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Abstract
While global characteristics of the speaker’s source and spectral
features have been successfully employed in pathological voice
detection, the underlying text has largely been ignored. In this
work, we focus on experiments that exploit the text stimulus
that is read by the subject. Features derived from text include
the mean cepstral distortion of the subject from an average in-
telligible speaker, and prosodic features include the speaking
rate, statistics of phoneme durations, etc. The phonetic labeling
information is also exploited to ignore all the unvoiced regions
of the speech samples to improve the discriminability between
intelligible and pathological voices. We also designed features
that capture the speaker’s overall closeness to intelligible in-
stances of the same text stimulus from other speakers. Our ex-
periments show that the proposed text-derived features improve
the detection of pathological voices by 20%.
Index Terms: Pathological voices, example based detection,
text-driven features, fusion of classification methods.

1. Introduction
Research on automatic extraction of paralinguistic information
has rapidly grown in the last years, motivated by their impor-
tance in fields like Human-Machine interaction, Multimedia
Retrieval, or in the educational and medical domains. The IN-
TERSPEECH 2012 Speaker Trait Challenge [1] addresses three
important speaker traits: personality, likability and pathology in
speech. Like in previous challenges, the goal of this competi-
tion is to bridge the gap between research in this area and low
compatibility of results, which is even more important for these
traits given their highly subjective nature.

In this paper we will describe two contributions: a set of
features that take advantage of the underlying text stimulus for
pathological voice detection and a framework based on the cal-
ibration and fusion of several classifiers. Although our work is
focused mainly on the pathology sub-challenge, given the pro-
posed novel features, the framework was also applied to the
other subtasks, and results for all sub-challenges will be pre-
sented.

Speech is the most important form of direct communica-
tion and any pathology that affects the speaking capabilities
will have a large impact both on the subject’s professional as
well as social activities. Intelligibility assessment of patholog-
ical voices can be very relevant both for diagnostic and ther-
apy evaluation. The assessment of voice quality can be made
by a diagnostician or by direct examination (for instance with
laryngostroboscopy). Hakkesteegt [2] evaluates two methods
for the assessment of voice quality: Dysphonia Severity Index
(DSI) and Voice Handicap Index (VHI). While the first is a com-

bination of measurements that can be retrieved from recorded
speech, in fact some are actually present in the baseline fea-
tures of the challenge (like F0 or Jitter), the second is based on
a questionnaire, and is therefor not suitable for automatic eval-
uation. In the work of Silva et al. [3] different methods of jitter
estimation were used to detect larynx pathologies that can affect
speech, such as vocal fold nodules or a vocal fold polyp. Our
approach also uses an enlarged set of acoustic and prosodic fea-
tures such as the described above but most importantly explores
information from the phonetic content which has been largely
under used and shows how the fusion of several distinct meth-
ods can be used to increase the performance of a pathological
voice assessment system.

The paper is organized as follows: in Section 2 we present
the novel features developed for the Pathology sub-challenge
that take into account the underlying text stimulus. In Section 3
we review the acoustic and frame level features used in Pathol-
ogy and also in the other two sub-challenges. In Section 4 we
present the different classification methods that were used in
this work. Section 5 presents the results obtained by the de-
veloped methods in the three sub-challenges. Finally we draw
some conclusions in Section 6.

2. Features exploiting the underlying text
stimulus

Since we intend to exploit the underlying text stimulus that was
read by the subjects, we device features that for which the ex-
traction is made possible only due to the availability of the text.
These features, that are both spectral and prosodic in nature, are
explained in greater detail below.

As a preprocessing step, the entire corpus was phonetically
aligned. Though the corpus provided manual phonetic segmen-
tation, for precise consistency of the phone boundaries, we align
the corpus automatically using the ehmm utility in festvox [4].
Since not all speech samples are intelligible, we train the pho-
netic models only on the intelligible examples from the training
data, but align all instances using the same trained models. Ad-
ditionally, given the phonetic alignments on all the intelligible
utterances, a statistical parametric speech synthesis model [5]
is built for the task. A Festival frontend for Dutch is built to
process each sentence and automatically convert it into a string
of appropriate Dutch phonemes. The idea here was to capture
the characteristics of an intelligible Dutch speaker (based on all
the intelligible utterances in the corpus) and to use them as a
reference to test any new speech instance. More information on
training statistical synthetic voices may be found in [6].



2.1. Mel-Cepstral Distortion

Using the statistical spectral models [5] built only from the in-
telligible speakers, it is possible to compute a ‘distance’ be-
tween an utterance and a synthetic utterance generated from the
models. While DTW techniques can be used to compute the
distance between the original and synthesized waveforms, usu-
ally the same durations as those employed by the speaker are
used for the synthetic utterance so that there aren’t errors due
to sub-optimal alignments. This way, an accurate frame level
error can be computed between the speaker and the estimate of
spectra from the statistical model.
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We use the Mel-Cepstral distortion measure given by the
above equation to compute the distance between mel cepstra of
the speaker and the estimate, mc

(t)
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also exclude pause regions from this computation as they are
irrelevant to this measure.

2.2. Speech rate

Speech rate may be defined as the number of syllable nuclei ut-
tered per second, ignoring the utterance initial and final pauses.
Speech rate has often been used as a feature in fluency studies
and it may help capturing some characteristics of voice patholo-
gies. This feature could be computed without the need for a
transcription using for instance the Praat script [7], but the avail-
ability of the automatically aligned utterances made it handy to
compute speech rate in this alternative way.

2.3. Phoneme duration prediction error

The default statistical duration model in Clustergen is a deci-
sion tree containing linguistic questions about the context of
the current phoneme, where the leaf nodes contain the average
duration of the training instances that fall in that path. Given the
phonetic segmentation, one can hence compute a mean predic-
tion error per phoneme for each utterance. This feature captures
some information about any abnormal durations which may be
relevant for pathology detection.

2.4. F0 prediction error

Similarly to what has been done for duration, we also include
the F0 prediction error for each utterance. This however may be
much less informative, as intelligible speakers that speak em-
phatically may also be ‘far’ from the average predictable F0.

2.5. Distance from positive examples of the stimulus

A particular characteristic of this corpusis that there were only
17 sentences which each speaker had recorded. This lets us
devise features that capture the distance of an instance from all
the intelligible exemplars of that text stimulus uttered by other
speakers. Though several measures can capture this distance,
we use the L2 distance of the default smile feature set of the
utterance from the average vector for intelligible speakers.

Table 1 presents the correlation of each of the above fea-
tures with class labels and intelligibility over unseen data. It can
be seen that the features provide significant correlations, and the
trends are also reasonable. It is accurate that MCD, and phone
duration error are negatively correlated with intelligibility. It

is interesting that F0 prediction error is not negatively corre-
lated. This means that intelligible speakers have unique speak-
ing styles (by being emphatic etc.,) and being far away from the
mean model is not essentially bad. The only confounding case
is the distance from positive examples, which is positively cor-
related with intelligibility. This could be an artefact of the small
size of the corpus, or the fact that the script and transcript are
very different in many cases.

Table 1: Correlation of each feature with the Pathology
class/intelligibility on unseen data

Feature Correlation
from text Boolean Intelligibility

Classification index
MCD -0.17 -0.17

Speech rate 0.298 0.364
Phoneme duration -0.151 -0.114

prediction error
F0 prediction 0.117 0.142

error
Distance from 0.221 0.175

positive examples

3. Acoustic Features
We used the baseline acoustic feature set provided by the chal-
lenge organizers [1] which consists of a vector with 6125 fea-
tures obtained for each segment (referred as “arff6125” in this
work). Additionally we modified the openSMILE feature ex-
tractor [8] configuration file in order to retain only the frame
based low-level descriptors (LLD) and their deltas. This con-
sists of a vector with 128 coefficients obtained every 10ms and
referred as “arff128” in this work. We also investigated how
more traditional cepstral frame level features such as Perceptual
Linear Prediction (PLP) [9] behave in these three challenges.
Although these cepstral features were originally developed for
speech recognition they have obtained surprisingly good results
in many audio and speech classification tasks. This front-end,
here referred as “PLP26”, extracts from the audio every 10ms a
frame with 12th order PLP coefficients plus energy plus deltas.

For the frame level feature extraction methods the non-
speech portions longer than 0.2 seconds were removed in an
effort to improve discriminability by extracting features only
during speech (voiced) segments.

4. Classification Methods
In this work we used different classification methods, start-
ing by reproducing the methods used in the competition base-
lines [1]. For this purpose we used the open-source classi-
fier implementations from the WEKA data mining toolkit [10].
First we evaluated linear Support Vector Machines (SVM)
trained with Sequential Minimal Optimization (SMO), as they
are robust against overfitting in high dimensional feature spaces.
A slightly larger range has been tested for the parameter C
{10−6, 10−5, . . . , 10+3}, in the SMO experiments, with best
results at 10−1 in the devel set. Secondly, we evaluated Ran-
dom Forests (RF), which avoid the curse of dimensionality by
constructing ensembles of REPTrees trained on random feature
subspaces [1].



4.1. Baseline methods with novel features

We also used the baseline methods, SMO and Random Forests
(RF) to obtain classifications for the five novel features previ-
ously described. Again for the SMO we tested a slightly larger
range for the parameter C {10−6, 10−5, . . . , 10+3}, with best
results at 10−1. For the Random Forests we used the same range
for the parameters, with best results of 500 for the number of
trees and 0.02 for sub-space size. As described in the challenge
article [1], we also used the training set to train the models and
the development set to tune the parameters. For the test set, we
also retrained the models using both train and devel sets with
the previous parameters.

4.2. SVM with ARFF128 features

The “ARFF128” frame level features served as input to a linear
kernel Support Vector Machines, for which we used the Lib-
SVM toolkit [11] with best value for parameter C as 10−3 esti-
mated in the devel set.

4.3. MLP with PLP26 features

For the “PLP26” features we used a Multi-Layer Perceptron
classification paradigm, trained with our own simulator [12].
This MLP takes as input context 21 contiguous frames of fea-
tures and has two hidden layers of 150 and 100 units. This con-
figuration of hidden units was the one that achieved the better
classification scores in the devel set.

4.4. Calibration and Fusion Back-End

Linear logistic regression fusion and calibration of the devel-
oped front-end systems has been done with the FoCal Multi-
class Toolkit [13]. The output log-likelihood ratio (llr) scores
from this fusion back-end were later converted into probabil-
ities, which is more meaningful in terms of human analysis.
This was achieved by scaling the scores to produce confidence
values with the expression (1).

p(score(t)) =
escore(t)∑
k e

score(k)
(1)

Several experiments of fusing the different front-ends were
tested. The ones that obtained better results are presented in
Table 5.1, Table 5.2, Table 5.3 and discussed in the next section.

5. Experimental Setup and Results
Results are expressed in terms of Unweighted and Weighted
Accuracy on average per class (% UA and %WA). The for-
mer (%UA) is the relevant measure for the competition since
it compensates when the distribution among different classes is
not well balanced [1].

5.1. Pathology sub-challenge results

In the Pathology sub-challenge, the devel set which has 746 seg-
ments is almost as large as the test set, but has the opposite bal-
ance (more non-intelligible segments, whereas the test set has
many more intelligible segments). Since the methods we use
do not need such a large set to tune classification and fusion
parameters, we propose a subdivision of the devel set which is
two-fold: first, allows for parameter tuning in a still rather large
set and second, allows us to evaluate the performance of the
developed systems in a separate set (from tuning) which was
chosen to have a class balance very similar the test set. The

two subsets derived from this new partitioning of the devel set
were named “dev-tune” and “dev-test”.Table 2 summarizes the
number of segments for each class of the new devel subsets.

Table 2: Partitioning of the devel set.
Class dev-tune dev-test devel (total)
I 251 90 341
NI 355 50 405
Total 606 140 746

Table 5.1 summarizes the results obtained in the develop-
ment set by the different systems individually and by their com-
bination using the calibration and llr fusion back-end.

Table 3: Pathology sub-challenge results.

Systems (% UA) dev-tune dev-test devel
a SMO - ARFF6125 61.1 61.4 61.4
b RF - ARFF6125 62.5 64.1 62.7
c CART - ARFF6125 66.3 63.0 65.7
d SVM - ARFF128 51.0 51.4 51.1
e MLP - PLP26 53.4 48.9 52.5
f SMO - 5-TXT-FEATS 82.2 81.3 82.2
g RF - 5-TXT-FEATS 73.6 75.2 74.1
h Fusion - a + b + d + f + g — 81.9 82.6

The systems that use the new developed text features are
very promising having obtained the best unweighted accuracy
results (82.2%) when compared with all other acoustic features.
System “f” represents an improvement of 20.8% absolute when
compared with the competition baseline using the same classi-
fication method (“a”). Furthermore, the fusion which combines
systems “a”, “b”, “d”, “f” and “g” obtained a slightly better
result than the best individual system (“f”). We chose these
five systems for the fusion because the remaining two, “c” and
“e”, exhibit a much lower UA% when evaluated in the dev-test
subset. This could mean that these systems will not generalize
correctly when evaluated in other test sets. The fusion of these
five systems represents an improvement of 17.5% absolute over
the best competition baseline individual system which obtained
65.1% in the devel set [1].

The relative improvement is also seen on the actual chal-
lenge test set, where the Fusion system received a 66.3% un-
weighted recall against 61.59% of the Fusion system without
the textual features. However this is still lesser than the chal-
lenge baseline of 68.9% unweighted accuracy. This is perhaps
due to the different kinds of pathologies in the development and
the test sets. Also the fact that the training data set doesn’t have
enough intelligible speakers to train a reliable ‘average’ intelli-
gible speaker. We hope to evaluate on more speakers in training
data and build gender specific and pathology specific models for
better generalization of these features on unseen test speakers.

5.2. Likability sub-challenge results

In the Likability sub-challenge, the new text dependent features
introduced for the Pathology sub-challenge could not be used,
since there is no phonetic alignment. In a similar fashion to the
Pathology sub-challenge, we reproduced the baseline methods
and additionally used acoustic features (ARFF128 and PLP26)
with different classification paradigms. Table 5.2 summarizes
the results obtained in the devel set by the different systems



individually and by their combination using the calibration and
llr fusion back-end.

Table 4: Likability sub-challenge Results.

Systems (% UA) devel
a SMO - ARFF6125 59.1
b RF - ARFF6125 58.8
c SVM - ARFF128 52.6
d MLP - PLP26 51.3
e Fusion - a + b + c + d 59.4

In this case, the fusion of individual systems produced only
slight improvements over the competition baseline (0.9% ab-
solute improvement over the baseline SMO method that had
58.5% UA). On the actual challenge test set, this system pro-
vided UA of 53.95%.

5.3. Personality sub-challenge results

In a similar fashion to the Pathology sub-challenge we re-
produced the baseline methods and additionally used acous-
tic features (ARFF128 and PLP26) with different classification
paradigms. Table 5.3 summarizes the results obtained in the
devel set by the different systems individually and by the com-
bination of them using the calibration and llr fusion back-end.

Table 5: Personality sub-challenge Results.

Systems (Mean % UA) devel
a SMO - ARFF6125 70.3
b RF - ARFF6125 70.3
c SVM - ARFF128 65.4
d MLP - PLP26 64.3
e Fusion - a + b + c + d 70.7

Again the fusion of individual systems produced a slightly
better result when compared with the competition baseline, in
this case achieving 0.6% absolute improvement over the base-
line SMO method that had 70.3% UA. The UA on the actual
challenge test set are as shown in Table 5.3. These are very
comparable and in some classes (classes C, E and N) better than
the challenge baseline results. The average UA on all classes we
obtain is 68.14% and the challenge baseline is at 68.3%.

class O C E A N mean
UA 57.84 80.11 75.76 60.68 66.32 68.14

6. Conclusions
This work exploits the fact that the pathological voice record-
ings were done using read speech, thus allowing the use of the
underlying text. While global characteristics of the speaker’s
source and spectral features have been successfully employed
in pathological voice detection, the underlying text has been
largely ignored. Features derived from text include the mean
cepstral distortion of the subject from an average intelligible
speaker, and prosodic features include the speaking rate, statis-
tics of phoneme durations, etc.. We also adopted features that
capture the speaker’s overall closeness to intelligible instances
of the same text stimulus from other speakers. Our experiments

show that the proposed text-derived features improve the de-
tection of pathological voices by 20% when compared with the
competition baseline. This improvement, however, is obtained
at the cost of introducing a language dependency in the detec-
tion of pathological voices. It would be interesting to further
pursuit this study with an extended corpus, and in particular in-
vestigate the role of the different text-based features.
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