Perfect Synthesis for all of the peop Alan W Black Carnegie Mellon University and Cepstral, LLC
--

Г

\square What do you do if there isn't an appropriate unit	\Box What should the unit size be	\Box How much data	\Box What data is necessary in the database	Many dimensions to this problem	Concatenate appropriate units from databases of natural speech.	Unit selection synthesis

Unit Selection extremes

□ Diphones:

- one occurrence of each type (phone-phone)
- trivial selection
- requires prosodic modification
- \square "General" unit selection:
- many occurrences of each type
- careful selection (acoustic/phonetic) based
- no prosodic modification

Unit Selection

Target cost: closeness to desired unit Continuity cost: how well do they join

Find units which minimize:

$$\begin{array}{lcl} C(t_1^n, u_1^n) & = & \sum_{i=1}^n C^t(t_i, u_i) + \sum_{i=2}^n C^c(u_{i-1}, u_i) & + \\ & C^c(S, u_1) + C^c(u_n, S) \end{array}$$

/

"Internal" issues

 \square How do we define target costs:

– features and weights

 \square How do we score joins:

– acoustic measure matching perception

 \Box Speech parameterization

– perceptually correlated dimensions

 \square Selection algorithms:

– how can you compare them

 \square How can do this efficiently:

clusters, pre-indexing etc

Lots of work to be done here

"External" issues

Find units which minimize:

$$egin{array}{rll} C(t_1^n,u_1^n)&=&\Sigma_{i=1}^n C^t(t_i,u_i)\ +&\Sigma_{i=2}^n C^c(u_{i-1},u_i)\ C^c(S,u_1)+C^c(u_n,S) \end{array}$$

How can you satisfy this equation well?

Get enough data

Record more data:
 - cover all possible conditions
 But ...

 \Box Combinatorics are huge:

- "Rare events are common"

 \square Humans can't speak for ever:

– varies over time, not consistent

The right data

Only collect the data you need

 \square Find out which data is acoustically different

- find distances between different unit instances

 \square Find out the how often they are needed:

– looking at very large corpora

 \square Find minimal sets that cover the space

But ...

 \square Wont be fully general

 \square Speaker might not say what you want

Limit your domain

Only synthesize things you can synthesize

 \Box Can be very high quality

 \square Design your database to cover domain:

– can be infinite domain

– but constrained, phonetically and prosodically

But ...

 \square Is domain specific:

– maybe ok for your applications

 \square Must be easy to build or not worth it: - not useful if takes 5 man-years to build

General voice vs Weather voice

N.
yntł
nesizi
ing j
in S
tyle

Varying style in the voice:
□ Explicitly record different styles
For examplem database recorded as ...
He _did then _know what _had occurred.
_Tarzan and _Jane raised _their heads.
...

Synthesize as: This is a short

This is a short example _This is a short example This _is a short example This is _a short example

:

Change expectations

 \square Make people expect a robotic voice:

- robots should have robot voices

 \square Make it so it should be hard to understand

 \Box Give it a foreign accent

□ at <i>stable</i> points - cf diphone	 at <i>boundary</i> points most dynamic place use optimal coupling for mibpoint joins 	Boundary positions	\Box HMM state sized	\Box Half phone	 Phone/diphone: – easier to get coverage (except for "toy oysters") 	 Word/phrase: very large coverage or small domain 	Unit size
---	--	--------------------	------------------------	-------------------	---	---	-----------

Finite vs Infinite number of units

Sounds good if you have the right unit But if you don't ...

 \square Smooth the joins:

- lightly (power/ pitch period)
- Interpolation (fusion units)

 \square Smooth the units:

- HMM generation

Will still be based on the acoustic space of our database

Some of the people all of the time

Some people don't need high quality

- \square "Unnatural" tasks:
- very high speed audio output
- screen readers
- \square "Should sound robotic":
- don't want natural voice
- □ Some people genuinely don't care
- \Box Listen often, sounds good

All of the people some of the time

Domain synthesis

 \square Design the voices for the tasks:

– very high quality

 \Box Limited domains:

– weather, dialog systems etc

 \square Domain directed:

- say anything but good at most common expressions

 \square Style directed:

– appropriate voice quality

- command vs compassionate

All
of
the
peo
eople
all
of
the
time

Far from achieving this

 \square Not just good sounding but *appropriate*

- appropriate prosody/style
- not confusing
- can't evaluate in isolation

 \square Even fully natural voices can be disliked:

- personal tastes
- can listener control the voice
- "speak up a bit"
- "don't be so happy when my stocks have crashed"

 \square How can we ever tell?

– evaluation still one of the hardest problems

There is no single voice that can achieve this

Conclusions

Unit selection works well when we carefully construct it we tune it for the application

To improve it we need to □ do more work

 \Box have more control over the speech

 \square be able to modify the units