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Abstract 

Spoken Term Detection (STD) or Keyword Search (KWS) 

techniques can locate keyword instances but do not 

differentiate between meanings. Spoken Word Sense Induction 

(SWSI) differentiates target instances by clustering according 

to context, providing a more useful result. In this paper we 

present a fully unsupervised SWSI approach based on 

distributed representations of spoken utterances. We compare 

this approach to several others, including the state-of-the-art 

Hierarchical Dirichlet Process (HDP). To determine how ASR 

performance affects SWSI, we used three different levels of 

Word Error Rate (WER), 40%, 20% and 0%; 40% WER is 

representative of online video, 0% of text. We show that the 

distributed representation approach outperforms all other 

approaches, regardless of the WER. Although LDA-based 

approaches do well on clean data, they degrade significantly 

with WER. Paradoxically, lower WER does not guarantee 

better SWSI performance, due to the influence of common 

locutions. 

Index Terms: Spoken Word Sense Induction, Spoken 

Language Understanding, Distributed Representations 

1. Introduction 

STD [1] focuses on finding instances of a text query in an 

audio corpus, and provides access to useful portions of the 

speech data. However, detecting the presence of a query may 

be insufficient if the query word happens to have multiple 

meanings. Presenting every instance of the query with 

different meaning is not efficient. Presenting the search result 

clustered by meaning could significantly increase the 

interpretability of the detected term. 

Clustering target keyword according to the meaning requires 

Word Sense Induction (WSI) [2]. We explore Spoken Word 

Sense Induction (SWSI), which enables WSI on human speech 

instead of natural language text. Since speech data is noisier 

and (spontaneous) spoken language is less structured, we 

anticipate a greater challenge in SWSI, compared to a text-

based WSI task. 

In this paper, we describe a fully unsupervised SWSI approach 

that utilizes distributed representation [3] of spoken utterances. 

We compare our approach with several other approaches, 

including the state-of-the-art Hierarchical Dirichlet Process 

(HDP) which achieved the best result in SemEval-2013 WSI 

task [4]. We also test on three different levels of Word Error 

Rate (WER), as WER constitutes one of the major differences 

between SWSI and WSI. Related work is presented after our 

results and analysis section to provide boarder insight on the 

problem. 

 

 

This paper makes three contributions: 

• We present the Spoken Word Sense Induction (SWSI) 

task, together with a procedure that does not require 

human labeling for evaluation. 

• We demonstrate that distributed representation-based 

approaches outperform other approaches regardless of 

the level of WER. LDA-based approaches do well on 

clean data. However, they significantly degrade as WER 

increases. 

• We also show that the lower WER does not guarantee 

better performance on SWSI, possibly due to the 

reduced errors are mostly common locutions (phrases 

commonly used in spoken language), which does not 

contribute to the understanding of the content.    

2. Approach 

In this section, we will introduce our motivations and describe 

our techniques for constructing a distributed representation for 

spoken utterances.  

2.1. The Skip-gram Model 

Mikolov et al. [3] recently introduced the Skip-gram model. 

Skip-gram models and other Neural Network Language 

Models (NNLM) produce word representations for each word 

in the training data according to its surrounding words. Each 

word can be viewed as a point in a “Word Embedding” space, 

and if there are two words that are located closely in this 

space, it means those two words tend to show up in similar 

surrounding word contexts in training data. The advantage of 

using Skip-gram model instead of other NNLM is that the 

Skip-gram model requires much less computing resource yet it 

can still achieve good performance. (The comparisons 

between Skip-gram model and other NNLM are presented in 

the Related Works). We followed the standard training 

procedure of Skip-gram model in addition with Negative 

Sampling and Subsampling of Frequent Words. The parameter 

k for Negative Sampling is set to 5, and the parameter t for 

Subsampling of frequent word is set to 10-4. For more detail of 

Skip-gram model training, please see [3]. 

The Skip-gram model will produce a single point in the “Word 

Embedding” space for each word in the training data. 

However, this is actually a limitation of the model, as each 

word is forced to be represented as a single point in the “Word 

Embedding” space. This is not an ideal situation, because if 

the w has different meanings, it is likely to occur with very 

different surrounding words. The computed single point for w 

is the average of all instances of w, which conflates the 

different meanings. If sense-labeled training data is available, 



then it would be possible to train multiple distributed 

representations that differentiate the different meaning of the 

same word, yet such data would not be available in a typical 

SWSI situation. 

2.2. Distributed Representation of Utterance 

In order to overcome the limitation of existing Skip-gram 

models, we use a distributed representation for utterances to 

differentiate the meaning of multiple instances of the same 

word. Our intuition is that, if we can obtain the distributed 

representation for the entire utterance, which contains our 

target word and the surrounding words, we can then use that 

representation to differentiate the meanings of a specific word. 

Thus if the meaning of the utterance is different, we can 

expect that even the same word in an utterance is likely to 

have different senses. The SWSI task is usually considered to 

be a clustering task; clustering the utterance instances can be a 

good approximation of clustering the words by sense. 

We obtain the distributed representation for an utterance as 

follows: We assume there is an extra “utterance token” 

associated with each utterance. This token will be trained with 

every other word in the sentence. So given a sequence of 

training word w1, w2, …, wT in a specific utterance, the 

objective of the distributed representation of the utterance is to 

maximize the average log probability 
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where N is the size of the entire utterance and u is the 

“utterance token”. This will map the utterance into the same 

space with other words in the training data, so the utterance 

can also be represented by the distributed representations used 

for the other words.  

3. Experiments 

3.1. Dataset 

We use 60 hours of YouTube “How To” video for our 

experiments. The YouTube video corpus [5] we used includes 

human transcription, allowing us to compute the WER for 

ASR.  

The ASR system we use to decode the speech is based on the 

Kaldi [6] toolkit. We have two different setups of acoustic 

model training to simulate different WER, which were 39.13% 

and 19.95% (nominally, 40% and 20%). The acoustic model 

of the 40% WER system is trained on the Wall Street Journal 

corpus consisting of approximately 80 hours of broadcast 

news speech. The 20% WER system’s acoustic model is 

trained on 360 hours of video data that are in the same domain 

as the testing data. Speaker adaptive training (SAT) is 

conducted via feature-space MLLR (fMLLR) on LDA+MLLT 

features. DNN [7, 8, 9, 10] inputs include spliced fMLLR 

features. All decoding runs use a trigram language model that 

is trained from 480 hours of YouTube transcripts. The 40% 

WER system is meant to simulate a mismatch between 

training and testing data, common in real world use cases; it is 

about the same level as reported in [11]. The 20% WER 

system represent a more controlled environment (or more 

accurate ASR), as the mismatch between training data and 

testing data is much smaller. Together with the human 

transcription which is nominally 0% WER, we expect this can 

provide insight on how ASR performance affects SWSI 

performance. The number of word token and vocabulary size 

is reported in the following table: 

Table 1. Vocabulary size and number of tokens. 

WER (%) 40 20 0 

Vocabulary Size 55266 52377 55162 

Number of token 715849 745402 742260 

 

In order to select the target queries for our SWSI task, we 

adopt the query selection process used in the SemEval-2013 

WSI task. We selected those queries for which a sense 

inventory exists as a disambiguation page in the English 

Wikipedia1. As well, the queries we selected each have 3 

senses among the WordNet 5000 most common senses [12] to 

ensure that the difficulties are comparable. Every query 

appears at least once in our 60 hours YouTube data.  

3.2. Evaluation Metrics 

A variety of evaluation metrics [13, 14, 15, 16] can be used for 

evaluating SWSI cluster quality. However, most of these will 

be affected by chance agreement caused by the number of 

clusters used. We therefore use the Adjusted Rand Index 

(ARI) [14] as our evaluation metric, as it removes the effect of 

the chance agreement; ARI was used in the SemEval-2013 

WSI task. The standard ARI ranges from -1 to 1, however we 

follow the presentation format used in the SemEval-2013 WSI 

task and multiply the value by 100, to make it range from –100 

to +100.  

Defining the reference cluster for our queries is also a 

challenge, as asking human to label the actual word sense 

would require significant resources. Instead, we use a 

WordNet-based Word Sense Disambiguation (WSD) approach 

[17] to label the sense with the human transcript (0% WER) as 

our reference sense. If our query word is actually a recognition 

error (which means it does not occur in the human 

transcription), the reference sense for that instance is a specific 

sense of “Wrong Word” which only applies to recognition 

errors.   

3.3. Experimental Setup 

Our approach for using distributed representation of utterance 

for SWSI is straightforward. First, we train the distributed 

representation using the entire 60 hours of ASR transcription. 

For each of the utterance that contains the query word, we 

create a 100-dimension utterance vector. The utterance vector 

is trained using a standard toolkit2. We then perform repeated 

bisections clustering [18] on the utterance vector according to 

a pre-defined number of desired clusters using the CLUTO 

toolkit [19], and the MALLET toolkit [20] for the subsequent 

LDA-related processing. All the parameters are default values 

unless specified.   

In order to estimate how our SWSI approach compares to the 

other existing approaches, we also conducted the same 

experiments using four different baseline systems: 

                                                                 

 
1http://en.wikipedia.org/wiki/Category:Disambiguation_pages 
2https://code.google.com/p/word2vec/.   



Bag-of-Word (BOW) system: In BOW system, each 

utterance is represented by its BOW feature. We then perform 

repeated bisections clustering on the BOW feature. [21]  

Latent Dirichlet Allocation feature (LDA-feature) system: 

Instead of using BOW as the feature for each utterance, it first 

builds a LDA model with 100 topics on the entire 60 hours of 

testing data. The repeated bisections clustering use the topic 

distribution of utterance as feature.  

Latent Dirichlet Allocation (LDA) system: Described in 

[22], the LDA system trained the topic model only on the 

utterance that the query occurs. The number of topics is the 

desired cluster numbers, and each utterance is assigned to the 

topic that has the highest topical probability. 

Hierarchical Dirichlet Processes (HDP) system: Also 

described in [22], the HDP system is trained and clustered in 

the similar way to the LDA system. However, it does not 

require any assignment for the topic (cluster) numbers, as the 

algorithm determines the number of topics automatically. HDP 

achieved the best performance in the SemEval-2013 WSI task.   

We also evaluated our WordNet-based WSD system on the 

ASR transcription. This indicates how WSD system can 

perform given a widely-available knowledge source such as 

WordNet.  

We conducted two different set of experiments. The first set of 

experiments show how different approaches perform with 

different assignment of senses (clusters) on 40% WER data, 

our expect real-world scenario. The second set of experiments 

compares how different approaches perform under different 

WER conditions. This shows how noise introduced by an ASR 

system affects the SWSI performance for each approach. 

4. Results 

4.1. Comparison between WSI approaches 

 

Figure 1: ARI Comparison from different approaches 

with different numbers of clusters on 40% WER data. 

Figure 1 shows the ARI performance for our skip-gram based 

SWSI system as compared with the four baseline systems on 

40% WER data. The WSD system is knowledge-based and 

indicates the performance achievable with a human-produced 

knowledge source such as WordNet. None of the other 

approaches rely on external knowledge. We vary the number 

of clusters to see how different approach interacts with the 

number of clusters. The only exception is the HDP system, as 

its algorithm will decide the most appropriate number of 

clusters using a data-driven method.  

4.2. Comparison between WER 

 

Figure 2: ARI Comparison with number of cluster = 3 

on different Word Error Rate. 

Figure 2 shows the comparison between the SWSI systems at 

different WERs. This result leads us to three conclusions. 

First, regardless of the varying WER, the Skip-gram based 

SWSI always achieves the best performance. Second, the 

LDA-feature system achieves decent performance in the 0% 

WER condition, but its performance is degraded significantly 

when noise (i.e. misrecognitions) is present. The noise due to 

ASR error disrupts the topical distribution, and hence degrades 

the quality of the LDA topical distribution feature. Third, in 

contrast to general expectation, reducing the WER does not 

directly transfer into a significantly better SWSI performance. 

We believe this is due to the presence of common locutions. 

Table 2 shows the percentage of the context words around the 

query that are high frequency (top 1%). Despite the significant 

difference on WER, the percentage of context consisting of 

frequently occurring words is similar. This implies that words 

benefiting from the lower WER may not be the ones that 

impact the meaning of the content. This also reflects human’s 

conversational behavior, which is weighted towards high-

frequency locutions. 

Table 2. Percentage of the context which is frequently 

occurring words. 

WER (%) 40 20 0 

% of context is frequent word 76.9 78.8 78.1 

5. Analysis 

5.1. Exploring the Ideal Number of Senses 

Deciding the correct number of senses/clusters is a perennial 

challenge in research. In this section, we provide our 

observations on how the number of reference senses interacts 

with the cluster numbers in the Skip-gram SWSI system.  

Figure 3 shows the interaction between the number of assigned 

clusters and the number of reference senses for three different 
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levels of WER. The x axis shows the number of assigned 

clusters minus the number of reference clusters. The large 

decrease on the X = –1 is due to multiple instances of queries 

that have 2 meanings; assigning 1 sense to every word leads to 

an ARI of 0. According to the result, we observe that assigning 

1 or 2 extra cluster compared to the reference sense inventory 

achieves the best performance. We conjecture that this is 

caused by the clustering algorithm benefitting by having an 

extra cluster to hold the “noisy” data. Without this extra 

cluster, the quality of the other clusters is reduced.  

 

Figure 3: ARI Comparison for interaction between the 

number of assigned and reference clusters. 

5.2. Related Experiments 

Our Skip-gram based SWSI system achieves good 

performance on the described task, yet it still has limitations. 

The distributed representation requires a sufficient amount of 

training data to produce a stable vector space. We investigated 

reducing the amount of data used to train the distributed 

representation. When the video dataset is reduced to about 30 

hours (which contains around 300,000 tokens) the SWSI 

performance is reduced to about the level of the BOW system. 

The performance continues to degrade with even less data are 

included. The BOW system, on the other hand, maintains 

roughly the same performance level despite reduction in the 

amount of data.  

Distributed representation could be considered as a way to 

capture semantic information in the data. We also investigated 

its use as a way to identify possible recognition errors (that is, 

a given misrecognition may be occurring in an unexpected 

context). Accordingly, we conducted a preliminary experiment 

to test this possibility. We assume the cluster that has the 

highest variance would be the cluster that most likely pools 

recognition errors, as the source contexts would be very 

different. The experiment was inconclusive: high variance did 

not correlate with recognition error. We suspect that this was 

due to the fact that we trained the distributed representation 

using noisy data and that its variance is inherently high. We 

suspect using distributed representation based on a cleaner 

corpus (such as Wikipedia) might achieve better performance 

as the space would model the relationships in clean text.   

We also investigated recognition error detection using the 

Word Burst phenomenon [23], a content word that occurs in 

isolation tends to be an instance of recognition error. We find 

that 85% of the recognition errors on query words in the 40% 

WER data match this assumption. We changed the cluster 

assignment for every instance of query word that matched the 

Word Burst assumption to a separate cluster that represents the 

“Wrong Word” sense. Performance does not improve, as for 

these data there are many correct instances that are singletons 

as well. Nevertheless we believe this can be a useful feature as 

it shows a very high recall rate (85%) for identifying possible 

recognition errors.  

6. Related Work 

Multiple authors address the WSI problem, from different 

perspectives. [22] investigates graphical model oriented 

approaches, including LDA and HDP which we use as 

baseline systems in this paper. [24] uses the concept of 

submodularity. The WSI task is treated as a submodular 

function maximization problem. [25] reported their WSI 

systems based on second order co-occurrence features which 

atttempts to capture the connection between words that are 

likely to co-occur with the same word. These investigations 

are reported on nature language text, and do not address the 

possible effect of noise (recognition errors or locutions) found 

in spoken data.  

Other research [26, 27, 28] has investigated different neural 

network based distributed representations of words. [29] 

evaluated distributed representations on the word analogy task, 

and found that the Skip-gram models achieved the best 

performance by a significant margin. Regarding creating a 

distributed representation for multi-word instance [30], [31] 

reported a more sophisticated approach that combines the 

word vector in an order specified by a parse tree. However, 

due to its reliance on parsing, this approach only works on 

well-structured natural language sentences. Spoken utterances 

are harder to parse due to the presence of recognition errors 

and common locutions. 

7. Conclusion 

Our work makes several key contributions. We present the 

Spoken Word Sense Induction (SWSI) task, and describe an 

approach that does not require human labeling for evaluation. 

We also present a fully unsupervised SWSI approach based on 

the distributed representations for spoken utterances, which 

outperforms several existing approaches on different 

accuracies of ASR transcript. An interesting result is that, in 

contrast to expectation, improving WER does not guarantee an 

improvement in SWSI performance. We believe this is the 

main difference between SWSI and standard text-based WSI, 

as the words that benefit from the lower WER may not be the 

ones that impact the meaning of the content.  
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