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ABSTRACT

Recently, we presented a study on residual prediction tech-
niques that can be applied to voice conversion based on lin-
ear transformation or hidden Markov model-based speech
synthesis. Our voice conversion experiments showed that
none of the six compared techniques was capable of suc-
cessfully converting the voice while achieving a fair speech
quality. In this paper, we suggest a novel residual predic-
tion technique based on unit selection that outperforms the
others in terms of speech quality (mean opinion score = 3)
while keeping the conversion performance.

1. INTRODUCTION

Several tasks of speech generation and manipulation as
voice conversion [1] or hidden Markov model-based speech
synthesis [2] are capable of dealing fairly well with speech
that is encoded using parameter representations as mel fre-
quency cepstral coefficients, linear predictive coefficients,
or line spectral frequencies. These parameters aim at repre-
senting the vocal tract while the excitation is represented by
the residual signal. Often, when generating (speech synthe-
sis) or transforming (voice conversion) speech using one of
the above parameterizations, the excitation is modeled very
roughly using a single pulse in voiced regions and white
noise with random phases in unvoiced regions. However,
as this simple model may result in a synthetic sound of
the voice and, furthermore, the residual seems to contain
speaker-dependent information [3], it is reasonable to model
the residual more carefully.

In a recent study [4], we compared six residual predic-
tion techniques by means of a subjective test investigating
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their voice conversion performance and the quality of the
converted speech. We concluded that

e The best speech quality (mean opinion score [MOS]
= 3.5) is achieved when simply using the residuals of
the source speech rather than predicting target residu-
als. However, as stated above, the residuals contain an
important part of the speaker identity, consequently,
only in 10 % of the cases, the test subjects recognized
the target voice, whereas in 70 % of the cases, they
had the impression of hearing a third speaker’s voice,
cf. Table 1.

e The techniques that predicted the target residuals suc-
ceeded in converting the voice but resulted in an es-
sential loss of speech quality. Residual selection and
smoothing showed the highest voice conversion per-
formance (in 85 % of the cases, the target voice was
recognized) and speech quality (MOS = 2.6), cf. Ta-
ble 1.

Consequently, the most important goal was to achieve a bet-
ter speech quality without affecting the conversion perfor-
mance.

After describing the voice conversion baseline system in
Section 2, we analyze the shortcomings of the residual se-
lection and smoothing technique and extend it by applying
the unit selection paradigm in Sections 3 to 5. Finally, in
Section 6, we compare voice conversion performance and
speech quality of the residual selection and smoothing tech-
nique with those of the unit selection technique by means
of a subjective evaluation. We show that the new approach
based on unit selection outperforms the other in terms of
speech quality (MOS = 3) while keeping the conversion per-
formance.
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extended ABX [%] MOS
source | target | neither
source residuals 20 10 70 3.5
residual selection 0 70 30 2.0
selection & smoothing 0 85 15 2.6

Table 1. Extract from the results of the study on resid-
ual prediction techniques. For the terms extended ABX and
MOS, cf. Section 6.2.

2. THE BASELINE VOICE CONVERSION SYSTEM

2.1. Training Phase

A state-of-the-art technique based on linear transformation
serves as our baseline system [5]. It requires parallel ut-
terances of source and target speaker for training [6]. The
speech data is split into pitch-synchronous frames using the
pitch marking algorithm proposed in [7]. For extracting
frames in unvoiced regions, this algorithm applies a linear
interpolation between neighbored voiced regions. To im-
prove the speech quality of the overlap and add technique
used for the synthesis in Section 2.2, we always regard two
successive pitch periods as being one frame as suggested
in [3].

Now, the frame sequences of parallel source and target
speaker utterances are aligned by means of dynamic time
warping. Each frame is parameterized using linear predic-
tive coefficients that are converted to line spectral frequen-
cies that feature better interpolation properties.

Let # and 3 be parallel sequences of feature vectors
of the source and target speech, respectively. Then, we use
the combination of these sequences

)2

to estimate the parameters of a Gaussian mixture model
(au, i, 24) with I components for the joint density p(z, y).
A list of the system parameters can be found in Table 2.

a2

2.2. Conversion Phase

Here, we are given a source speaker’s utterance that is pro-
cessed as described in Section 2.1 yielding a sequence of
feature vectors. Each source feature vector z is converted
to a target vector y by the conversion function which mini-
mizes the mean squared error between the converted source
and the target vectors observed in training:

I
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parameter | description value

fs sampling rate 16 kHz
Jon norm fundamental frequency 100 Hz
q quantization 16 bit
F order of the line spectral frequencies | 16

I number of Gaussian mixtures for the |4

linear transformation
Table 2. System parameters.
N (|2, 2o
where p(i|z) = QN (@|f, 577 and
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The target line spectral frequency vectors are transformed to
linear predictive coefficients that are used in the framework
of linear prediction pitch-synchronous overlap and add [8]
to generate the converted speech signal. Here, for each time
frame, the respective underlying residual is required. In the
following section, we want to deal with techniques that al-
low for predicting these residuals.
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3. RESIDUAL SELECTION

Preassumption of most of the residual prediction techniques
is a considerable correlation between the feature vectors and
the corresponding residuals'.

The residual selection technique [9] stores all residu-
als r,,, seen in training into a table together with the cor-
responding feature vectors v,,. The latter are composed of
the line spectral frequencies and their deltas.

In the conversion phase, we are given the current fea-
ture vector v of the above described structure and choose
the corresponding residual from the table by minimizing the
square error between v and all feature vectors seen in train-
ing (S(v) is the sum over the squared elements of a vector

v):
(1)

T=rs with m=arg min S0 —vy,).

m=1,....M

4. RESIDUAL SMOOTHING

When listening to converted speech generated using the re-
sidual selection technique, in particular in voiced regions,

IThe linear predictive coding technique is based on a source-fi lter
model that tries to separate the effect of excitation and vocal tract; ide-
ally, both should be uncorrelated. Hence, the success of residual prediction
techniques based on this correlation indicates a shortcoming of the model.



we note a lot of artifacts and, sometimes, obviously im-
proper residuals that occur due to the insufficient correla-
tion between feature vectors and residuals. In voiced re-
gions, the signal should be almost periodic; we do not ex-
pect the residuals to change abruptly. In unvoiced regions,
as mentioned in Section 1, the residuals should feature a
random phase spectrum that essentially changes from frame
to frame. These considerations led to the idea of a voicing-
dependent residual smoothing as proposed in [4].

We are given the sequence 7 of predicted residual tar-
get vectors derived from Eq. 1, a sequence of scalars £
with 0 < o}, < 1 that are the voicing degrees of the frames
to be converted, determined according to [10], and the voic-
ing gain .. At last, we obtain the final residuals by applying
a normal distribution function to compute a weighted aver-
age over all residual vectors f{( , the standard deviation is
defined by the product of gain and voicing degree:

K
> N(klk,aoy) - Ty
k=1

K
> N(klk, aoy)

k=1

@
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This equation can be interpreted as follows: In case of
voiced frames (o 1), we obtain a wide bell curve that
averages over several neighbored residuals, whereas for un-
voiced frames (¢ — 0), the curve approaches a Dirac func-
tion, i.e., there is no local smoothing, the residuals and the
corresponding phase spectra change chaotically over the
time as expected in unvoiced regions.

In order to be able to execute the summation, the vectors
7 must have the same lengths. This is achieved by utiliz-
ing a normalization as suggested in [11], where all residuals
are normalized to the norm fundamental frequency fy,, cf.
Table 2.

~
~

5. UNIT SELECTION

Although the residual smoothing approach essentially im-
proves the voice conversion performance (from 70 % to
85 % of the cases the target speaker was recognized) and
the speech quality (from a mean opinion score of 2.0 to
2.6, cf. Table 1), the latter is still insufficient for applica-
tions where the quality is of importance as for server-based
speech synthesis with f; > 16 kHz. Mainly, this is due
to an oversmoothing caused when the voicing gain « is too
large. This results in a deterioration of the articulation and
increases the voicing of unvoiced sounds?. However, when
« is too small, the artifacts are not sufficiently suppressed,
hence, the choice of « is based on a compromise. For the

2This sounds like a paradox; but when you take into account that the
voicing degree o is continuous and always greater than 0, the multiplica-
tion with a large voicing gain o in Eq. 2 may transform an unvoiced into a
voiced sound.
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corpus and the settings described in Sections 2 and 6.1, we
found that & = 3 is a reasonable choice.

When there would be a possibility to more reliably se-
lect residuals from the training database so that the selected
residual sequence 7 already contains less artifacts, we
could use smaller values for « and, hence, improve the qual-
ity of the converted speech. Certainly, the most appropriate
residual sequence is one that we have seen in training and
that fulfills the optimization criterion of Eq. 1 at the same
time. Of course, this will only apply if the converted feature
sequence 91 is identical to a feature sequence seen in train-
ing. Since this will never be the case, we should weaken
these conditions and allow the residual sequence to be com-
posed of several subsequences seen in training whose end-
ings fit to each other. Furthermore, we should also take
suboptima of Eq. 1 into account in order to obtain subse-
quences of reasonable lengths. This approach is called unit
selection, a technique that is widely used in concatenative
speech synthesis [12].

Generally, in the unit selection framework, two cost
functions are defined. The target cost C®(uy, t,) is an esti-
mate of the difference between the database unit uj and the
target t;, which it is supposed to represent. The concatena-
tion cost C°(uy—1, uk) is an estimate of the quality of a join
between the consecutive units u;_1 and uy.

In speech synthesis, the considered units are phones,
syllables, or even whole phrases, whereas in the residual
prediction case, we set our base unit length to be a single
speech frame, since this allows for being independent of ad-
ditional linguistic information about the processed speech
as for instance the phonetic segmentation. Furthermore,
the cost functions can simply be defined by interpreting the
residuals as database units, i.e. u := r. In the following
sections, we describe the properties of the cost functions
used for unit selection-based residual prediction and how
we come to the final residual sequence.

5.1. The Target Cost Function

Similar to the residual selection procedure described in Sec-
tion 3, the appropriateness of a residual r seen in train-
ing for being selected is determined based on the distance
between the corresponding feature vector v, and that one
which represents the properties of the converted frame, v.
Furthermore, we also want to take fundamental frequency
and energy of the considered residual into account. This is
to minimize the extent of the signal processing to produce
the prosodic characteristics of the converted speech and,
thus, avoid distortions of the natural waveform. Accord-
ing to [12], the target cost C* is calculated as the weighted
sum of the distances between the considered features of the
target and the candidate:



CYu, t) == CY(r, (0, fo,5)) = 3)

= wid(v(r), 8)+wad(fo(r), fo)+wsd(S(r),S) .

fo and S are the target fundamental frequency and energy
that, in the case of residual prediction for voice conversion,
can be derived from the respective parameters of the source
speech frame by applying individual conversion rules. For
instance, a simple conversion rule for the fundamental fre-
quency is the multiplication with the ratio between the mean
fundamental frequencies of target and source that were de-
termined in training.
For the weights holds (cf. Eq. 5)

wy +we +ws < 1;  wi,ws, w3 >0.

This makes sure that the sum of the cost functions’ weights
including that of the concatenation cost described in Sec-
tion 5.2 is always 1.

v(r), fo(r), and S(r) are the feature vector that corre-
sponds to the candidate residual according to the table gen-
erated in Section 3 and fundamental frequency and energy
of the residual.

d is the Mahalanobis distance that compensates for dif-
ferences of range and amount of variation between the fea-
tures used in Eq. 3:

dz,y) = (@ —y)S 1z —y). )

> is the covariance matrix computed using the respective
features of all residuals seen in training.

5.2. The Concatenation Cost Function

The cost for concatenating the residuals r;_1 and r, is de-
fined using the residual normalization introduced in [4]:

C(rr—1,7) = (1 —wy —we —ws) - S{n(ry) —n(rr_1)}

rr

with n(r) = S

&)

When rj,_1 and r, are residuals that belonged to successive
frames in the training data, the concatenation should be op-
timal, hence, in this special case, we define C®(rx—1,7%)
to be 0. Again, since both considered residuals must have
the same number of samples, a normalization to the norm
fundamental frequency fo,, is carried out, cf. Section 4.

7 is a vector whose elements equal the mean value of r’s
elements.

training test
M time K time
female | 51,365 | 341.1s | 1,901 | 14.0s
male 447772 | 377.2s | 1,703 | 1345

Table 3. Corpus statistics; M and K are the numbers of
frames in the training and test data, respectively.

5.3. Finding the Optimal Residual Sequence

The searched residual sequence 7£ is determined by mini-
mizing the sum of the target and concatenation costs applied
to an arbitrarily selected sequence of K elements from the
set of residuals seen in training, 71, given the target feature
sequences 97¢, fof(, and 5'1K

K
f{( = arg}r(ninz Ct(Tk, (’U~]€, f()k, gk)) + CC(kal,Tk) .

T k=1
(6)

5.4. On the Computational Complexity

Due to the special structure of the function to be optimized
that is a sum whose addends are only dependent on the pa-
rameters of the current position & and the preceding position
k — 1, this optimization problem can be solved by means of
dynamic programming. Although this prevents us from the
intractable treatment of M % paths, it turns out that we still
face a high computational effort: The full solution of Eq. 6
requires

OzK-M2~(8F2—|—4F+6£)opS. (7)

f On
For a description of the parameters in this formula and the
respective values from the experimental corpus described in
Section 6.1, see Tables 2 and 3. In the following example,
we want to look at female-to-male conversion, i.e., K be-
longs to the female speaker and M to the male in Table 3.
When we use these example parameter settings and run
the computation on a computer that executes 3 Gops/s, it
would take one and a half months, i.e. 280,000 times real-
time. Consequently, we must find ways to simplify the al-
gorithm in order to build a real-time system:

e By introducing a pruning that only considers the 5
best hypotheses, we are able to reduce the real-time
factor (RTF) to 31.

e Instead of utilizing the Mahalanobis distance (Eq. 4),
we apply the Euclidean distance (RTF = 11).

e We restrict the calculation of the concatenation cost in
Eq. 5 to the first of the two signal periods contained in
the processed residuals, cf. Section 2.1 (RTF = 5.8).



e The norm fundamental frequency fo, used to trans-
form the residuals to vectors of identical lengths, cf.
Sections 4 and 5.2, can be duplicated without no-
ticeably affect the behavior of the concatenation cost
function (RTF = 3.8).

e Taking into account that almost half of the durations
of the speech signal to be converted and that used for
training is actually non-speech (silence or noise), we
obtain a real-time factor of 0.8.

Hence, at least on very fast computers, the algorithm is real-
time-able.

5.5. Residual Smoothing

As predicted at the beginning of this section where we mo-
tivated the introduction of the unit selection paradigm for
residual prediction, informal listening tests showed that the
output of the unit selection features essentially less artifacts
than that of the residual selection discussed in Section 3.
However, since there are still audible signal discontinuities,
the application of the residual smoothing described in Sec-
tion 4 is still recommendable. It turns out, that the smooth-
ing gain « can effectively be decreased due to the already
smoother input residual sequence. We determined o = 1.5
for the unit selection approach (as opposed to o = 3.0 for
the residual selection), thus, the output features a higher nat-
uralness and better articulatory properties. In the following
section, this statement is to be confirmed by means of a sub-
jective evaluation.

6. EVALUATION

6.1. Experimental Corpus

The corpus utilized in this work contains 100 Spanish sen-
tences uttered by a female and a male speaker, cf. [13]. It
was designed to provide baseline voices for Spanish speech
synthesis, e.g. in the UPC text-to-speech system [14]. For
the corpus statistics, cf. Table 3.

6.2. Subjective Evaluation

By means of a subjective evaluation, we want to compare
the best residual prediction technique of the study we pre-
sented in [4], the selection and smoothing technique, with
the novel unit selection approach. The goal of the subjec-
tive evaluation is to answer two questions:

e Does the technique change the speaker identity in the
intended way?

e How does a listener assess the overall sound quality
of the converted speech?
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[%] source | target | neither
selection & smoothing 0 85 15
unit selection & smoothing 2 83 15

Table 4. Results of the extended ABX test

m2f f2m total
selection & smoothing 2.2 2.9 2.6
unit selection & smoothing 2.8 3.2 3.0

Table 5. Results of the MOS test

We want to find the answers by means of the extended ABX
test described in [15] and an MOS test [16].

We performed both, female-to-male (f2m) and male-to-
female (m2f) voice conversion using the corpus described in
Section 6.1. Now, 27 evaluation participants, 25 of whom
specialists in speech processing, were asked if the converted
voice sounds similar to the source or to the target voice or
to neither of them (extended ABX test). In doing so, they
were asked to ignore the recording conditions, the sound or
synthesis quality of the samples, the speaking style, and the
prosody. Furthermore, they assessed the overall quality of
the converted speech on an MOS scale between 1 (bad) and
5 (excellent).

Table 4 reports the results of the extended ABX test and
Table 5 those of the MOS rating depending on the residual
prediction technique and the gender combination.

6.3. Interpretation

The outcomes of the extended ABX test show almost no
differences between both techniques: In about 85 % of the
cases, the source voice was successfully converted to the
target voice. Having a look at the speech quality results, we
note that the novel unit selection approach clearly outper-
forms the residual selection and smoothing: In particular,
for the harder task, the male-to-female conversion, we ob-
tained a considerable gain of 0.6 MOS points. The overall
result (MOS = 3.0, i.e. a fair speech quality) is still essen-
tially worse than natural speech (MOS = 4.8), but already
suitable for many applications that do not require high fi-
delity speech, for instance in telecommunications.

7. CONCLUSION

In this paper, we introduced a novel technique for residual
prediction based on unit selection. We applied this tech-
nique to cross-gender voice conversion and showed that, in

3The subjective evaluation was carried out using the web interface
http://suendermann.com/unit.



terms of speech quality, the new approach clearly outper-
forms the residual selection and smoothing method which
was the best-performing out of six residual prediction tech-
niques according to a recently published study. The conver-
sion performance remained unaffected.
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