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Abstract

We investigate speech-to-speech translation where one lan-
guage does not have a well-defined written form. We use
English-Spanish and Mandarin-English bitext corpora in order
to provide both gold-standard text-based translations and ex-
perimental results for different levels of automatically derived
symbolic representations from speech. We constrain our ex-
periments such that the methods developed can be extended
to low-resource languages. We derive different phonetic rep-
resentations of the source texts in order to model the kinds of
transcriptions that can be learned from low-resource-language
speech data. We experiment with different methods of cluster-
ing the elements of the phonetic representations together into
word-like units. We train MT models on the resulting texts, and
report BLEU scores for the different representations and clus-
tering methods in order to compare their effectiveness. Finally,
we discuss our findings and suggest avenues for future research.
Index Terms: speech-to-speech, machine translation, segmen-
tation, low-resource, unwritten languages

1. Introduction

The task of creating a speech-to-speech machine translation
(MT) system generally assumes the existence of a symbolic rep-
resentation schema for both the source and the target language.
For the usual speech-to-speech (S2S) system, an MT system
is first trained using some corpus of bitext, and then a speech
recognition component for the source language and a speech
synthesis component for the target language are added onto that
system to complete the S2S pipeline. This model, however, is
inadequate to account for cases in which a text representation
for one or both languages is unavailable, or in which only an im-
precise representation exists. When dealing with low-resource
languages and scenarios in which only audio data is collected,
it may be the case that a language lacks a standardized written
form; or that no one is available to transcribe the audio; or that
transcription is performed by a nonnative or nonexpert worker;
or that no adequate speech recognition system exists.

If a S2S system is to be built, if no text is available, we
must first have a way of inducing a text representation of the
audio in order to train the MT system. Approaches have been
developed to discover phonemes from audio that output strings
of phonemes as atomic units. That is, the phonemes are the
“words” of the resulting sentences; they are not grouped into
any larger units of representation. Once we have a string of
phonemes for each sentence, we can use that as the text rep-
resentation of the side of the parallel corpus for the language
in question (whether source or target). The resulting MT sys-
tem will work, but will underperform a comparable system that
is able to use orthographic or phonemic words as a representa-
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tion. In this paper, we address the question: Given a phonemic
string representation of a language, and no language-specific re-
sources, what is the best way to automatically cluster phonemes
into larger units such that the resulting representation optimizes
MT quality?

In our investigation, we used language pairs (English-
Spanish, Mandarin-English) for which a standard orthographic
representation was available for both source and target, in order
to compute oracle MT evaluation scores. We created phonemic
representations of the source language from the original (text-
only) corpora, to simulate having had only audio to begin with.
In each case, the target language was represented in the conven-
tional orthographic form, allowing MT scores to be computed
over words, as is usual, rather than over phonemes.

2. Related Work

In Stahlberg et al. [1], the authors build an ASR (automatic
speech recognition) system for Slovene using a phoneme recog-
nizer for a closely related language (Croatian) and a novel string
clustering method. The phoneme sequences are aligned with
words in three source languages; these cross-lingual phoneme-
to-word alignments are used to induce word-like units from
the phonemes [2]. Similar units that may represent the same
Slovene word, but differ due to recognition and alignment er-
rors, are grouped together and used to construct a pronunciation
dictionary and a unigram language model. These are used to-
gether with a Croatian acoustic model to recognize Slovene. In
contrast, we explore the utility of a phoneme recognizer both for
its intended language (English) and for an unrelated language
(Mandarin); we use different statistical methods for clustering
phonemes into words; and our goal is to optimize MT quality
rather than speech recognition per se.

In Goldwater et al. [3], the problem of word segmenta-
tion is approached from the perspective of modeling the pro-
cesses by which an infant language learner may identify word
boundaries in speech. By computationally investigating ap-
proaches based on different assumptions about the statistical
nature of phonemes and syllables, the authors show that suc-
cessful word segmentation from speech relies upon modeling
both word-internal and interword patterns. We use the code de-
veloped for this work in our experiments, showing applications
of the authors’ work to other problems in speech recognition.

The work of Muthukumar and Black [4] presents an alter-
nate method of deriving phonetic transcriptions of speech when
no regular transcriptions or linguistic knowledge are available,
based on predicting articulatory features and clustering them
into “inferred phonemes.”

Duong et al. [5] use a neural, attentional model to learn
alignments between source-language (Spanish) phonemes and
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target-language (English) words, outperforming other aligners
and benefiting the translation task. Further, they align source
speech directly with target words, without involving any source-
language-specific knowledge.

3. English-Spanish

The first language pair for our experiments was English-
Spanish, for which we used part of the English-Spanish Eu-
roparl corpus. Out of a total of 2.1 million sentences, we used
490,000 for training, 1000 for tuning, and 5000 for testing.
Larger tuning sets were eschewed due to memory limitations in
loading unusually large tables. All sentences used were over 10
tokens in length. All MT models were trained using Moses, in
a standard phrase-based approach incorporating IRSTLM and
mgiza. Where conventional orthography was present, sentences
were truecased and tokenized.

3.1. Approaches

The overall goal is to discover the best method(s) for learning to
cluster phonemes that have been derived from audio-only data,
or text data in an imperfect representation of the language, into
word-like units, as judged by comparing evaluations of MT sys-
tem quality. For the Europarl data, no audio is available. In-
stead, we used two different methods of transforming the text
into strings of phonemes, to simulate the representations that
can be derived directly from audio. We can use the results from
these experiments to inform our approach in situations where
no text is present.

1. Method 1: We used a feature of the speech synthesis
engine Flite [6] to produce phonemes from the English
data. This produces a string of phonemes for each word
of the text in a deterministic manner, and hence, does not
represent the variations in pronunciation present in ac-
tual human speech, nor noise introduced by (imperfect)
speech recognition. Its utility is to provide a noise-free
phonetic transcription against which to compare results
from other representations.

2. Method 2: We synthesized the corpus, creating an au-
dio file for each sentence, and then performed phoneme
discovery on the audio in the same manner as if it were
true human speech. For synthesis we used eight Flite
voices {aew, bdl, clb, eey, jmk, ljm, rms, slt}, seven from
American English speakers and one from a Canadian En-
glish speaker. For phoneme discovery we used the sys-
tem built by Sitaram et al. [7]. This incorporated an En-
glish phonemic language model trained on a corpus of
transcribed TED talks that were converted into Arpabet
notation using the CMU Pronouncing Dictionary, and
an English acoustic model trained on the 1997 English
Broadcast News Speech (HUB4) corpus (LDC98S71).

For comparison, we also computed scores for an oracle MT
model that uses regular orthographic words for both source and
target, without any phonemic transformations.

For each of the above methods, we compared four different
clustering approaches:

3.1.1. Phonemes only

For our baseline, we trained a system using the “raw,” unclus-
tered phonemes generated by each method as the source text.
Table 1 shows examples of text generated by the two methods.
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Table 1: Examples with raw phonemes

Original I declare resumed the session of the Eu-
ropean Parliament adjourned on . ..

Method 1 aydihklehrrihzuw md dh ax s eh
shaxnaavdhaxyuhraxpiyaxnp
aarlaxmaxntaxjherndaan...

Method2 AYDIHKLEHRIYZD UW IHNG

DHIHSAESHAHNAHVDHAET
YAORPIYAENDPAARTLIH
MAENDIHJHERNDAAN ...

3.1.2. Naive syllable clustering

We next used an approach of clustering phonemes into sylla-
bles that does not take into account any sophisticated phono-
tactic knowledge. While rules and constraints for English syl-
lable structure are well understood, we wanted to model a sit-
uation where this information is a priori unknown. Phonemes
in the inventory are identified as either “C” or “V,” and a range
of potential syllable structures are ranked by length, from the
long and complex to the most basic (CCCVCCCC, CCCVCCC,
...CV, VC, VV, V). For each syllable structure template in this
list, patterns of individual phonemes matching the template in a
sentence are clustered together. Table 2 shows example output
of this approach as applied to the texts from Table 1.

Table 2: Examples with naive clustering

Method 1 ay d-ih k1 eh_rr.ih Z_Uw
m_d_dh_ax_s.eh sh.axn aa v_dh_ax.y
uh roax_p iy ax n_p-aarl ax m.ax
ntax jherndaanfr...

Method2 AY DIH KLEHR IY ZDUW

IH NGDHIHS AE SHAHN
AH V.DHAETY AO RZPIY
AE NDPAARTL IH MAE
N_DIHJHERN.D_AANFR...

3.1.3. Most frequent ngrams

We next used an approach in which we calculate the £ most
frequent ngrams in the corpus and combine those ngrams into
clusters, then repeat the process on the resulting text, for a total
of p iterations. Within the 50 most frequent ngrams for each it-
eration, values for n were almost always 2, and occasionally 3.
We ran grid search experiments on the method 1 text to deter-
mine a general neighborhood for optimal values of k and p, and
then used those values (k = 10, p = 25) for the method 2 text as
well. Table 3 shows example output of this approach.

3.1.4. Goldwater approach

For our final approach, we used the Dirichlet process/Gibbs
sampler word segmentation algorithm (version 1.2) created by
Goldwater et al. [3]. Table 4 shows example output of this ap-
proach.

3.2. Results

Table 5 shows the BLEU scores obtained over our test set by
each of the four approaches above, for each of the two methods
of producing strings of phonemes from the original corpus.



Table 3: Examples with most-frequent-ngrams clustering

Method 1 ayd ihklehr r ihz uw
m d dh_ax_s_eh_sh_ax_n
aa_v_dh_ax y-uh_r_ax_p_iy_ax_n
p-aarlaxm_axntaxjh er nd
aan...

Method2 AY.D IHKL EHRIYZ D

UW_IHNG DH.IH.S AE_.SH AH_N
AH_VDH_AE.T Y_AOR PIY
AEND P.AART L IHM_AEN.D
IHJHERN.D AAN...

Table 4: Examples with Goldwater clustering

Method 1 aydihklehr rihzuwmddhaxseh shaxnaav
dhaxyuhraxpiyaxn paarlaxmaxnt axjh-
ernd aanfraydiy ...
AYDIHKL EHRIYZ DUWI-
HNGDHIHS AESHAHNAHV
DHAETYAORPIY AEND
PAARTLIHM AEND IHJHERN D
AAN....

Method 2

Table 5: English-Spanish Results (BLEU)

Words Raw Naive Ngrams Goldwater
phonemes  syllables
Oracle 35.76
Method 1 20.45 22.81 29.12 31.92
Method 2 13.81 13.78 18.46 20.20

The relative quality of the results from the four clustering
approaches is fairly consistent between the two methods. For
method 1, the naive syllable clustering approach outperformed
the raw phonemes, whereas for method 2, there was no change
in quality. We impute the lack of improvement here to the fact
that due to the noise in the phoneme-recognized synthesized
data, and the wide range of possible complex (multi-consonant)
syllables allowed by the syllable template, the model is unable
to learn good alignments for a significant proportion of the to-
kens in the input. There are also many out-of-vocabulary tokens
in the test set; the output is peppered with untranslated tokens
such as “N_K_AO_R_T_F_R” or “N_.HH_EH_.L_ D_T_W.”

It is evident that the most sophisticated approach, the Gold-
water algorithm, does the best job at this task.

4. Mandarin-English

The second language pair in our experiments was Mandarin-
English. We used the FBIS Chinese-English corpus
(LDC2003E14), with 303,356 pairs of sentences. We randomly
divided the corpus into 296,470 sentences for training, 1037 for
tuning, and 5489 for testing; this brought the sizes of the sets
roughly into proportion with the sets for English-Spanish. The
corpus is mostly in the broadcast news domain.

4.1. Approaches

For this language pair, we organize our experiments along the
dimensions of token representation and token granularity:
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4.1.1. Token representation

The original Mandarin sentences are written in hanzi characters.
In order to be able to extend our results to zero- or low-resource
languages, we explored four representations of the original text
with increasing abstraction and concomitant difficulty for MT,
that model having different levels of knowledge about the lan-
guage at hand. The representations (with examples in Table 6)
are:

1. Hanzi: The original data in the form of hanzi characters.

2. Pinyin: We converted hanzi characters into pinyin (with
tones) using the open-source Python library Dragon
Mapper [8]. This representation is closely related to the
pronunciation of the language.

3. Pinyin (toneless): We removed the tone information,
since standard ASR usually does not handle tonal varia-
tions.

. ASR: We first synthesised the Mandarin speech using
Festival and then performed speech recognition with
CMU Sphinx using the same phoneme recognizer used
in Section 3.

4.1.2. Token granularity

Furthermore, in order to study the performance impact of miss-
ing word boundaries, we used different levels of granularity for
the atomic “word” unit (with examples in Table 7):

1. Syllable: This level removes the oracle word boundary
such that each token is a single hanzi character or the
corresponding pinyin for it; e.g., “’X Z” becomes “’X”
and “Z%”

2. Phone: This level breaks down the pinyin of indi-
vidual characters into consonant-vowel-consonant struc-
ture. The positions of vowels are determined based on a
set of rules detecting vowels such as a, 4, etc.

3. Goldwater: This level uses the Goldwater word segmen-
tation algorithm to cluster the pinyin and ASR represen-
tations into larger units.

Table 6: Examples with different representation

English gloss an international audience

Hanzi Efr T

Pinyin gudji shiting

Pinyin (toneless) guoji shiting

ASR KLIHKSIYSHIYEYTSLIHMP

Table 7: Examples with different granularity
English gloss an international audience
Word (hanzi) B
Word (pinyin) gudji shiting
Syllable (pinyin) gud ji shi ting

Phone (pinyin) gudjishiting

Goldwater (pinyin)  gudji shiting

Phone (ASR) KLIHKSIYSHIYEYTSLIHMP
Goldwater (ASR) KLIHKSIY SHIYEYT S LIHMP

One complication of using the Goldwater code is that it can
only handle input tokens in ASCII encoding, whereas pinyin is



in UTF-8 and the number of unique tokens is far larger than
the maximum number of ASCII code points (127). Therefore,
we developed mapping software that first encodes all pinyin
tokens into unique ASCII code and all tokens that are not in
the alphabet (such as punctuation and numbers) into a special
OOV token. This software successfully compresses the phone
(CVC) data into 123 unique ASCII tokens. After the clustering
is finished, the software maps the ASCII tokens back to original
pinyin form and reconstructs the OOV tokens, so that the final
sentences output by the process are suitable for input to Moses.

4.2. Results

For the above four different text representation schemas at four
different levels of granularity, we trained MT models using
Moses as with the English-Spanish experiments. The resulting
BLEU scores over the test data are presented in Table 8.

Table 8: Mandarin-English Results (BLEU)

Word Syllable Phone Goldwater
Hanzi 29.05 27.27 N/A N/A
(Oracle)
Pinyin 28.98 26.78 14.29 26.80
Pinyin 28.30 25.90 18.62 25.15
(toneless)
ASR N/A N/A 473 6.97

For the experiments represented in the first three rows,
where we have a deterministic mapping from hanzi to pinyin,
the results indicate that losing word boundaries and textual
representation impacts the MT performance in different ways.
Converting hanzi characters to their corresponding pinyin form
leads only to a small drop in the BLEU score. This is expected,
since although there are situations where different hanzi charac-
ters map to the same pinyin pronunciations, there generally is a
one-to-one mapping between them. Therefore, for the MT mod-
els, they are simply similar tokens in different lexical forms,
which does not significantly affect the translation process.

However, in comparing columns, we observe a significant
drop in score when going from syllable to phone. In this, we
not only lose distinct word boundaries, but also lose distinct
boundaries between characters and syllables. One explanation
is that in the phone representation, the resulting text becomes
much longer than its original form, which leads to a high fertil-
ity (three to six source tokens map to one English word). Fortu-
nately, we discovered that applying Goldwater’s algorithm can
recover the translation quality given the phone representation,
resulting in performance similar to that at the syllable level. We
conducted further error analysis on the clustering result of the
Goldwater algorithm, and show a example in Table 7. We can
see that it successfully recovers the grouping of pinyin into the
correct words.

Finally, the loss of information inherent in speech synthe-
sis and the noise introduced by the English phoneme recognizer
greatly compromise the translation quality (for a BLEU score
of 4.73). We found that although performance improves by us-
ing the Goldwater algorithm on the ASR output, the translation
quality is still not satisfying. Several important factors may ac-
count for the significant drop in performance. Both the acoustic
model and the language model of the phoneme recognizer are
trained on English corpora, while the speech is synthesized by
a single Mandarin voice. The acoustic properties of Mandarin
are significantly different from English; the sets of phonemes in
the two languages likewise differ considerably.
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5. Conclusions and Future Work

In the English-Spanish experiments, we tried several methods of
combining phonemes into word-like units, and evaluated their
efficacy by comparing the results from training an MT system
on the different texts. The Goldwater clustering process consis-
tently outperformed all other methods that were tried, both on
the gold-standard phonetic text of the corpus and on the noisy
text from phonetic ASR of synthesized speech produced from
many TTS voices, which in the aggregate we take to represent
natural human speech.

In the Mandarin-English experiments, we focused on the
different levels of granularity possible in representing a lan-
guage very different from English, to explore how different
methods of representing a language given imperfect knowledge
and means can affect MT quality, in combination with cluster-
ing methods. Much information initially “lost” through decom-
position of hanzi into different Romanized forms is recoverable
with clustering.

For the phoneme recognition system, we incorporated an
English acoustic model and an English phonetic language
model. As expected, the recognition performed much better
on English than on Mandarin. The English-Spanish experi-
ments, thus, give an accurate picture of the relative strengths
of the clustering methods on a language for which the recogni-
tion models are well suited. The Mandarin-English experiments
give a picture of what results can be expected in the extreme op-
posite case. This is important because it reflects the realities of
performing ASR on new or low-resource languages for which
well suited models are unavailable. It also underlines the im-
portance of leveraging what transcription schemas and linguis-
tic knowledge are available. In this case, having access to just
the consonant and vowel segments of the language, in Roman-
ized form and without tone information, resulted in a reasonable
translation when paired with the Goldwater algorithm.

In future work, we want to try using models for the ASR
that are closer to the language in question, to determine how
much improvement can be made thereby. This can help tell
whether it is more worthwhile to spend time developing or
adapting such models for new languages for use in induc-
ing phonemic transcriptions, or to work on creating alternate
transcription schemas that can be improved through clustering
methods. Additionally, the ASR software that we use allows
for retraining to improve the language model and to bootstrap a
better recognizer, which we did not perform for this work.

We have thus far used bitext corpora for which we derived
an audio representation. We would like to use a corpus for
which real human speech is available, in addition to an accurate
transcription and a parallel translation. Furthermore, it would
be beneficial to use natural or spontaneous speech, as opposed
to the “performed” speech from the Europarl corpus, e.g. Our
methods work best with large amounts of data, but finding ad-
equate speech corpora, even without accurate transcription and
translation, is surprisingly hard.

We would like to incorporate alignment information pro-
duced by Moses in order to help group noisy versions of the
same underlying words together, similarly to [1]. We began ex-
periments using lattice decoding of word types extracted from
the phrase tables, but more work is needed to improve compu-
tational tractability.

In all our experiments, the Goldwater algorithm was run us-
ing default hyperparameters. We would like to spend time tun-
ing the hyperparameters to further optimize MT performance.
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