cat,S,Determiner,1>>

S != <<DRSIn,S,*DRSIn::*DRSInType,1>>

S != <<sem,S,some,1>>],

TS:[TS !

TS != <<body,*S,*Body::

[S ! S != <<DRSOut,S,

*BodyDRS::*DRSBType,1>>],1>>

TS != <<range,*S,*Range::

[S ! S != <<DRSOut,S,

*RangeDRS::*DRSRType,1>>],1>>].

But how is threading built? The grammar rules

specify the basic syntactic structure (via the

daughter relations). At the same time the thread-

ing information can be constructed. Each utterance

situation is related to two others by the relations

need and out. The need relation identi�es the ut-

terance situation (either itself or one of its daugh-

ters) which requires an incoming thread while out

identi�es which situation is to be threaded on to the

next part of the discourse. Although the need and

out relations are determined at the time a gram-

mar rule is realised the actual thread, range and

body relations may not be determined locally. The

utterance to be threaded to the need of an NP can-

not be realised until the NP is put in context. In

contrast with [6] instead of passing up the utter-

ance that needs a thread, they pass down the \ut-

terance" that is to be threaded in. Here we give

a bottom up de�nition rather than as in [6] a top

down one.

As seen in the constraints above the structural

facts whose relations are thread, range and body

are collected in a situation called TS. Below is an

example sentence shown as a syntax tree with the

thread relation drawn as arrows to show the 
ow

of information through the discourse

H

H

H

H

�

�

�

�

@

@

�

�

@

@

�

�

S

NP1 VP

NP2VND

Hanakolikes

mana

-

-

�

	

�




-

�

	

�




-

�

�

�

�

-

�

	

�




�

�

�

�

�

�

�

�

-

In addition, DStart is threaded to D, N and NP2.

The main discourse thread will go through D. There

are two other threads ending at NP1 and S. D will be

related to NP1 by the relation range and to S by the

relation body. Hence the output DRS from the sen-

tence (from the determiner \a"| by the constraints

given above) is built from the incoming DRS plus

the outgoing DRSs from NP1 and S (which are re-

lated to D via the range and body relations).

Pronouns and Accessibility

Unlike other utterance situations, pronouns do not

just add new information to a DRS. They also re-

quire existence of some referent already introduced

in the context. To put it simply there must be a

suitable object in the incoming DRS that the pro-

noun can match. A condition can be written as

*S:[S ! S != <<DRSout,S,*DRSout::

*DRSInType &

[DS ! DS != <<is,*X,*Y,1>>],1>>]

<=

*S:[S ! S != <<cat,S,Pronoun,1>>

S != <<type,S,*TYPE,1>>

S != <<sem,S,*X,1>>

S != <<DRSIn,S,*DRSIn::*DRSInType,1>>

S != <<accessible,S,*A::

[A ! A != <<*TYPE,*Y,1>>],1>>].

Where *TYPE will be one of male, female or

neuter. However, it is not su�cient to simply

check the conditions in the incoming DRS for some

marker of the right type.

The accessible relation is also de�ned over the

threading relations. Each utterance situation is re-

lated to a situation that supports the facts about

which markers are accessible at that point in the

discourse. The accessible markers for an utterance

situation U are de�ned (informally) as follows:

If U is a noun (or propernoun) the accessible

markers are from that noun plus the acces-

sible markers from the incoming thread.

if U is the start of a thread whose end is related

to a determiner by the relation body then the

accessible markers are those from the end of

that determiner's range thread.

if U is the start of a range thread, the accessible

markers are those from the incoming thread

of the related determiner.

if U is an inde�nite determiner the accessible

markers are those of the end of the body

thread

if U is an every determiner the accessible mark-

ers are those from its incoming thread (i.e.

does not include the markers introduced in

the range and body threads).

otherwise the accessible markers are those of the

incoming thread

These conditions can easily be represented by astl

constraints.

Given the above descriptions: a syntactic back-

bone, a DRS representation, threading and de�ni-

tion for accessibility, we can form DRSs for simple

discourses. The coverage is that of [6]. This still

allows an example of donkey anaphora as in \every

man with a donkey likes it". The DRSOut for the

discourse utterance situation is.



SIT512

every(

SIT499

with(MA1,DA1)

donkey(DA1)

man(MA1)

,

SIT503

like(MA1,PN1)

is(PN1,DA1)

)

Discussion

Although translation of DRT into astl is possible

there are some important consequences. The se-

mantics of an astl DRS, brie
y described above,

requires that it is possible to tell the properties of

every object in the situation. As situations are par-

tial it may not be de�ned for everything whether it

is a man or not, thus it is not possible to de�ne \all

men." (Note, lack of information does not imply

falsity.) This is perhaps unfair to consider this as

a problem as in the standard de�nitions of DRT it

is required that the model be complete (all prop-

erties are de�ned on all objects) | so it seems no

worse to require this of the situation in which we

are �nding the truth conditions of a DRS. However

we could include further de�nitions for the every

relation and require that there be some resource

situation that identi�es actual objects that fall in

its scope. This technique has been used by [4].

There is the question of compositionality. It

could be said that the threading relations are only

partially determined compositionally. But this

seems exactly what the theory states and the in-

tuition behind it. We cannot de�ne a DRS for a

noun phrase unless we know what context the NP

is in. All that can be determined is partial de�ni-

tion with conditions on the context.

An important aspect of DRT is that there is a

left to right dependency on DRSs. This does not

necessarily mean that parsing must be left to right,

though normally it will be. A de�nition of DRT

should include this dependency and not rely on how

a implementationhappens to order processing. The

astl de�nition does include a left to right depen-

dency, without specifying a processing order on the

inference mechanism.

Summary

This paper has introduced the notion of using sit-

uation theory as a basic formalism in which other

semantic theories might be de�ned. A computa-

tional situation theoretic language called astl is

discussed. Situation theory is suitable as basis for a

metatheory because a representation of situations

allows the representation of higher order objects

necessary for describing other semantic theories. A

possible translation of DRT in astl is given. The

coverage is that of [6].

This translation is interesting because �rst it

shows that situation theory is not some opposing

semantic theory but that it can be used in dis-

cussing other theories. However perhaps it is not

surprising that a language such as astl is power-

ful enough to give this translation. A feature sys-

tem, with sets (or some de�nition), cycles and con-

straints is close to what astl is, but it is interesting

that these properties can be found as the basis in a

current semantic theory without introducing a new

theory. Finally a situation theoretic description of

DRT allows extensions of DRT to use the proper-

ties of situation theory. Situations which are use-

ful in describing various natural language semantic

phenomena (e.g. naked in�nitives) are now readily

available to be included in extensions of DRT.

Acknowledgements: This work was supported by an

SERC studentship award number 89313458. I would

also like to thank Robin Cooper, Ian Lewin and Graeme

Ritchie for comments and guidance on this work.

References

[1] J. Barwise and R. Cooper. Simple Situation

Theory and its graphical representation. In

Partial and Dynamic Semantics III, DYANA

R2.1.C, Cognitive Science, University of Edin-

burgh, 1991.

[2] J. Barwise and J. Perry. Situations and Atti-

tudes. MIT Press, 1983.

[3] A. Black. A situation theoretic approach to

computation semantics. forthcoming PhD the-

sis, Dept of AI, University of Edinburgh, 1992.

[4] R. Cooper. Information and grammar. Techni-

cal Report RP No. 438, Dept of AI, University

of Edinburgh, 1989.

[5] J. Fenstad, P-K. Halvorsen, T. Langholm, and

J. van Bentham. Situations, Language, and

Logic. Reidel, Dordrecht, 1987.

[6] M. Johnson and E. Klein. Discourse, anaphora

and parsing. In COLING86, Bonn, 1986.

[7] H. Kamp. A theory of truth and semantic

representation. In J. Groenendijk, T. Janssen,

and M. Stokhof, editors, Formal Methods in the

Study of Language. Mathematical Center, Am-

sterdam, 1981.

[8] R. Muskens. Meaning and Partiality. PhD the-

sis, University of Amsterdam, 1989.

[9] H. Nakashima, H. Suzuki, P-K. Halvorsen, and

S. Peters. Towards a computational interpreta-

tion of situation theory. In FGCS, ICOT, 1988.


