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Abstract—A statistical parametric approach to speech syn-
thesis based on hidden Markov models (HMMs) has grown in
popularity over the last few years. In this approach, spectrum,
excitation, and duration of speech are simultaneously modeled by
context-dependent HMMs, and speech waveforms are generated
from the HMMs themselves. Since December 2002, we have
publicly released an open-source software toolkit named “HMM-
based speech synthesis system (HTS)” to provide a research and
development toolkit for statistical parametric speech synthesis.
This paper describes recent developments of HTS in detail, as
well as future release plans.

I. Introduction

A statistical parametric approach to speech synthesis based
on hidden Markov models (HMMs) has grown in popularity
over the last few years [1]. In this approach, context-dependent
HMMs are estimated from databases of natural speech, and
speech waveforms are generated from the HMMs themselves.
This framework makes it possible to model different voice
characteristics, speaking styles, or emotions without recording
large speech databases. For example, adaptation [2], interpo-
lation [3], and eigenvoice techniques [4] were applied to this
system, and it was found that voice characteristics could be
modified.

Since December 2002, we have publicly released an open-
source software toolkit named “HMM-based speech synthesis
system (HTS)” [5] to provide a research and development
platform for statistical parametric speech synthesis. Various
organizations currently use it to conduct their own research
projects, and we believe that it has contributed significantly to
the success of HMM-based speech synthesis today. This paper
describes the recent developments of this system as well as
future release plans.

The rest of this paper is organized as follows: Section 2
reviews statistical parametric speech synthesis. In Section 3,
details of HTS are described. Other applications of HTS are
presented in Section 4. Concluding remarks and future release
plans are presented in the final section.
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Fig. 1. Overview of HMM-based speech synthesis.

II. Statistical parametric speech synthesis

Text-to-speech synthesis can be viewed as the inverse pro-
cedure of speech recognition. The goal of any text-to-speech
synthesizer is to take a word sequence,w = {w1, . . . ,wN},
as its input and produce an acoustic speech waveform,
o = {o1, . . . , oT}. In a typical system, contextual factors such
as accent, lexical-stress, part-of-speech, and phrase-boundary
contexts are assigned to a given word sequence,w, by a
natural language processing engine, and thenw is mapped
into the corresponding context-dependent sub-word sequence,
u = {u1, . . . , uM}. Finally, a speech waveform,o, is synthesized
for u.

Most state-of-the-art speech synthesis systems are based on
large amounts of speech data. This type of approach is gener-
ally called corpus-based speech synthesis [6]. This approach
makes it possible to dramatically improve the naturalness
of synthesized speech compared with early speech synthesis
systems such as rule-based ones.

One of the major approaches in corpus-based speech syn-



thesis is sample-based one: unit-selection [7]. In this approach,
speech data are segmented into small units,e.g., HMM state,
half-phone, phone, diphone, or syllable, and stored. Then a
unit sequence corresponding to a given context-dependent
sub-word sequence is selected by minimizing its total cost,
consisting of target and concatenation costs [7]. These cost
functions have been formed from a variety of heuristic or
ad hoc quality measures based on features of the acoustic
signals and given texts. Recently, target and concatenation cost
functions based on statistical models have been proposed and
investigated [8], [9], [10], [11], [12].

Another major approach is statistical parametric one: HMM-
based speech synthesis [1]. It generates a speech parameter
vector sequence,o= {o1, o2, . . . , oT}, with maximum a poste-
riori (MAP) probability given the context-dependent sub-word
sequence,u, as follows:

ô= arg max
o

P (o | u) . (1)

Although any kind of generative models can be applied to
representP (o | u), currently HMMs are widely used.

Figure 1 overviews HMM-based speech synthesis. It con-
sists of training and synthesis parts. The training part is similar
to that used in speech recognition. The main difference is
that both spectrum (e.g., mel-cepstral coefficients and their
dynamic features) and excitation (e.g., logF0 and its dynamic
features) parameters are extracted from a speech database and
modeled by context-dependent HMMs (phonetic, linguistic,
and prosodic contexts being taken into account). To model
variable dimensional parameter sequences such as logF0 with
unvoiced regions, multi-space probability distributions (MSDs)
[13] are used for state-output distributions. Each HMM has its
state-duration distributions to capture the temporal structure
of speech. As a result, spectrum, excitation, and duration are
modeled simultaneously in a unified HMM framework [1].

The synthesis part does the inverse operation of speech
recognition. First, an arbitrarily given text to be synthesized
is converted to a context-dependent label sequence, and then
a sentence HMM is constructed by concatenating the context-
dependent HMMs according to the label sequence. Second,
state durations of the sentence HMM are determined based
on the state-duration distributions. Third, the speech parame-
ter generation algorithm generates sequences of spectral and
excitation parameters that maximize their output probabilities
under the constraints between static and dynamic features [14].
Finally, a speech waveform is synthesized directly from the
generated spectral and excitation parameters using a speech
synthesis filter. The most attractive part of this system is
that voice characteristics, speaking styles, or emotions can
easily be modified by transforming HMM parameters using
various techniques, such as adaptation [2], interpolation [15],
or eigenvoices [4].

III. HTS: A software toolkit for HMM-based speech
synthesis

A. Outline

The HMM-based speech synthesis system (HTS) has been
developed by the HTS working group as an extension of the
HMM toolkit (HTK) [ 16]. The source code of HTS is released
as a patch for HTK. Although the patch is released under a
free software license (new and simplified BSD license [17]),
once the patch is applied users must obey the license of HTK.1

The HTS patch code can be downloaded from the HTS website
[5]. After downloading HTK, HDecode, and HTS tar balls and
expanding them, you can obtain HTS source codes by applying
the patch code for HTK as

% cd htk

% patch -p1 -d . < HTS-2.1_for_HTK-3.4.patch

Finally, by running configure and Make scripts, HTS exe-
cutable codes are generated. Note that HTS has not support
the latest HTK version 3.4.1 yet at the time of writing this
paper.

The history of the main modifications which we have made
are listed below:
• Version 1.0 (December 2002)

– Tree-based clustering based on the MDL criterion
[18].

– Stream-dependent tree-based clustering [1].
– Multi-space probability distributions (MSD) [13].
– State-duration modeling and clustering [19].
– Speech parameter generation algorithm [14].
– Demo using the CMU Communicator database.

• Version 1.1 (May 2003)
– Small run-time synthesis engine.
– Demo using the CSTR TIMIT database.
– HTS voices for the Festival speech synthesis system

[20].
• Version 1.1.1 (December 2003)

– Variance flooring for MSD-HMMs.
– Post-filtering [21].
– Demo using the CMU ARCTIC database.
– Demo using the Nitech Japanese database.
– HTS voice for the Galatea toolkit [22].

B. HTS version 2.0/ 2.0.1

After an interval of three years, HTS version 2.0 was
released in December 2006. This was a major update and
included a number of new features and fixes:
• Terms about redistributions in binary form were added to

the HTS license.
• HCompV (global mean and variance calculation tool) accu-

mulates statistics in double precision. For large databases
the previous versions often suffered from numerical er-
rors.

1The HTK license prohibits redistribution and commercial use of source,
object, or executable codes.



• HRest (Baum-Welch re-estimation tool for a single
HMM) can generate state-duration distributions [19] with
the -g option.

• Phoneme boundaries can be given toHERest (embedded
Baum-Welch re-estimation tool) using the-e option. This
can reduce computational cost and improve phoneme
segmentation accuracy [23]. Subsets of boundaries (e.g,
pause positions) may also be specified.

• Reduced-memory implementation of tree-based clustering
in HHEd (a tool for manipulating HMM definitions) with
the -r option. For large databases the previous versions
sometimes consumed huge memory.

• Each decision tree can have a name with regular ex-
pressions (HHEd with the -p option). As a result, two
different trees can be constructed for consonants and
vowels respectively.

• Flexible model structures inHMGenS (speech parameter
generation tool). In the previous versions, we assumed
that the first HMM stream is for mel-cepstral coefficients
and the others are for logF0. Now we can specify model
structures using the configuration variablesPDFSTRSIZE
and PDFSTRORDER. Non-left-to-right model topologies
(e.g., ergodic HMM), Gaussian mixtures, and full covari-
ance matrices are also supported.

• Speech parameter generation algorithm based on the
expectation-maximization (EM) algorithm (the Case 3
algorithm in [14]) in HMGenS. Users can select generation
algorithms using the-c option.

• Random generation algorithm [24] in HMGenS. Users can
turn on this function by setting a configuration variable
RNDPG=TRUE.

• State- or phoneme-level alignments can be given to
HMGenS.

• The interface ofHMGenS has been switched fromHHEd-
style toHERest-style.

• Various kinds of linear transformations for MSD-HMMs
are supported inHERest.

– Constrained and unconstrained maximum likelihood
linear regression (MLLR) based adaptation [25].

– Adaptive training based on constrained MLLR [25].
– Precision matrix modeling based on semi-tied covari-

ance matrices [26].
– Heteroscedastic linear discriminant analysis (HLDA)

based feature transform [27].
– Phonetic decision trees can be used to define regres-

sion classes for adaptation [28]
– Adapted HMMs can be converted to the run-time

synthesis engine format.

• Maximum a posteriori (MAP) adaptation [29] for MSD-
HMMs in HERest.

HTS version 2.0.1 was a bug-fixed version. The new fea-
tures in this version are as follows:

• Band structure for linear transforms [30].
• Speaker interpolation [3].
• Stream-dependent variance flooring scales.

• Demo scripts support LSP-type spectral parameters.
• β version of the runtime synthesis engine API.

C. New features in version 2.1

The latest version, HTS version 2.1, was released in July
2008. This version includes four important new features:
hidden semi-Markov models (HSMMs) [31], [32], the speech
parameter generation algorithm considering global variance
(GV) [33], advanced adaptation techniques [34], and stable
version of runtime synthesis engine API.

Note that HTS version 2.1, with the STRAIGHT analy-
sis/synthesis technique [35], provides the ability to construct
the state-of-the-art HMM-based speech synthesis systems de-
veloped for the past Blizzard Challenge events [36], [37], [38],
[39].

1) Hidden semi-Markov model:This section describes hid-
den semi-Markov models. In HMM-based speech synthesis,
rhythm and tempo are controlled by state-duration distribu-
tions. They are estimated from statistical variables obtained
at the last iteration of the forward-backward algorithm, and
then clustered by a decision tree-based context-clustering
algorithm: state-duration distributions are not iteratively re-
estimated in the Baum-Welch algorithm [19]. At the synthesis
stage, we construct a sentence HMM and determine its state
durations so as to maximize their probabilities. Then, speech
parameter vector sequences are generated. However, there is
an inconsistency: although parameters of HMMs are estimated
without explicit state-duration distributions, speech parameter
vector sequences are generated from HMMs using the explicit
state-duration distributions. This inconsistency can degrade the
quality of synthesized speech.

To resolve the discrepancy, HSMMs [40], which can be
viewed as HMMs with explicit state-duration distributions,
were introduced into the training part [31]. The use of HSMMs
makes it possible to simultaneously re-estimate state-output
and -duration distributions. The adaptation and adaptive train-
ing techniques for HSMMs were also derived [32]. Zen et
al. reported small improvements in speaker-dependent systems
[31]. However, Tachibanaet al.reported that the use of HSMM
was essential to adapt state-durations distributions [41]. The
HSMM was also successfully applied to speech recognition
[42].

2) Speech parameter generation algorithm considering
global variance: In the basic system, the speech parameter
generation algorithm is used to generate spectral and excitation
parameters from the HMMs [14]. By taking into account
constraints between the static and dynamic features, it can
generate smooth speech parameter trajectories. However, the
generated spectral and excitation parameters are often exces-
sively smooth compared with those of natural speech. This
over-smoothing is due to the statistical process of model train-
ing, and causes degradation in the naturalness of synthesized
speech. To avoid this problem, Todaet al. proposed a speech
parameter generation algorithm considering global variance
(GV) [33].



This algorithm iteratively maximizes the following objective
function with respect to a speech parameter vector sequence
c =
[
c⊤1 , . . . , c

⊤
T

]⊤
(static features only):

FGV(c) = w logP (Wc | q, λ) + logP (v (c) | λv) (2)

where λ is a sentence HSMM,q = {q1, . . . ,qT} is a state
sequence determined by state-duration distributions,W is a
window matrix which appends delta and delta-delta features to
c, w is a weight for the state-output probability,v (c) is the GV
of c which is defined as an intra-utterance variance ofc, and
λv denotes parameters of a GV distribution. The second term
of Eq. (2) can be viewed as a penalty term for over-smoothing.
The use of this algorithm dramatically reduces the buzziness
in synthesized speech and improves the speech quality [33].
This was one of the main components of Nitech’s Blizzard
Challenge 2005 system [36].

3) CSMAPLR: The MLLR adaptation algorithms utilize
the ML criterion to estimate linear transformation matrices.
However, the amount of adaptation data is usually very limited
at the adaptation stage. Therefore, we should use more robust
criteria such as the MAP criterion. In the MAP estimation, we
estimate the linear transformation matricesX as follows:

X̂ = arg max
X

P (o | λ, X) P(X) (3)

whereP(X) is a prior distribution for the linear transformation
matrix X.

In the structured MAP linear regression (SMAPLR) [43], we
first estimate a global linear transformation matrix at the root
node of the tree structure using all the adaptation data, and then
propagate it to its child nodes as their prior distributions. In the
child nodes, linear transformation matrices are estimated again
using their adaptation data, based on the MAP criterion with
the propagated prior distributions. Then, the recursive MAP-
based estimation of the transformation matrices from a root
node to lower nodes is conducted. Yamagishiet al. applied
the SMAP to the constrained MLLR adaptation and derived
constrained SMAPLR (CSMAPLR) [34], in which the linear
transformation matrices for both mean vectors and covariance
matrices of state-output distributions are shared and estimated
using the recursive MAP criterion. The CSMAPLR adaptation
algorithm can utilize the tree structure more effectively than
the constrained MLLR adaptation since the tree structure
represents connection and similarity between the distributions,
and the propagated prior information automatically reflects
the connection and similarity. This algorithm was applied to
the HMM-based speech synthesis and showed that it was
better than the other linear transformation-based adaptation
techniques [34]. This technique is also useful for speech
recognition [44].

4) hts engine API: Since version 1.1, a small stand-alone
run-time synthesis engine namedhts engine has been in-
cluded in the HTS releases. It works without the HTK libraries,
and it is released under the new and simplified BSD license;
Users can develop their own open or proprietary software
based on the run-time synthesis engine and redistribute these

source, object, and executable codes without any restriction.
In fact, a part ofhts engine has been integrated into several
pieces of software, such as ATR XIMERA [45], Festival [20],
and OpenMARY [46]. The spectrum and prosody prediction
modules of ATR XIMERA are based onhts engine. Fes-
tival includeshts engine as one of its waveform synthesis
modules. The upcoming version of OpenMARY uses the JAVA
version ofhts engine.

As described above,hts engine has been used as a
module rather than a piece of stand-alone software. This
suggests that users require thehts engine library, not the
stand-alone program. In response to this demand, we decided
to rewritehts engine in an API-style implementation. The
stable version,hts engine API version 1.0, was released
with HTS version 2.1. It is written in C and provides various
functions required to setup and drive the synthesis engine.
The reference for this API is also available. It supports
LSP-type parameters in addition to cepstral parameters. The
speech parameter generation algorithm considering GV is also
included. Flite+hts engine, which is a combination of
CMU Flite andhts engine, was also released. It shows an
implementation of English TTS for embedded devices using
Flite front-end andhts engine back-end.

Both hts engine andFlite+hts engine can be down-
loaded from thehts engine SourceForge project website
[47].

D. Demonstrations and documentation

Currently two demo scripts to construct speaker-dependent
systems (English and Japanese) and a demo script to train
a speaker-adaptation system (English) have been released.
The English demo scripts use the CMU ARCTIC databases
and generate model files for Festival andhts engine. The
Japanese demo script uses the Nitech database and gener-
ates model files for the Galatea toolkit [22]. These scripts
demonstrate the training processes and the functions of HTS.
The demo scripts to construct speaker-dependent and adap-
tation systems with the STRAIGHT analysis/synthesis tech-
nique [35] are also released. The demo scripts first extract
STRAIGHT spectrum,F0, and aperiodicities using the MAT-
LAB version of STRAIGHT then they are converted spectral
parameters such as mel-cepstral coefficients or LSPs, logF0,
and band aperiodicities. At the synthesis stage, generated
spectral parameters, logF0, and band aperiodicities are con-
verted to STRAIGHT spectrum,F0, and aperiodicities then
the MATLAB version of STRAIGHT reconstructs a waveform
from these STRAIGHT parameters.

Six voices for Festival trained by the CMU ARCTIC
databases have also been released. Each HTS voice consists
of model files trained by the demo script, and can be used as
a voice for Festival without any other HTS tools.

Currently no documentation for HTS is available. However,
the interface and functions of HTS are almost the same as
those of HTK. Therefore, users who are familiar with HTK
can easily understand how to use HTS. The manual of HTK



[16] is also very useful. There is also an open mailing list for
discussion of HTS (hts-users@sp.nitech.ac.jp).

IV. Other applications

Although HTS has been developed to provide a research
platform for HMM-based speech synthesis, it has also been
used in various other ways, for example:

• Human motion synthesis [48], [49], [50],
• Face animation synthesis [51],
• Audio-visual synthesis [52], [53] and recognition [54],
• Acoustic-articulatory inversion mapping [55],
• Prosodic event recognition [56], [57],
• Mispronunciation detection in CALL systems [58],
• Very low bit-rate speech coder [59],
• Acoustic model adaptation for coded speech [60],
• Training data generation for ASR systems [61].
• Automatic evaluation of ASR systems [62].
• Online handwriting recognition [63].

We hope that HTS keeps contributing to progress in other
research fields as well as speech synthesis.

V. Conclusions and future release plans

This paper described the recent developments of the HMM-
based speech synthesis system (HTS). Internally, we have a
number of variants of HTS,e.g.,

• Variational Bayes [64],
• Trajectory HMMs [65],
• Minimum generation error training [66],
• Shared tree construction [67],
• Eigenvoice [4],
• Multiple linear regression HMMs [68].

Hopefully, we can integrate valuable features of these variants
into future HTS releases. On-line demonstrations which have
been built using the above HTS version 2.1 features are
available at [69].
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Appendix A
Modifications in Model Definition

In HTS, the HTK HMM definition (please see HTKBook
[16] Chapter 7) has been modified to support MSD [13],
stream-level tying, and adaptation of multi-stream HMMs.
This section gives a brief description of these modifications.

First, <MSDInfo> have been added to global options of
the HTK HMM definition language. The arguments to the
<MSDInfo> option are the number of streams (default 1) and
then for each stream, 0 (non-MSD stream) or 1 (MSD stream)
of that stream. The full set of global options in HTS is given
below.

globalOpts = option { option }
option = <HmmSetId> string |

<StreamInfo> short { short } |
<MSDInfo> short { short } |
<VecSize> short |

http://hts-engine.sourceforge.net/
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<ProjSize> short |
<InputXform> inputXform |
<ParentXform> ∼a macro |
covkind |
durkind |
parmkind

Second, specification of the number of mixture components
has been modified to support stream-level tying structures as
follows:

HTK HTS
<State> 2 <State> 2
<NumMixes> 1 2
<SWeights> 2 0.9 1.1 <SWeights> 2 0.9 1.1
<Stream> 1 <Stream> 1

<NumMixes> 1
<Mixture> 1 1.0 <Mixture> 1 1.0
<Mean> 4 <Mean> 4
0.3 0.2 0.1 0.0 0.3 0.2 0.1 0.0

<Variance> 4 <Variance> 4
0.5 0.4 0.3 0.2 0.5 0.4 0.3 0.2

<Stream> 2 <Stream> 2
<NumMixes> 2

<Mixture> 1 0.4 <Mixture> 1 0.4
<Mean> 2 <Mean> 2
1.0 2.0 1.0 2.0

<Variance> 2 <Variance> 2
4.0 8.0 4.0 8.0

<Mixture> 2 0.6 <Mixture> 2 0.6
<Mean> 2 <Mean> 2
2.0 9.0 2.0 9.0

<Variance> 2 <Variance> 2
3.0 6.0 3.0 6.0

As can been see,<NumMixes> has been moved from state-
level to stream-level. This modification enables us to include
the number of mixture components in the stream-level macro.
Based on this implementation, a stream-level macro was
added. The various distinct points in the hierarchy of HMM
parameters which can be tied in HTS is as follows:

∼s shared state distribution
∼p shared stream
∼m shared Gaussian mixture component
∼u shared mean vector
∼v shared diagonal variance vector
∼i shared inverse full covariance matrix
∼c shared CholeskyU matrix
∼x shared arbitrary transform matrix
∼t shared transition matrix
∼d shared duration parameters
∼w shared stream weight vector

Note that the∼p macro is used by the HMM editor HHEd
for building tied mixture systems in the original HTK macro
definition.

The resultant state definition of in the modified HTK HMM
definition language is as follows:

state = <State> short stateinfo
stateinfo = ∼s macro |

[ weights ] stream { stream } [ duration ]
macro = string
weights = ∼w macro | <SWeights> short vector
vector = float { float }
stream = [ <Stream> short ] streaminfo
streaminfo = ∼p macro | [ <Stream> short ] [mixes]

(mixture { mixture } | tmixpdf | discpdf)

mixes = <NumMixes> short {short}
tmixpdf = <TMix> macro weightList
weightList = repShort { repShort }
repShort = short [ ∗ char ]
discpdf = <DProb> weightList
mixture = [ <Mixture> short float ] mixpdf
mixpdf = ∼m macro | mean cov [ <GConst> float ]
mean = ∼u macro | <Mean> short vector
cov = var | inv | xform
var = ∼v macro | <Variance> short vector
inv = ∼i macro |

(<InvCovar> | <LLTCovar>) short tmatrix
xform = ∼x macro | <Xform> short short matrix
matrix = float {float}
tmatrix = matrix

It should be noted that<Stream> can be specified in both
stream and streaminfo. This is because<Stream> in the
∼p macro is essential to specify the stream index of this
macro. This stream index information is used in various HTS
functions to check stream consistency.

Third, to support multi-stream HMM adaptation, the HTK
HMM definition language for baseclasses is modified. A
baseclass is defined as

baseClass = ∼b macro baseopts classes
baseopts = <MMFIdMask> string <Parameters> baseKind

[<StreamInfo>] <NumClasses> int
StreamInfo = short { short } |
baseKind = MIXBASE | MEANBASE | COVBASE
classes = <Class> int itemlist { classes }

where<StreamInfo> is optionally added to specify the stream
structure.

Appendix B
Added Configuration Variables

A number of configuration variables have been added to
HTK to control new functions implemented in HTS. Their
names, default values, and brief descriptions are as follows:

Module Name Default Description
HAdapt SAVEFULLC F Save transformed

model set in full
covariance form

USESMAP F Use structural
MAP criterion [34]

SMAPSIGMA 1.0 Prior parameter for
SMAP criterion

SAVEALLSMAPXFORM T Save all
(unnecessary)
linear transforms
estimated in
SMAPLR/CSMAPLR

BANDWIDTH Bandwidth of
transformation
matrices [30]

DURUSEBIAS F Specify a bias for
linear transforms

DURSPLITTHRESH 1000.0 Minimum
occupancy to
generate a
transform for
state-duration
model set



Module Name Default Description
DURTRANSKIND MLLRMEAN Transformation

kind
DURBLOCKSIZE full Block structure of

transform for state-
duration model set

DURBANDWIDTH Bandwidth of
transformation
matrices for state-
duration model
set

DURBASECLASS global Macroname of
baseclass for state-
duration model
set

DURREGTREE Macroname of
regression tree
for state-duration
model set

DURADAPTKIND BASE Use regression tree
or base classes to
adapt state-duration
model set

HFB MAXSTDDEVCOEF 10 Maximum duration
to be evaluated

MINDUR 5 Minimum duration
to be evaluated

HMap APPLYVFLOOR T Apply variance
floor to model set

HGen MAXEMITER 20 Maximum # of EM
iterations

EMEPSILON 1.0E-4 Convergence factor
for EM iteration

RNDPARMEAN 0.0 Mean of Gaussian
noise for random
generation [24]

RNDPARVAR 1.0 Variance of Gaus-
sian noise for ran-
dom generation

USEGV F Use speech
parameter
generation
algorithm
considering GV
[33]

CDGV F Use context-
dependent GV
model set

LOGGV F Use logarithmic
GV instead of
linear GV

MAXGVITER F Max iterations in
the speech parame-
ter generation con-
sidering GV

GVEPSILON 1.0E-4 Convergence factor
for GV iteration

MINEUCNORM 1.0E-2 Minimum Euclid
norm of a gradient
vector

Module Name Default Description
STEPINIT 1.0 Initial step size
STEPDEC 0.5 Step size decelera-

tion factor
STEPINC 1.2 Step size accelera-

tion factor
HMMWEIGHT 1.0 Weight for HMM

output prob
GVWEIGHT 1.0 Weight for GV out-

put prob
OPTKIND NEWTON Optimization

method
RNDFLAGS Random generation

flag
GVMODELMMF GV MMF file
GVHMMLIST GV model list
GVMODELDIR Dir containing GV

models
GVMODELEXT Ext to be used with

above Dir
GVOFFMODEL Model names to be

excluded from GV
calculation

HModel IGNOREVALUE -1.0E+10 Ignore value to
indicate zero-
dimensional
space in multi-
space probability
distribution

HCompV NSHOWELEM 12 # of vector ele-
ments to be shown

VFLOORSCALE 0.0 variance flooring
scale

VFLOORSCALESTR variance flooring
scale vector for
streams

HERest APPLYVFLOOR T Apply variance
floor to model set

DURMINVAR 0.0 Minimum variance
floor for state-
duration model
set

APPLYDURVARFLOOR T Apply variance
floor to state-
duration model
set

DURMAPTAU 0.0 MAP tau for state-
duration model set
[29]

ALIGNDURMMF State-duration
MMF file for
alignment (2-
model reest)

ALIGNDURLIST State-duration
model list for
alignment (2-
model reest)

ALIGNDURDIR Dir containing
state-duration
models for
alignment (2-
model reest)



Module Name Default Description
ALIGNDUREXT Ext to be used with

above Dir (2-model
reest)

DURINXFORMMASK Input transform
mask for state-
duration model
set (default output
transform mask)

DURPAXFORMMASK Parent transform
mask for state-
duration model
set (default output
parent mask)

HHEd USEPATTERN F Use pattern instead
of base phone for
tree-based cluster-
ing

SINGLETREE F Construct single
tree for each state
position

APPLYMDL F Use the MDL crite-
rion for tree-based
clustering [18]

IGNORESTRW F Ignore stream
weight in tree-
based clustering

REDUCEMEM F Use reduced mem-
ory implementation
of tree-based clus-
tering

MINVAR 1.0E-6 Minimum variance
floor for model set

MDLFACTOR 1.0 Factor to control
the model
complexity term in
the MDL criterion

MINLEAFOCC 0.0 Minimum
occupancy count in
each leaf node

MINMIXOCC 0.0 Minimum
occupancy count
in each mixture
component

SHRINKOCCTHRESH Minimum
occupancy count
in decision trees
shrinking

HMGenS SAVEBINARY F Save generated pa-
rameters in binary

OUTPDF F Output pdf
sequences

PARMGENTYPE 0 Type of parame-
ter generation algo-
rithm [14]

MODELALIGN F Use model-level
alignments given
from label files to
determine model-
level durations

Module Name Default Description
STATEALIGN F Use state-level

alignments given
from label files to
determine state-
level durations

USEALIGN F Use model-level
alignments to
prune EM-
based parameter
generation
algorithm

USEHMMFB F Do not use state-
duration models in
the EM-based pa-
rameter generation
algorithm

INXFORMMASK Input transform
mask

PAXFORMMASK Parent transform
mask

PDFSTRSIZE # of PdfStreams
PDFSTRORDER Size of static fea-

ture in each Pdf-
Stream

PDFSTREXT Ext to be used for
generated parame-
ters from each Pdf-
Stream

WINEXT Ext to be used
for window coeffi-
cients file

WINDIR Dir containing
window coefficient
files

WINFN Name of window
coefficient files

Other configuration variables in HTK can also be used with
HTS. Please refer to HTKBook [16] Chapter 18 for others.

Appendix C
Added Command-Line Options

Various new command-line options have also been added to
HTK tools. They are listed as follows:

HInit
Option
-g Ignore outlier vector in MSD

HRest
Option
-g s output duration model to file s
-o fn Store new hmm def in fn (name only)

HERest
Option
-b use an input linear transform for dur models
-f s extension for new duration model files
-g s output duration model to file s
-n s dir to find duration model definitions
-q s save all xforms for duration to TMF file s
-u tmvwapd update t)rans m)eans v)ars w)ghts

a)daptation xform p)rior used
s)semi-tied xform
d) switch to duration model



update flag
-y s extension for duration model files
-N mmf load duration macro file mmf
-R dir dir to write duration macro files
-W s [s] set dir for duration parent xform to s

and optional extension
-Y s [s] set dir for duration input xform to s

and optional extension
-Z s [s] set dir for duration output xform to s

HHEd

Option
-a f factor to control the second term in MDL
-i ignore stream weight
-m apply MDL principle for clustering
-p use pattern instead of base phone
-r reduce memory usage on clustering
-s construct single tree
-v f Set minimum variance to f

HMGenS

Option
-a Use an input linear transform for HMMs
-b Use an input linear transform for dur models
-c n type of parameter generation algorithm

0: both mix and state sequences are given
1: state sequence is given,
but mix sequence is hidden

2: both state and mix sequences are hidden
-d s dir to find hmm definitions
-e use model alignment from label for pruning
-f f frame shift in 100 ns
-g f Mixture pruning threshold
-h s [s] set speaker name pattern to s,

optionally set parent patterns
-m use model alignment for duration
-n s dir to find duration model definitions
-p output pdf sequences
-r f speaking rate factor (f<1: fast f>1: slow)
-s use state alignment for duration
-t f [i l] set pruning to f [inc limit]
-v f threshold for switching spaces for MSD
-x s extension for hmm files
-y s extension for duration model files
-E s [s] set dir for parent xform to s

and optional extension
-G fmt Set source label format to fmt
-H mmf Load HMM macro file mmf
-I mlf Load master label file mlf
-J s [s] set dir for input xform to s

and optional extension
-L dir Set input label (or net) dir
-M dir Dir to write HMM macro files
-N mmf Load duration macro file mmf
-S f Set script file to f
-T N Set trace flags to N
-V Print version information
-W s [s] set dir for duration parent xform to s

and optional extension
-X ext Set input label (or net) file ext
-Y s [s] set dir for duration input xform to s

and optional extension

Please also refer to HTKBook [16] Chapter 17 for other
command-line options.

Appendix D
Added Commands and Modifications in HHEd

A. Added commands
Some HHEd commands have been added in HTS. They are

as follows:

AX filename - Set the Adapt XForm to filename
CM directory - Convert models to pdf for speech

synthesizer
CT directory - Convert trees/questions for

speech synthesizer
DM type macname - Delete macro from model-set
DR id - Convert decision trees to a

regression tree
DV - Convert full covariance to

diagonal variances
IT filename - Clustering while imposing loaded

tree structure. If any empty
leaf nodes exist, loaded trees
are pruned and then saved to
filename

IX filename - Set the Input Xform to filename
JM hmmFile ilist - Join Models on stream or state

level
PX filename - Set the Parent Xform to filename
// comment - Comment line (ignored)

B. Item listing
In many HHEd commands, we are required to specify item

lists to specify a set of items to be processed. In HTS, item list
specification has been modified to specify stream-level items.

itemList = “{” itemSet { “,” itemSet } “}”
itemSet = hmmName . [“transP” | “state” state ]
hmmName= ident | identList
identList = “(” ident { “,” ident } “)”
ident = < char | metachar >
metachar = “?” | “⋆”
state = index [“.” stateComp ]
index = “[” intRange { “,” intRange } “]”
intRange = integer [ “-” integer ]
stateComp= “dur” | “weights” | stream
stream = [ “ stream” index ] [ “.mix” mix ]
mix = index [ “.” ( “mean” | “cov” ) ]

For example,

TI str1 {*.state[2].stream[1]}

denotes tying streams in state 2 of all phonemes.

C. Mix-up

In the HHEd commandMU, HTS additionally supports addi-
tive and multiplicative mixture incrementation. For example,

MU 6 {*.state[3].mix}

MU +6 {*.state[3].mix}

MU *6 {*.state[3].mix}

if the the mixture components per state is 2, the first command
increases the numbers of mixtures in state 3 of all phonemes
of aa to 6, the second one increases them to 8, and the last
one increased them to 12.
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