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Abstract

Acknowledging the lessons of Blizzard Challenge 2005 – that 
smooth prosodic cadence supersedes spectral resolution – but 
wanting a system devoid of vocoding artifacts – we introduce 
a  hybrid trajectory-selection  synthesizer.  Using  a  parametric 
synthesizer  to  generate  a  pitch-synchronous  sequence  of 
F0/duration/power and spectral vectors, this trajectory serves 
as the target cost function for a unit selection synthesizer. The 
combination  can  unify  the  best  attributes  of  two  distinct 
categories  of  synthesizers,  provided  that  the  feature 
representation supports both. To this end, we also introduce a 
new perceptually-weighted harmonic representation of speech 
that is pitch-synchronous and retains phase information.

1. Introduction

The Blizzard  Challenge was  conceived  to fill  a  gap  in  the 
speech synthesis research community: namely, the need for a 
uniform  mechanism  for  measuring  the  utility  of  competing 
techniques  that  may  be applied to the problem of  synthesis 
[1].  The  first  edition,  held in  2005,  not  only  achieved  that 
goal, but provided a powerful lesson to TTS researchers. We 
summarize  this lesson  as  “continuity beats  everything  else.” 
Basically,  speech  when delivered with a smooth  tempo  and 
without any glaring discontinuities more than compensates for 
lack of  spectral  brightness.  We take as  convincing  evidence 
the superior  evaluation  of  HTS-based  synthesis  [2],  handily 
outperforming a contingent of unit selection synthesizers. 
The outcomes of last year's Challenge has effected a reversal 
of  outlook  within  the  Carnegie  Mellon  synthesis  group. 
Previously  we  took  as  our  starting  point  a  unit  selection 
synthesizer – as proven technology capable of high quality – 
and sought  to reduce the incidence of  join errors and pitch 
discontinuities.  From the opposite outlook  we have  instead 
adopted a parametric synthesizer as our starting point (having 
excellent  smoothness  but  also  the  unfortunate  buzziness 
characteristic  of  vocoded  speech),  and  have  sought  to 
improve its spectral resolution, hence naturalness.

This has led us to develop a new architecture that may be 
considered a hybrid of  spectrum-based parametric synthesis 
and of unit selection. To denote this new approach we use the 
term  “trajectory-selection”  synthesis;  short  for  “trajectory-
defined target-cost-based unit-selection” synthesis. To clarify: 
this means that selection of units (however defined)  from a 
database is made on the basis of a detailed time sequence of 
speech parameters, or  trajectory.  This differs from usage in 
the term “unit-selection,” in which the  units of speech are the 
entities being selected.  

While  a  parametric  synthesizer  such  as  HTS  [2]  and 
ClusterGen [3] can generate reasonable sounding speech, we 
propose  the  idea  of  using  it  as  a  front-end  synthesizer  to 
generate an  intermediate  specification of  speech,  to be fed 
into  a  subsequent  synthesizer  capable  of  higher  quality 

waveform generation. The intermediate specification is a time 
sequence  of  parameter vectors.  Specifically,  they are pitch, 
power, and a perceptually weighted form of cepstrum.  Such 
a  temporal  trajectory  tightly  constrains  the  utterance's 
prosodic  contour,  and  provides  a  template  to  the  backend 
synthesizer. 

What  is  the  nature  of  the  backend  synthesizer?  Two 
approaches  can be taken.  In  one, the trajectory provides  an 
explicit target cost to a unit selection synthesizer. The selected 
units,  however,  will  not  perfectly  match  the  pitch  and 
duration of the template, thereby requiring post processing to 
maintain the specified prosody. This extra step is inefficient. 
Alternatively, the backend synthesizer can instead match the 
specified  prosody  using  the  intermediate  parametric 
representation,  then  generate  speech  during  the  final  stage. 
Though  quality  suffers  compared  to playing  back  recorded 
snippets  of  speech,  full  flexibility is  maintained  throughout 
the processing pipeline. 

In  this paper section 2 describes  our synthesizer's  novel 
architecture,  explaining  how  it  fulfills  our  design  goals. 
Highlighted  are  the  three  processing  stages  of  prosody 
modeling,  unit  search,  and  waveform  generation.  A 
comparison  is  made  to  traditional  parametric  and  unit 
selection architectures, demonstrating that our architecture is 
a combination of the two forms. To meet our goals we found 
it necessary to develop a novel pitch-synchronous, harmonic 
encoding of speech. Our feature representation is described in 
section  3.  The  key  difference  between  the  frontend  and 
backend synthesizers contained in our system is that the latter 
incorporates  Fourier  phase  information.  Section  4  briefly 
discusses results.

2. System Architecture

2.1. Design Criteria

Our effort is guided by four key design criteria. 
1.  The  prosodic  pattern  of  speech  must  be  judged  by 

human  listeners  as  smooth  and  continuous.  We 
correlate  this  perception  to  the  duration  of  phones 
matching  listener  expectations  (primarily),  without 
unusual  changes  in  speed  or  spectral  discontinuities 
(emblematic  of  join  mismatches  in  a  unit  selection 
synthesizer).

2.  The  generated  pitch  contour  must  have  appropriate 
descension  at  phrase-final  locations,  and  possess 
sufficient  sub-word  micro-variation  to  be  nearly 
natural in pattern.

3.  The  spectral  resolution  must  be  high  enough  that  the 
voice  sound  “bright”  –  nearly  as  clear  sounding  as 
recorded speech. Conversely, the voice should be free 
from the “buzziness” characteristic of vocoded speech, 
such as afflicts LPC-based generation.



4.  The  build  process  must  contend  with  automatically 
generated  features:  for  example,  phone  boundary 
labels,  pitchmarks  and  F0 determinations.  This  rules 
out labor-intensive database corrections that are one of 
the hallmarks of commercial-grade synthesizers.

At face value, these criteria are mutually exclusive. The desire 
for  human-sounding  speech  (3)  normally  mandates  a  unit 
selection  approach,  but  full  control over duration  and  pitch 
normally requires a  parametric  synthesizer (1,2).  Hence the 
desire for a hybrid approach that combines the best attributes 
of each, while being robust to errors (4).

2.2. Architectural Comparisons

To establish a frame of comparison, we review two synthesis 
methods available in Festival: a traditional cluster-organized 
unit-selection  approach  (“clunits”  [4])  and  a  parametric 
synthesizer newly incorporated into the software distribution 
(“ClusterGen” [3]).  

In  clunits the speech  is  preprocessed  into  12D  cepstral 
vectors,  which  are  organized  into  thousands  of  clusters  of 
similar  units  (roughly  equivalent  to  allophonic  phoneme 
variants),  where a cluster has around 20-40 units each.  This 
processing is performed by a CART tree learner. During this 
offline  training,  the learner produces  a  decision  tree that  is 
used during synthesis to predict a cluster identifier for each 
phoneme in the utterance. In isolation, each unit of a cluster is 
considered equally good.  One particular example is selected 
as the best using a Viterbi search to find the sequence of units 
that minimizes total join costs. The units (wavefile segments) 
are concatenated together with inter-frame smoothing. 

Figure  1. Unit  selection  architecture.  The  green  ellipses 
denote clusters of speech units (allophonic variations).

Similarly, construction of a ClusterGen voice involves offline 
segmentation  of   speech  into  clusters.  There  are  three 
differences:  1) the cluster element is not a set of waveform 
segments,  but  is  a  trajectory  of  cepstral  vectors,  2)  the 
trajectory is the average of all contributing units, and 3) the 
units  are  HMM-state  length  segments.  During  synthesis, 
CART  trees  generate  a  sequence  of  phoneme  states  with 
predicted duration, power, F0, and cluster id. An utterance's 
parameter  sequence  is  fed  to  a  synthesizer  capable  of 
modifying  pitch  and  inverting  cepstral  vectors.  For  this 
ClusterGen currently uses  the establish algorithm of  MLSA 
(melcep log spectral  approximation  [5]).  MLSA converts  a 
spectral vector to an LPC filter representation, and sends as 
an excitation signal either a pulse for voiced speech, or white 
noise for unvoiced speech.

Figure  2. (below)  Parametric  synthesis  architecture.  The 
green  rectangles  denote  sequences  of  feature  vectors  that 
substitute for the clusters of Figure 1.

2.3. Hybrid Trajectory-Selection Synthesis

Approximately  considered,  our  trajectory-selection  system 
affixes a unit selection synthesizer onto a ClusterGen front-
end. An utterance is processed in four stages, beginning with 
the prosodic prediction of  duration, pitch, and power, along 
with a cluster id for each phone-state. This is converted into a 
trajectory track of spectral vectors. At this stage it is possible 
to generate a waveform. Instead, the trajectory is passed to a 
search module, which re-segments the state-based trajectory 
into a sequence of diphones.  These diphones serve as target 
costs  to  the  unit  selection  process.  By  comparison,  in  a 
clunits synthesizer, all units within a cluster have zero target 
cost,  while  those  outside  the  selected  cluster  have  infinite 
cost.

At this stage a concatenative waveform can be generated. 
This  picks up whatever pitch contour that the segment  has, 
which often does not fit well with the surrounding context. To 
maintain  control  over  the  pitch  contour,  the  parametric 
representation of the selected diphones is passed to a prosody 
modification module.  It modifies the diphones to match the 
specified pitch contour. Then the waveform is generated.

Figure 3. The hybrid trajectory-selection architecture.

 Unique to this hybrid trajectory-selection synthesizer is that it 
can  generate  three  distinctly  different  waveforms  from 
identical  input,  though  only  the  third  and  final  variant  is 
considered the “real” output. 

Another  notable  aspect  is  that  the  parametric 
representation has to serve the multiple purposes of clustering 
and  unit  selection,  pitch  modification,  and  waveform 
generation.  In  ClusterGen this  is  provided through  the dual 
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cepstral/LPC  representation  supported by  MLSA.  However, 
the  resulting  vocoded  speech  is  excessively  buzzy.  To 
overcome this deficiency while maintaining flexibility, we've 
developed  a  pitch-synchronous  harmonic  representation  of 
speech.  This  choice  emerged  from  the  observation  that  a 
synthetic  voice  considered  “bright  and  lively”  requires 
accurate phase reconstruction of the harmonic components. 

3. Feature Representation and Manipulation

In the speech representation known as Harmonic plus Noise 
Modeling  (HNM  [6]),  speech  is  decomposed  into  spectral 
bands  and  classified  as  either  voiced  or  unvoiced.  Voiced 
bands  are encoded and decoded using a harmonic  (Fourier) 
representation,  while  unvoiced  bands  are  generated  by 
applying  a  filter  to  a  white  noise  generator.  Speech  is 
reconstructed  as  the  sum  of  these  two  components.  In 
contrast, we forgo the harmonic/noise distinction and treat all 
Fourier  components  up  to  the  Nyquist  frequency  as 
harmonics.  No  inherent distinction is made between voiced 
and  unvoiced  speech,  except  that  during  the pitch-marking 
stage of  analysis,  imaginary marks  are inserted into silence 
and unvoiced sections.

3.1. Perceptually Weighted, Pitch Synchronous, Principal 
Component, Harmonic Analysis

Our front-end speech analysis module is unique to this work, 
and so we briefly state four motivating considerations.

a) To enable convenient manipulation of F0 contours, our 
feature  representation  is  pitch  synchronous.  b)  To  preserve 
perceptual fidelity, all harmonic phase components up to the 
Nyquist  frequency  (8  kHz)  are  saved.  c)  To  support 
perceptually  relevant  distance  comparisons,  the  absolute 
power spectrum is warped on the Mel frequency  scale and 
reshaped according to equal loudness contours. d) To provide 
a  compact  representation  of  the  power  spectrum, 
dimensionality  reduction  is  performed  through  principal 
components  analysis.  PCA is performed separately on each 
corpus of speech data. Consequently, unlike cepstral analysis, 
our representation is speaker-specific.

In outline, the analysis stage consists of 12 steps. A more 
thorough development is available in [7]. 

1. Speech is segmented into pitch periods. The  silence 
and   unvoiced  section  are  divided  evenly  into 
periods such as to yield a fake F0 maximally close 
to the speaker's global mean.

2. An  analysis  frame  is  defined  as  a  single  pitch 
period with a rectangular window applied.  Except 
for  places  of  rapid  transition,  simple  frame 
repetition  reproduces  steady  state  speech.  As  an 
alternative, a frame is defined as three contiguous 
pitch  periods  with  a  Blackman  window  centered 
over the extent.

3. The  frame  is  transformed  into  frequency  space 
using  a  DFT.  The analysis  length is equal  to the 
number of samples in the frame. We do not pad the 
frame with zeros out to a length that is a power of 
2. The speed advantage of an FFT is sacrificed to 
avoid introducing length mismatch artifacts.

4. Compute  the  power  spectrum  and  perform 
“Bayesian  weighting”  of  the  result  with  the  zero 
vector.  Bayesian  weighting  computes  a  modified 
power  spectrum  x'  by  averaging  it  with  a  prior 
vector y' based on the probability p that the signal is 
reliable, according to a measurement f(x), such that

x '= p f x x1− p f  x y. We  use  a 
measure  based  on  the  loudness  of  the  frame  x 

(strong  signals  are more reliable than weak).  This 
concentrates  quiet  frames  into a  tight  cluster, and 
prevents  discretization  errors  from  contaminating 
speech  with  frames  from  silence  segments.  Our 
treatment  is  a  generalization  of  dithering used  in 
speech  recognition  systems  to  prevent  the 
occurrence  of  digital  zeros,  which  cannot  be 
allowed on account of the next step.

5. Convert the modified power spectrum to the decibel 
scale by taking log10x .

6. Normalize the loudness of the spectral components 
according  to  the  psycho-acoustic  measurments  of 
the  ISO226  standard  [8].  We  use  the  60  dB 
reference curve for normalization. 

7. Upsample the power spectrum to 1001 points. This 
is  done  because  the  next  step  is  to  process  the 
spectrum through a filterbank on the mel frequency 
scale.  Due  to  the  nonlinear  warping  of  the  mel 
rescaling,  the  lowest  order  filterbank  suffer  from 
too few samples without compensation.

8. Transform  the  upsampled  spectrum  to  the  mel 
frequency  scale  and  compute  a  K  bin  filterbank 
vector.  High  fidelity reconstruction  requires K=48 
or 64; the more typical value of 24 is insufficient. 

9. The filterbank output is converted from a log base 
10 scale to a log base 2 scale, otherwise known as. 
the sone scale in the psycho-acoustic literature. It is 
known  to  provide  a  better  scale  for  computing 
perceptual differences.

10. To prepare for the next processing step the mean is 
removed  from  each  sone-scale  filterbank  vector. 
Mean  removal  leaves  the  representation  invariant 
under loudness transformation

11. The  entire  corpus  of  mean-removed  filterbank 
vectors undergo PCA transformation to decorrelate 
the data. The principal components are stored in a 
file containing the new basis functions. The first N 
components of the transformed vectors are written 
out. When there are K=64 filterbank values, N=24 
PCA  components  is  sufficient  for  high  fidelity 
reconstruction.

12. The Fourier phase components are unwrapped and 
spline-resampled at 50Hz intervals, or equivalently 
to 161  points.  Converting  to equal  length vectors 
permits PCA transformation of phase. 

Figure 4. The first four basis functions of the Blizzard voice.
 
Figure 4 plots  the first  four spectral  basis  functions  for the 
Blizzard  2006  recordings.  Similar  to  a  DCT,  lower  order 
functions capture broad spectral patterns. 
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3.2. Criticality of Accurate Phase

To investigate the relative importance of spectral versus phase 
information, we performed analysis-resynthesis on a set of 10 
Blizzard  wavefiles.  The  number  of  principal  components 
used for each were systematically varied, as laid out in Table 
1. In this table we identified regions of comparable quality. 
Interestingly, one can “get away” with relatively few spectral 
components  (i.e.  12)  but  not  phase  components  (48). 
Insufficiently  accurate  phase  for  reconstruction  leads  to 
throaty/breathy distortions.1

Number of phase components

N
um

be
r 

 s
pe

ct
ra

l c
om

p. 8 16 24 32 48 64 80

2 1 1 1 1 1 1 1

4 1 1 1 1 1 1 2

8 1 1 1 1 2 2 3

12 1 1 1 1 2 3 4

16 1 1 2 2 3 4 5

24 1 1 2 3 4 5 5

Table 1. Approximate regions of equal quality for analysis-
resynthesis: 1 = poor, 5 = excellent.

In  another  analysis-resynthesis  experiment,  the  spectral 
components  were fully reconstructed but with the harmonic 
phase  randomized  with  a  uniform  distribution  of ±n
radians.  When  completely  randomized  (n=1),  the  resulting 
speech  is  heavily  “breathy.”  A threshold  of  n=10% is  just 
barely perceptible and n<20% is acceptable. Setting the phase 
to  zero  everywhere  results  in  highly  “buzzy”  speech, 
especially during unvoiced fricatives.

3.3. Pitch Alteration using spline interpolation

Supporting  prosodic  modification  without  resorting  to LPC 
excitation  is  a  key  motivation  for  our  unusual  feature 
representation.  Vowel and  fricative durations  can be altered 
without  significantly  affecting  pitch  by  frame  deletion  and 
insertion. Pitch can be modified by interpolating the harmonic 
representation (and adding/dropping frames to maintain word 
durations, if desired).  We accomplish this by fitting a spline 
curves in the spectral/phase feature space, then resampling at 
integer  multiples  of  the  new  fundamental  frequency.  The 
extent  of  modification  can  be over  100% (i.e.  doubling  or 
halving F0), but operates best within about plus or mind 25%. 
Processing  introduces  some  distortion  into  the  regenerated 
waveform,  including  discontinuities  at  frame  boundaries, 
which can be partially covered up through overlap-and-add 
smoothing.  The  generated  F0  contour  can  be  linear,  Tobi 
specified,  or  CART  tree  specified  with  sub-syllable  micro 
fluctuations.

3.4. Target cost evaluation

In the processing pipeline of Figure 3, the predicted spectral 
trajectory  provides  a  target  to  evaluate  each  candidate 
diphone.  Since  the  target  and  candidate  are  usually  of 
different length, this discrepancy  needs to be accounted for. 
We adopted the linear time warping of [9]. Specifically, given 
two vectors U and V  the distance D between them is defined 
to be

1Wavefiles  of  the  experiments  described  here  are  available 
with this publication on the workshop web site.

D U ,V =P
∣U∣
∣V∣∑i=1

∣U∣

∑
j=1

n W j

n∣U∣∣F ijU −F kjV ∣, k=i
∣V ∣
∣U∣

where  P is a duration penalty factor (here, set to 1)  and  Wj 
values  weight  the  spectral  component's  contribution  to  the 
distance (also all set to 1).

4. Evaluation and Conclusions

The  Blizzard  2006  evaluation  involved  creation  of  two 
voices: one built from full database and one from the Arctic 
subset. For the full set, we submitted a clunits voice with only 
slight  modifications  from  our  Blizzard  2005 entry.  For  the 
Arctic  subset  we  submitted  the  work  described  here.  The 
overall MOS score for the full unit-selection system was 2.5 
(a  drop from 2.9 of  the nearly identical  entry of  last year). 
The overall MOS score for the arctic voice was 2.1.

In  a  postmortem  analysis  we've  identified  the  distance 
equation as the likely culprit causing under-performance. Our 
explanation is that it doesn't sufficiently constrain duration of 
the candidate  units,  thereby undoing  much  of  the guidance 
provided  by  the  target  trajectory.  Current  investigations 
indicate that more appropriate distance measures substantially 
improve voice quality.

5. Acknowledgments

This  work  is  in  part  supported  by  the  US  National 
Science  Foundation  under  grant number  0415021  “SPICE: 
Speech  Processing  Interactive  Creation  and  Evaluation 
Toolkit  for  new Languages.”  Any  opinions,  findings,  and 
conclusions  or  recommendations  expressed  in  this  material 
are  those  of  the  authors  and  do  not  necessarily  reflect  the 
views  of  the  National  Science  Foundation.  The  authors 
express thanks to Tina Bennett, David Huggins-Daines, Brian 
Langner,  and  Arthur  Toth  for  participating  in  group 
discussions.

6. References

[1] Black,  A.  and  Tokuda,  K.   Blizzard  Challenge  2005:  
Evaluating  corpus-based  speech  synthesis  on  common  
databases, InterSpeech 2005. Lisbon, Portugal.

[2] Zen,  Heiga,  Toda,  Tomoki.  An  Overview  of  Nitech  
HMM-Based  Speech  Synthesis  System  for  Blizzard  
Challenge 2005. InterSpeech 2005, Lisbon, Portugal.

[3] Black, A. CLUSTERGEN: A Statistical Parametric  
Synthesizer using Trajectory Modeling. InterSpeech 
2006, Pittsburgh, USA.

[4] Black,  A.  and  Taylor,  P.  Automatically  clustering  
similar  units  for  unit  selection  in  speech  synthesis. 
Proceedings of Eurospeech 97, vol2 pp 601-604, Rhodes, 
Greece. 

[5] Fukada, T., Tokuda, K., Kobayashi, T. and Imai, S. "An  
adaptive algorithm for mel-cepstral analysis of speech," 
Proc. ICASSP-92, 1992, pp. 137-40.

[6] Stylianou, Y., Laroche, J., and E. Moulines. High quality  
speech  modification  based  on  a  harmonic  +  noise  
model, Proc. Eurospeech, 1995, pp. 451-454. 

[7] Kominek, J. Pitch synchronous harmonic representation  
of  speech  for  synthesis,  CMU  Technologies  Institute, 
Tech Report CMU-LTI-06-xyz, (in preparation).

[8] ISO226:2003.  Acoustics.  Normal  equal-loudness-level 
contours, ISBN 0580425487.

[9] Black,  A.  and  Lenzo,  K.  Optimal  Data  Selection  for  
Unit  Selection  Synthesis,  ISCA  4th  Speech  Synthesis 
Workshop, 2001, Scotland,  pp 63-67.


	1.Introduction
	2.System Architecture
	2.1.Design Criteria
	2.2.Architectural Comparisons
	2.3.Hybrid Trajectory-Selection Synthesis

	3.Feature Representation and Manipulation
	3.1.Perceptually Weighted, Pitch Synchronous, Principal Component, Harmonic Analysis
	3.2.Criticality of Accurate Phase
	3.3.Pitch Alteration using spline interpolation
	3.4.Target cost evaluation

	4.Evaluation and Conclusions
	5.Acknowledgments
	6.References

